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Influence of initial angular distribution on strong-field molecular dissociation

Youliang Yu, Shuo Zeng, J. V. Hernández, Yujun Wang and B. D. Esry
J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas, 66506

We study few-cycle, strong-field dissociation of aligned H+
2 by solving the time dependent

Schrödinger equation including rotation. We examine the dependence of the final angular dis-
tribution, kinetic energy release spectrum, and total dissociation yield on the initial nuclear angular
distribution. In particular, we look at the dependence on the relative angle θ0 between the laser
polarization and the symmetry axis of a well-aligned initial distribution, as well as on the delay
between the “pump” pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly,
we find the dissociation probability for θ0=90◦ can be appreciable even though the transitions in-
volved are purely parallel. We therefore address the limits of the commonly held “ball-and-stick”
picture for molecules in intense fields as well as the validity of the axial recoil approximation.

I. INTRODUCTION

Despite significant current interest in strong-field pro-
cesses for initially well-aligned molecules, theoretical
treatments that include the full nuclear dynamics, in-
cluding rotation, for this problem have essentially not
been pursued. Instead, the argument is usually made
that rotation is slow compared to the electronic and vi-
brational dynamics as well as to the laser pulse and can
thus be excluded from calculations [1]. It has been shown,
though, that neglecting nuclear rotation can qualitatively
change the dynamics, vibrational trapping for example,
is strongly suppressed by rotation, essentially eliminating
it [2–4].

When rotation is neglected—but the angular distribu-
tion is desired—it is often obtained using the axial recoil
approximation whereby the nuclei are assumed to disso-
ciate along the same line they were held to during the
pulse. Recent work [5], however, shows that this sim-
ple approach is insufficient for accurately describing the
angular distribution of the nuclei following strong-field
dissociation of H+

2 —even in an ultrashort pulse. This re-
sult can be understood [5] as impulsive alignment [6, 7]
of the dissociating fragments. That is, the ultrashort
pulse produces a broad distribution of angular momenta
that leads to substantial evolution of the angular distri-
bution after the pulse. The axial recoil approximation
is thus insufficient in these cases. But, Ref. [5] assumed
an isotropic initial distribution of the molecule. What
happens if the molecule is instead initially well aligned?
Is the axial recoil approximation better in this case? Is
the dissociation larger for an aligned molecule?

In this paper, we will begin to answer these questions
by studying the influence of the initial angular distri-
bution on H+

2 dissociation in intense, few-cycle pulses.
We imagine a pump-probe scheme in which the pump
pulse—linearly polarized at an angle θ0 relative to the
probe pulse—produces a well-aligned distribution at time
ti and the linearly polarized probe pulse dissociates the
molecule after a delay ∆t. The initial angular distribu-
tion is thus characterized by its alignment angle θ0 and
its width.

We study the dependence of the angular distribution,

kinetic energy release (KER) spectrum, and total disso-
ciation yield on θ0 and the initial angular width. We also
investigate the ∆t dependence of these dissociation ob-
servables. Among other things, we have found the sur-
prising result that the dissociation probability for per-
pendicular alignment can be appreciable even though the
transitions involved are purely parallel.

II. THEORY

A. Time-Dependent Schrödinger Equation

The time-dependent Schrödinger equation (TDSE) for
three-dimensional H+

2 is written as

i
∂

∂t
Ψ(RRR,rrr, t) = [H0 − ddd · EEE(t)]Ψ(RRR,rrr, t), (1)

with field-free Hamiltonian H0, and nuclear and elec-
tronic coordinates RRR and rrr. Atomic units are used
throughout this work unless otherwise noted. We use
the dipole approximation in the length gauge with dipole
operator ddd. The probe electric field EEE(t) is explicitly ex-
pressed as [8]

EEEprob(t) = ẑE0e−t
2/τ2

cos(ωt+ ϕ). (2)

We use pulses with a full width of the intensity at half
maximum, τFWHM=(τ

√
2 ln 2), of 10 fs and a wavelength

of 790 nm. The intensity is taken as 1.5 × 1013 W/cm2

throughout the paper except where specified otherwise.
Carrier-envelope phase effects are minimal for these pulse
parameters [9], so we set ϕ = 0 for simplicity.

