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We present the numerical implementation of the time-dependent complete-active-space self-consistent-field
(TD-CASSCF) method [Phys. Rev. A, 88, 023402 (2013)] for atoms driven by a strong linearly polarized laser
pulse. The present implementation treats the problem in its full dimensionality and introduces a gauge-invariant
frozen-core approximation, an efficient evaluation of the Coulomb mean field scaling linearly with the number of
basis functions, and a split-operator method specifically designed for stable propagation of stiff spatial derivative
operators. We apply this method to high-harmonic generation in helium, beryllium, and neon and explore the
role of electron correlations.
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I. INTRODUCTION

The rapid progress in experimental techniques for ultra-
short optical light sources with high-intensity has opened new
research areas including ultrafast molecular probing [1–3],
attosecond science [4–6], and XUV nonlinear optics [7, 8],
with the ultimate goal to directly measure, and even control
electron motion in atoms, molecules, and solids. The time-
dependent Schrödinger equation (TDSE) provides the rigor-
ous theoretical framework for investigating electron dynamics
[9–24]. However, direct real-space solutions of the TDSE for
systems with more than two electrons remain a major chal-
lenge.

To investigate multi-electron dynamics in intense laser
fields, the multiconfiguration time-dependent Hartree-Fock
(MCTDHF) method has been developed [25–29] in which the
time-dependent total wave function is given in the configura-
tion interaction (CI) expansion,

Ψ(t) =
∑

I

ΦI(t)CI(t), (1)

where ΦI(t) is a Slater determinant built from a given number,
n, of orbital functions {ψp(t)} called occupied orbitals. Both
the CI coefficients {CI} and the orbitals are simultaneously
varied in time which allows to use a considerably smaller
number of orbitals than in a standard CI approach. The con-
ventional MCTDHF method is based on the full-CI expansion;
the summation I in Eq. (1) is taken over all possible realiza-
tions of distributing N electrons among the 2n spin orbitals
{ψp} ⊗ {↑, ↓}, where ↑ (↓) is the up- (down-)spin eigenfunc-
tion. In this article we refer to the term time-dependent multi-
configurational self-consistent field (TD-MCSCF) method in
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a broader context that involves the multiconfiguration wave
function of the form Eq. (1) without the restriction to the full-
CI expansion.

Following the first implementations of the MCTDHF
method for one-dimensional (1D) model Hamiltonians [25,
26, 28] and with a Gaussian basis set [27], three-dimensional
(3D) real-space implementations and their applications have
been reported by several authors [30–34]. The 3D imple-
mentations have been most successfully applied to cases with
short wavelength (high photon energy) pulses. For example,
Hochstuhl and Bonitz have presented an application to atoms
in spherical polar coordinates and simulated two-photon ion-
ization of helium [32]. Haxton and McCurdy have used spher-
ical polar coordinates and prolate spheroidal coordinates for
atoms and diatomic molecules, respectively, and simulated
single-photon ionization of a Be atom and a HF molecule [33].
They have also simulated X-ray core excitation and core ion-
ization and subsequent relaxation processes in NO molecules
[34]. In contrast to perturbative processes, application of the
MCTDHF method to strong-field processes at longer wave-
length (visible to infrared) and high intensities (peak intensi-
ties up to 1015 W/cm2) such as tunneling ionization and high-
harmonic generation (HHG) are largely missing. A few ex-
ceptions include the work of Jordan et al. [30] who analyzed
molecular size effects on strong-field ionization of model two
electron systems, and the work of Kato and Kono [31], where
single and double ionization of a hydrogen molecule induced
by a near-infrared (NIR) laser pulse were investigated. The
quantitative first-principles study of multi-electron dynamics
in the long-wavelength high-intensity regime still remains a
challenge.

One of the difficulties lies in the large CI dimension de-
fined as the expansion length in Eq. (1), required to accu-
rately describe many-electron wave functions. Within the
full-CI based MCTDHF method the CI dimension, and there-
fore, the computational cost increases factorially with the
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number of electrons N . To overcome this limitation we
have recently proposed the time-dependent complete-active-
space self-consistent-field (TD-CASSCF) method [35]. Simi-
lar to the stationary CASSCF method of quantum chemistry it
makes use of the decomposition into core and active orbital
subspaces. Accordingly, core electrons within the closed-
shell wave function are treated closely following the time-
dependent Hartree-Fock (TDHF) method [36], while the ac-
tive electrons are fully correlated among active orbitals as
in the MCTDHF method. Whereas, in general, all the or-
bitals are varied in time, it is possible to further split the
core space into time-independent frozen-core (FC) and time-
dependent dynamical-core (DC) orbitals (see Fig. 1). With the
decomposition into core and active orbitals, the TD-CASSCF
method significantly reduces the CI dimension without sac-
rificing the accuracy in the description of multi-electron dy-
namics in long-wavelength high-intensity lasers. The TD-
CASSCF method is gauge invariant [37] and size extensive
[38]. The fully correlated active space enables an accurate
description of ionization processes including multichannel
and multi-electron effects while dynamical-core orbitals effi-
ciently account for the field-induced core polarization. More
approximate and thus computationally even less demanding
methods have also been developed [39–41], such as the time-
dependent occupation-restricted multiple active-space (TD-
ORMAS) method [41]. See Ref. [37] for a broad review of
ab initio methods for multi-electron dynamics.