We solve Eq. (1) in the Born-Oppenheimer (BO) rep-
resentation. The details of our method can be found in
Refs. [4, 10]. Here we provide a brief summary for com-
pleteness. First, the BO potentials and dipole matrix el-
ements are calculated using the formulation in Ref. [10].
Then, the total wave function Ψ(RRR,rrr, t) is expanded on
the BO basis, and the nuclear rotation is treated via an
expansion over symmetrized Wigner D-functions. For
our pulse parameters, retaining only the 1sσg and 2pσu
channels is a good approximation [4]. In this case, both
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the Coriolis and non-Born-Oppenheimer couplings are
zero. Equation (1) thus reduces to the coupled radial
equations

i
∂

∂t
Fα =

(
− 1

2µ

∂2

∂R2
+
J(J + 1)

2µR2
+ Uβ

)
Fα

−EEE ·
∑
α′

DDDαα′Fα′ , (3)

where Fα = Fα(R, t) is the nuclear radial wave function.
The index α collectively represents the quantum number
βJM with J and M the total orbital angular momentum
and its lab-frame z-projection, respectively, and β the
electronic state label. In this work, β = 1sσg, 2pσu—or
simply g, u. Consequently, only parallel transitions are
allowed. The precise form of the dipole matrix elements
DDDαα′ is given in Ref. [4].

To solve Eq. (3), we use a generalized finite dif-
ference scheme for the radial coordinate [11–13] and
split operator techniques combined with the Crank-
Nicolson method for the time evolution, as implemented
in Refs. [4, 13, 14]. We use a uniform radial grid distri-
bution with 3000 points in the range 0.05 a.u. ≤ R ≤
80 a.u.. Time evolution starts at tmin when the pulse
envelope first reaches 108 W/cm2 and ends at tf when it
reaches 106 W/cm2, with a time step of 0.5 a.u.. All the
results shown in this paper are tested to be converged to
at least 2 digits.

B. Preparing the Initial State

To study the effects of the initial angular alignment
on strong-field molecular dissociation, we must prepare
an appropriately aligned initial state. Instead of using
an actual pump pulse for this purpose in our calcula-
tions, we directly construct the desired aligned state by
superposing different JM states at time ti. Due to the
linearity of the TDSE, these states can be propagated
independently and the results superposed as dictated by
the initial state. In this section, we will discuss the de-
tails of this procedure.

As shown in Fig. 1, our goal is to construct a state
aligned along a line defined by the angles θ0 and φ0 with
respect to the probe-pulse polarization, which also de-
fines the quantization axis. Because the probe is linearly
polarized, the choice of φ0 is arbitrary—the results for
any φ0 can be obtained from another by a simple rota-
tion about the z-axis.

As the first step, we create a state aligned along z:

Ψaligned =
∑
vJ

avJΦvJM (4)

where ΦvJM = χvJΩJΠ
M0, with χvJ the bound ro-

vibrational radial eigenstate in the 1sσg channel and
ΩJΠ
M0 the symmetrized total orbital angular momentum

state [4] with Π the total parity. Without loss of general-
ity, we assume Ψaligned ∼ cosn θ, therefore the coefficients

FIG. 1. Schematic representation of the pump-probe scheme
considered. The pump pulse creates a distribution at ti
aligned along Êpump. After a delay ∆t, a probe pulse polarized
at an angle θ0 to the pump pulse dissociates the molecule.

avJ are defined by projecting cosn θ with n = 6 and 8
onto the eigenstates and normalizing the result. By
choosing n even, only even Js (up to J = 6 or 8) con-
tribute to Eq. (4), mimicking the production of Ψaligned

by an impulsive pump pulse [6, 7]. The phase of avJ ,
however, does not necessarily match that produced by
impulsive alignment. The lack of R dependence in our
target distribution primarily serves to enforce a phase
convention on our numerically calculated χvJ(R). To
have appreciable dissociation, we limit the sum to v = 9.
With these choices, 〈cos2 θ〉 for Ψaligned is 0.81 and 0.89
for n = 6 and n = 8, respectively, which are the two
initial angular widths discussed throughout this work.

In the second step, the aligned state is rotated to the
final angles (θ0, φ0) in the lab frame:

Ψ(ti) = R̂(φ0, θ0, 0)Ψaligned

=
∑
JM

avJD
J
M0(φ0, θ0, 0)ΦvJM , (5)

using the rotation operator R̂. As mentioned above, the
choice of φ0 is arbitrary; we thus set it to zero. We note
that the solutions Fα of the TDSE in Eq. (3) depend only
on |M |. The −M solutions are thus identical to the +M
solutions.

Finally, the aligned initial state is prepared by prop-
agating it freely from ti to the beginning of the probe
pulse at tmin. This interval depends on the pump-probe
delay as depicted in Fig. 1. The free evolution from ti to
tmin is purely analytic.
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C. Superposing Final States

Because the time evolution operator U(tf , ti) is linear,
applying it to Ψ(ti) only requires knowledge of the ac-
tion of U(tf , ti) on the individual ro-vibrational initial
states in Eq. (5). Practically, we obtain this knowledge
by solving Eq. (3), but we can write it conveniently as

ΦvJM (tf ) = U(tf , ti)Φ
v
JM (ti), (6)

since M is conserved by the linearly polarized probe
pulse. To be clear, we note that the labels on ΦvJM (tf )
refer to the initial state—ΦvJM (tf ) itself will include all
partial waves and both electronic states due to the action
of U(tf , ti).

According to Eq. (5), the total final state is thus ex-
pressed as

Ψ(tf ) = U(tf , ti)Ψ(ti)

=
∑
JM

avJD
J
M0(0, θ0, 0)ΦvJM (tf ). (7)

In this way, we can propagate each initial state indepen-
dently and superpose them with, in principal, arbitrary
coefficients afterwards, providing a very efficient means
of examining many initial angular distributions. It has
the additional benefit of making the dependence on θ0

explicit and analytic, which could be potentially useful.

D. Analysis

The complete formalism we use for analyzing H+
2 disso-

ciation with rotation can be found in Ref. [15]. Here, we
only provide the modifications necessary for the present
problem. For dissociation to p+H, where H is in the 1s
state asymptotically, the relative momentum distribution
of fragments is

∂2P

∂θK∂E
=

∫ 2π

0

dφK

∣∣∣〈Ψ(−)
KKK,1s|Ψ(tf )〉

∣∣∣2 (8)

where Ψ
(−)
KKK,1s is the energy-normalized scattering wave

function with outgoing plane-wave boundary conditions,
andKKK is the relative nuclear momentum pointing from H
to p. Note that the full momentum distribution depends
on the azimuthal angle φK . It is peaked at φ0, and the
discussion of φ0 above applies here. However, since we
are concerned primarily with the behavior relative to the
laser polarization—i.e. θK and θ0—we will integrate over
φK for all the results shown in this work.

The angular distribution can be obtained from the mo-
mentum distribution using

dP

dθK
=

∫ ∞
0

∂2P

∂θK∂E
dE, (9)

whereas the KER distribution is

dP

dE
=

∫ π

0

∂2P

∂θK∂E
sin θKdθK . (10)

In practice, these integrations were carried out numeri-
cally.

III. RESULTS AND DISCUSSION

In our pump-probe scheme, the molecule is aligned at
ti. After a delay ∆t, an infrared probe pulse stimulates
the dissociation. However, the rotational wavepacket
evolves freely from ti until the probe arrives and will
thus exhibit revivals or partial revivals [7, 15]. One might
therefore expect the results to be sensitive to the pump-
probe delay. We will address this question in Sec. III A
using the total dissociation probability, the angular dis-
tribution, and the KER spectrum of dissociation frag-
ments. We will address the θ0 and width dependence in
Secs. III B and III C, respectively.

A. Pump-Probe Delay Dependence

In this section, we discuss the ∆t dependence of disso-
ciation for a well-aligned initial state (Ψaligned ∝ cos8 θ,
giving a width of 0.89) with θ0 restricted to zero.