This paper reports on an efficient fully 3D implementation
of the TD-CASSCF method for atoms in the field of a lin-
early polarized laser pulse. Simulations for long-wavelength
high-intensity pulses involve a large simulation volume and
high spatial resolution to represent the electronic motion with
large quiver amplitudes and high kinetic energy, requiring
a very large number K of basis functions (or equivalently,
grid points) for expanding the orbital functions. We reduce
the resulting computational cost and harness the advantages
of the TD-CASSCF method by introducing a gauge-invariant
description of the frozen-core subspace allowing a velocity-
gauge simulation, which is known to be superior to the length
gauge treatment for strong field phenomena [42, 43]. Our im-
plementation employs a spherical harmonics expansion of or-
bitals with the radial coordinate discretized by a finite-element
discrete variable representation (FEDVR) [44–47]. For the
computationally most costly operation, the evaluation of the
mean field, we use a Poisson solver thereby achieving lin-
ear scaling with K. A split-operator propagator is developed
with an efficient implicit method for stiff derivative operators
which drastically stabilizes the temporal propagation of or-
bitals. Combining these techniques makes it possible to take
full advantage of the TD-CASSCF method and permits bench-
mark calculations for atoms. We present the HHG spectra for
He, Be, and Ne atoms induced by an intense NIR laser pulse
and explore the effect of the electron correlation. Our results
are converged with respect to the spatial and temporal dis-
cretization. This paper is organized as follows. In Sec. II,
we present the equations of motion (EOMs) for the TD-
CASSCF method and introduce a gauge-invariant frozen-core
treatment. Our implementation of the TD-CASSCF method

for atomic systems is described in Sec. III, and numerical ap-
plications are described in Sec. IV. Section V concludes this
work and discusses future prospects. In order to improve the
readability of the manuscript, we have moved a considerable
amount of technical details to Appendices A to E. Hartree
atomic units are used throughout unless otherwise noted.

II. METHOD

A. The system Hamiltonian

We consider an atom with N electrons exposed to a laser
field linearly polarized in the z direction. The Hamiltonian
reads

H =

N∑

i=1

h(ri,pi, t) +

N∑

i=1

∑

j>i

U(ri, rj) (2)

where ri and pi = −i∇i are the coordinate and canonical
momentum of the electron i, with the one-body Hamiltonian

h(t) = h0 + Vext(t), (3)

and the electron-electron interaction

U(r1, r2) =
1

r12
=

1

|r1 − r2|
. (4)

The atomic Hamiltonian h0 and the laser-electron interac-
tion Vext within the dipole approximation either in the length
gauge (LG) or in the velocity gauge (VG) are given by

h0(r,p) =
1

2
p2 + V0(r), V0(r) = −Z

r
(5)

V LG
ext (r, t) = E(t)z, (6a)

V VG
ext (p, t) = A(t)pz, (6b)

where V0 is the nuclear potential with Z being the atomic
number, and E(t) and A(t) = −

∫
E(t)dt are the laser elec-

tric field and the vector potential, respectively. We will use the
second-quantized operators ĥ, Û , and Ĥ , etc., corresponding
to those defined in real space in Eqs. (2) to (6). Explicit ex-
pressions for the operators in second quantization are given in
Appendix A.

B. TD-CASSCF method

In the TD-CASSCF method [35], the n occupied orbitals
are separated into nc doubly occupied core orbitals {ψi : i =
1, 2, · · ·, nc} and na active orbitals {ψt : t = nc + 1, nc +
2, · · ·, n}, with n = nc + na. The core orbitals can be further
decomposed into nfc FC orbitals and ndc DC orbitals, with
nc = nfc + ndc. Then the N -electron wave function is given
by

ΨCAS = Â

[
ΦfcΦdc

∑

I

ΦICI

]
, (7)
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where Â is the antisymmetrization operator, Φfc and Φdc are
the closed-shell determinants constructed with FC and DC or-
bitals, respectively, and {ΦI} are the determinants formed by
active orbitals. Compared to stationary CASSCF calculations
the required size of the active space in TD-CASSCF is, in
general, larger due to the inclusion of dynamical excitation
processes. Therefore, compared to CASSCF calculations TD-
CASSCF is limited to smaller systems. Both methods have in
common that the total number of configurations is limited by
the available computer memory.