In Fig. 2(a), we show the delay dependence of the field-
free 〈cos2 θ〉 at t = 0, the total dissociation yield P ,
and 〈cos2 θK〉 for the dissociation fragments. The field-
free 〈cos2 θ〉 gives the alignment at t = 0 with no probe
pulse. And, as one might expect, P follows the field-free
〈cos2 θ〉—in other words, P grows when 〈cos2 θ〉 grows,
indicating that the more aligned the molecule is, the more
it dissociates since only parallel transitions are possible
between 1sσg and 2pσu. The alignment of the dissoci-
ation fragments 〈cos2 θK〉 generally also follows 〈cos2 θ〉,
but is larger at all delays. This result is consistent with
the observation in Ref. [5] that a short pulse impulsively
aligns the dissociating fragments.

Figure 2(b) shows the fragments’ alignment in detail
via dP/dθK sin θK as a function of ∆t. One can see that
at ∆t ≈ 270 fs, for example, where Fig. 2(a) shows the
molecule is at a local maximum of the initial alignment,
the final angular distribution is localized near 0 and π.
Similar localization occurs at ∆t = 0 and ∆t ≈ 130 fs
where 〈cos2 θ〉 peaks. In contrast, when 〈cos2 θ〉 is near a
minimum—e.g. at ∆t ≈ 70, 200, and 350 fs—the peaks
in the final angular distribution move away from 0 and
π, producing corresponding local minima in 〈cos2 θK〉.
Since these minima in 〈cos2 θ〉 correspond to both aligned
and anti-aligned initial distributions, the fact that they
all produce a minimum in 〈cos2 θK〉 implies that proper-
ties of the ro-vibrational wavepacket beyond its width are
important. In particular, many different distributions—
with different phases—can have the same 〈cos2 θ〉. It is
natural that the dynamics of these various wavepackets
differs. In fact, Fig. 2(a) and 2(b) demonstrate this since
different angular distributions and yields result from ini-
tial states with the same 〈cos2 θ〉.
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FIG. 2. The pump-probe delay dependence of (a) 〈cos2 θK〉
(solid red), the dissociation yield (dashed green), the field-
free 〈cos2 θ〉 (dot-dashed blue), (b) the angular distribu-
tion dP/dθK sin θK , and (c) the kinetic energy release spec-
trum.

In Fig. 2(c), we show the delay-dependent KER spec-
trum for the dissociation fragments. For v = 9, one-
photon absorption should be dominant for the current
laser parameters [1, 4, 16], which is consistent with
Fig. 2(c) since the position of the peak matches that
expected for net one-photon dissociation. An obvious
feature of this plot is the oscillation between the double-
peaked and the single-peaked structure. The double peak
occurs near the delays with strong alignment, whereas
the single peak happens at delays when 〈cos2 θ〉 is near
a minimum. We will discuss such double-peaked KER
more fully below.
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FIG. 3. The alignment angle (θ0) dependence of (a)
the total dissociation probability, and (b) the angular dis-
tribution of the dissociation fragments dP/dθK sin θK for
1.5×1013 W/cm2.

B. Alignment Angle Dependence

Previous studies [17–21] indicate that molecular ion-
ization and electron rescattering are sensitive to the
molecule’s alignment. In this section, we investigate the
dependence of dissociation on the alignment angle. We
again use a well-aligned initial state (∝cos8 θ), and the
time delay is restricted to ∆t = 0.

In Fig. 3(a), we show the total dissociation yields for
two different intensities. For 1.5 × 1013 W/cm2, we
find that for such a narrow initial angular distribution,
there is a surprisingly large probability of dissociation at
θ0 = π/2 compared with θ0 = 0, especially given that we
do not include perpendicular transitions in the calcula-
tion. The simple no-rotation model employed by many
for the nuclear dynamics would, of course, predict no
dissociation for θ0 = π/2 at its simplest level of appli-
cation. This suggests that the dissociation from such a
narrow initial state must be due to its nonzero angu-
lar width. For comparison, we also show the result for
1.5×1011 W/cm2. It can be seen that even for this much
lower intensity, there is still appreciable dissociation for
perpendicular alignment—about 11% of that for parallel
alignment.

To help understand the dependence of dissociation on
θ0, we show in Fig. 3(b) the angular distribution of the
fragments for 1.5 × 1013 W/cm2 as a function of θ0. At
θ0 ≈ 0, the dissociation probability peaks near θK = 0
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and θK = π as expected. As θ0 becomes larger—but
smaller than π/4—the peak of the angular distribution
in θK approximately follows θ0: θK ≈ θ0 and, by symme-
try since we integrate over φ0, θK ≈ π − θ0. This is the
behavior one would expect according to the axial recoil
approximation under the assumption that there is negli-
gible change in the angular distribution during the pulse,
which is probably a reasonable assumption for the 10-fs
pulse used here. For θ0 larger than about π/4, however,
the peak in θK is no longer approximately θ0. In this
case, the assumption that the molecule does not rotate
during the pulse implies that the axial recoil approxima-
tion at its simplest level is failing.

As suggested above, the axial recoil approximation
might be salvaged by taking into account the finite angu-
lar width of the initial state rather than imagining it as a
delta function at θ0. For concreteness, let us consider the
limiting θ0 = π/2 case with the simplified initial angular
distribution |Ψ|2 ∝ cos16(θ− π/2) with a FWHM of just
under 0.2π. In the axial recoil approximation, the θK dis-
tribution in Fig. 3(b) must originate from the wings of the
initial distribution since there should still be no rotation
during the pulse. However, if one calculates the prob-
ability that the molecule initially lies in the wings—i.e.
0 ≤ θ ≤ 0.4π or 0.6π ≤ θ ≤ π—it turns out to be 18%,
capturing only 60% of the dissociation shown in Fig. 3(a)
for θ0 = π/2. Using this reasoning, one must therefore
have dissociation originating from θ closer to π/2, which
means, in turn, that these fragments must rotate after the
pulse to give the distribution in Fig. 3(b). The bottom
line is that the axial recoil approximation breaks down.
Thus, while a nonzero initial angular width is required
for dissociation at larger θ0, rotational dynamics are also
required to explain the final result.

We note that the common no-rotation treatment
would predict a distribution superficially resembling
Fig. 3(b) through the use of an effective intensity [7]
Ieff=I0 cos2 θ0 (the intensity due to the component of
the laser field along the molecular axis). For a one-
photon transition, this approach would predict an an-
gular distribution immediately after the pulse propor-
tional to cos16(θ−π/2) cos2 θ for θ0=π/2. This distri-
bution peaks at θ=0.4π and 0.6π. Post-pulse rota-
tion would thus still be required to obtain the observed
distribution. Considering three-photon transitions—i.e.
cos16(θ−π/2) cos6 θ—moves the peaks less than 0.1π, still
leaving the peak ∼0.05π short of the result in Fig. 3(b).
All evidence thus points to the importance of rotation—
and the breakdown of the axial recoil approximation—for
quantitatively predicting the final angular distribution.

Figure 4 shows the KER distribution as a function
of θ0. The most striking feature is probably the tran-
sition from a single peak to a double peak much like
in Fig. 2(c). The overall position of the peaks matches
that for net-one-photon dissociation of v=9 as expected.
To understand the KER dependence, consider that the
energy dependence of a purely one-photon dissociation
peak is given in first-order perturbation theory by the
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FIG. 4. Kinetic energy release spectrum of the dissociation
fragments in terms of the alignment angle θ0 for (a) 1.5 ×
1013 W/cm2 and (b) 2× 1013 W/cm2.

pulse’s power spectrum, the energy dependence of the
dipole matrix element [15], and the spread in energy of
the initial ro-vibrational states. In the present case, the
pulse is Gaussian, giving a Gaussian power spectrum
of width ≈0.2eV; the dipole matrix element is smooth
over this energy range with no zeros; and the initial
states cover an energy range of about 0.19eV. Thus, a
one-photon transition cannot give two KER peaks in
the present case—higher-order processes must be respon-
sible. For instance, when three-photon processes—the
next order that can contribute to the spectra in Fig. 4—
become possible, then

dP

dE
= |A1E0 +A3E3

0 |2, (11)

where Ai are the energy-dependent, complex, first- and
third-order perturbation theory amplitudes. Only when
|A3E3

0 | ≈ |A1E0| can the nearly completely destructive
interference required to produce two peaks occur. This
observation can be used to understand Fig. 4.