In the following we will denote the level of the CAS
approximation employed in ΨCAS by the integer triple
(nfc, ndc, na) with nfc +ndc +na = n. The MCTDHF method
corresponds to the special case (0, 0, n). As the formulation of
the TD-CASSCF method involves different classes of orbitals,
we introduce for clarity specific index sets: for core orbitals
we will use {i, j}, for active orbitals {t, u, v, w, x} and for
arbitrary orbitals (core and active) {o, p, q, r, s}. The FC and
DC orbitals are distinguished explicitly only when necessary.

The equations of motion (EOMs) for the TD-CASSCF
method has been derived based on the time-dependent vari-
ational principle [48–50], where the following action integral
S,

S =

∫
dt〈Ψ|Ĥ − i ∂

∂t
|Ψ〉, (8)

is required to be stationary, i.e, δS = 0 for the variation
of orbitals {ψp} and CI coefficients {CI}. The form of the
resulting EOMs is not unique but can be written in various
equivalent ways (see Appendix B for further details). Here
we present the EOMs in the form particularly well-suited for
the split-operator method applied below. The EOMs for the
CI coefficients read

iĊI =
∑

J

〈ΦI |Û |ΦJ〉CJ , (9a)

and the EOMs of the orbitals are given by

i|ψ̇p〉 = ĥ|ψp〉+ Q̂F̂ |ψp〉+
∑

q

|ψq〉Rqp, (9b)
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FIG. 1. Illustration of the TD-CASSCF concept for a 10-electron
system with 9 occupied orbitals. The up and down arrows repre-
sent electrons decomposed into FC electrons (blue), DC electrons
(black), and active electrons (red). The horizontal lines represent oc-
cupied orbitals, classified into doubly occupied FC and DC orbitals
and active orbitals (bracketed). Three examples, (2,0,7), (0,1,8), and
(0,0,9), correspond to the methods used for the Ne atom in Sec. IV C.

where Q̂ = 1−∑p |ψp〉〈ψp| is the projector onto the orthog-
onal complement of the occupied orbital space. The operator
F̂ is defined by

F̂ |ψp〉 =
∑

oqsr

(D−1)opP
qs
or Ŵ

r
s |ψq〉, (10)

where D and P are the one- and two-electron reduced density
matrix (RDM), respectively (see Ref. [35] for their definition
and the simplification due to the core-active separation), and

W p
q (r1) =

∫
dr2

ψ∗p(r2)ψq(r2)

|r1 − r2|
. (11)

is the matrix element for the Coulomb interaction. The matrix
element Rqp,

Rqp ≡ i〈ψq|ψ̇p〉 − hqp (12)

determines the components of the time derivative of orbitals in
the subspace spanned by the occupied orbitals. The elements
within one subspace, i.e., Rij and Rut , can be arbitrary Hermi-
tian matrix elements and are set to zero Rij = Rut = 0 in the
present implementation [35]. Elements between the core and
active space are given by [35],

Rti =
∑

u

(2−D)−1
tu

(
2Fui −

∑

v

Du
vF

i∗
v

)
, (13)

where F pq = 〈ψp|F̂ |ψq〉. The explicit solution of this set of
EOMs (Eq. 9) in a spherical basis will be discussed below.

One important aspect of the TD-CASSCF method to be ad-
dressed is the preservation of gauge invariance. While the
MCTDHF method is gauge invariant from the outset, the in-
equivalent treatment of frozen-core and active orbitals within
the TD-CASSCF method requires the explicit introduction of
gauge phases.

Previously [35, 41], the FC orbitals were identified with
the field-free orbitals. This choice is justified only for the
length gauge (LG). In order to render the TD-CASSCF gauge-
invariant and to allow for the use of the numerically con-
venient velocity gauge (VG) we introduce gauge-dependent
frozen-core orbitals as

|ψi(t)〉 =

{ |ψi(0)〉 (LG)
e−iA(t)z|ψi(0)〉 (VG)

(i ∈ FC). (14)

Correspondingly the matrix element (Eq. 12)

Rpi = (Rip)
∗ =

{
−hpi (LG)

−hpi − E(t)zpi (VG)
, (15)

where i ∈ FC and zpi = 〈ψp|z|ψi〉.