Generally speaking, one would think to increase the
three-photon contribution by increasing the intensity.
However, the same result can be obtained by increasing
the magnitude of the dipole matrix elements: A1 is pro-
portional to a dipole matrix element; and A3, to a prod-
uct of three dipole matrix elements. These dipole ma-
trix elements depend on the quantum number M via the
Clebsch-Gordan coefficients. With the M dependence
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analytic [4], it is straightforward to verify that the dipole
matrix element decreases with increasing |M |. Further,
the decrease can be roughly a factor of two fromM = 0 to
|M | = J , which is equivalent to reducing the intensity by
a factor of four. In an initial state with small θ0, M = 0
dominates the distribution [see Eq. (5)], yielding a larger
dipole matrix element. As θ0 increases, larger |M |s get
populated, so the dipole matrix element is smaller and
higher-order effects become negligible.

A more simplistic picture for understanding the emer-
gence of the double-peaked spectrum can be found in the
no-rotation model [1, 22]. Specifically, with no rotation
of the nuclei and only parallel transitions included, only
the effective field Eeff = E0 cos θ0 enters the dipole inter-
action. This implies that the smaller θ0 is, the greater Eeff

is. Thus, higher-order processes become more probable
as θ0 decreases, permitting a double-peaked spectrum as
described above. While this simple picture does qualita-
tively explain the figure and should apply so long as the
molecule does not have time to rotate during the pulse [5],
we have already detailed why including rotation after the
pulse is essential for correctly predicting the final angular
distribution.

C. Initial Angular Width

The previous sections have assumed an initial angu-
lar width of 0.89. Here, we address how the quality of
the initial alignment affects the molecular dissociation.
Specifically, we compare the θ0 and the ∆t dependence
of dissociation for alignment widths of 0.89 and 0.81.

In Fig. 5, we show the θ0 dependence of the total dis-
sociation probability, repeating P for 0.89 from Fig. 3(a)
for comparison. Overall, the trends are quite similar—
parallel alignment leads to more dissociation than per-
pendicular alignment, as explained in the discussion of
the θ0-dependence in Sec. III B. Moreover, as θ0 ap-
proaches zero, the narrower initial angular distribution
gives a larger dissociation yield. This can be understood
by noting that the dipole matrix elements also depend
on the quantum number J via the Clebsch-Gordan coef-
ficients. The initial J distribution is determined by the
angular width in Eq. (4): the narrower the width, the
broader the J distribution. Since the maximum popu-
lated J is larger, the dipole matrix elements are larger.
The increase is about 15% from J = 6 to J = 8 given
M = 0 for a parallel transition. Therefore, the narrower
the angular distribution, the more the molecule dissoci-
ates.

Finally, in Fig. 6 we compare the ∆t dependence of the
yield P and the field-free 〈cos2 θ〉 (at t = 0) for different
initial angular widths. As in Fig. 2(a) for the narrower
initial angular distribution, the yields follow the same
trend as the field-free 〈cos2 θ〉. The yields for the different
initial angular widths cross each other at approximately
the same ∆t as the field-free 〈cos2 θ〉 equal each other
for ∆t < 200 fs. Such behavior, however, does not hold
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FIG. 5. Dissociation probability as a function of the align-
ment angle θ0 for initial alignment widths 0.89 (dashed green)
and 0.81 (solid red).
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for larger ∆t. This is simply because the details of the
molecule’s angular distribution might be different, even
for the same 〈cos2 θ〉.

IV. SUMMARY

We have presented a study of the dependence of strong-
field, few-cycle dissociation on the initial alignment of
the molecule. We focused on H+

2 and on initial dis-
tributions well aligned along an axis different from the
polarization of the probe pulse. We have found evi-
dence for post-pulse rotation—and thus the breakdown
of the axial recoil approximation—especially when the
angle between the alignment axis and probe polarization
exceeds 45◦. Our calculations thus provide further evi-
dence that the rotation of the nuclei must be included
to quantitatively predict the momentum (or angular)
distribution of strong-field dissociation. We have pro-
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vided quantum-mechanical explanations of the observed
phenomena, comparing and contrasting them with those
based on simplified pictures commonly found in the lit-
erature. We expect these results to apply not just to H+

2 ,
but to any diatomic molecular dissociating via parallel
transitions due to a laser pulse short compared to the

free rotation period.
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