III. IMPLEMENTATION FOR MANY-ELECTRON ATOMS

A. Spherical-FEDVR basis

In our implementation of the TD-CASSCF method for
many-electron atoms we adopt the so called spherical-FEDVR
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basis functions,

χklm(r, θ, φ) =
1

r
fk(r)Ylm(θ, φ), (16)

where (r, θ, φ) are the spherical coordinates of r, Ylm is a
spherical harmonic, and fk(r) are normalized radial-FEDVR
basis functions [44, 45]. We divide the radial coordinate
[0, Rmax] into KFE elements with each element supporting
KDVR local DVR functions. The radial coordinate is thus dis-
cretized into Krad = KFEKDVR − (KFE − 1) grid points
{rk} (the termKFE−1 takes into account the bridge functions
[44, 45] used for boundaries of neighboring finite elements),
with integration weights {wrad

k } such that

fk(rk′) =
δkk′√
wrad
k

, (17)

and r1 = 0, rKrad
= Rmax (For further details, see Refs. [32,

44, 45]).
We use m-adapted orbitals with fixed magnetic quantum

number mp (see Appendix C). Thus, we expand ψp as

ψp(r, θ, φ, t) =

Krad−1∑

k=2

Lmax∑

l=0

χklmp(r, θ, φ)ϕklp (t), (18)

where the first and last FEDVR basis function are removed
to ensure the boundary condition that orbitals vanish at both
edges of the simulation box [45]. The spherical harmonics
expansion is truncated after the maximum angular momentum
Lmax. In total, the number of basis functions in Eq. (18) is
K = (Krad − 2)(Lmax + 1).

The vector ϕp of expansion coefficients with elements ϕklp
is our working variable, with which the orbital EOM Eq. (9b)
reduces to a matrix equation,

i
d

dt
ϕp = hϕp +QFϕp +

∑

q

ϕqR
q
p. (19)

Here, the matrices Q, h, and F represent operators Q̂, ĥ,
and F̂ in the spherical-FEDVR basis [Eq. (16)]. Explicit ex-
pressions for matrix elements of the one-electron operator,
h = h0 + Vext, are given in Appendix E. For the electron-
electron interaction, we use the multipole expansion

1

r12
=

Lee∑

l=0

l∑

m=−l

4π

2l + 1

rl<
rl+1
>

Ylm(θ1, φ1)Y ∗lm(θ2, φ2),(20)

where r> (r<) is the greater (smaller) of r1 and r2, Lee is
the highest multipole rank reached, Lee ≤ 2Lmax, for the
basis expansion of orbitals with l ≤ Lmax. The two-electron
part Fϕp is evaluated by (i) first calculating the mean field,
Eq. (11), by solving Poisson’s equation,

∇2W p
q (r) = −4πψ∗p(r)ψq(r), (21)

in the spherical-FEDVR basis of Eq. (16) [32, 45], and (ii) per-
forming the integrals weighted with RDMs through Eq. (10)
in the two-dimensional grid representation of coordinates
(r, θ) with the known φ dependence analytically integrated
out (see Appendix E for further details).

B. Split operator propagator

The orbital EOM Eq. (19) consists of both the linear (i.e.,
independent of orbital functions and CI coefficients) term
h and the nonlinear terms containing dependencies on the
orbitals and the CI coefficients. Moreover, the linear part
contains the stiff spatial-derivative operators while the non-
linear part is non-stiff. We therefore introduce an effective
split-operator algorithm that uses adapted propagators for h
and the nonlinear part. We use a second-order split method
[28, 51, 52], in which the propagation for the time interval
[t, t + δt] is performed as follows. First we solve the linear
equation

d

dt
ϕp = −ih(t)ϕp, (22)

for [t, t + δt/2] with initial values {ϕp(t)} to obtain {ϕ′p},
with CI coefficients kept fixed, C ′I = CI(t). Then Eqs. (9),
for the nonlinear part and the CI coefficients are solved for
[t, t + δt] with initial values {ϕ′p, C ′I} to obtain {ϕ′′p , C ′′I }.
Finally Eq. (22) is solved again for [t + δt/2, t + δt] with
initial values {ϕ′′p} and CI coefficients kept fixed to obtain
{ϕp(t + δt), CI(t + δt) = C ′′I }. For the stiff Eq. (22) we
adopt the Crank-Nicolson method,

ϕp(t+ δt/2) =
1− ih(t+ δt/4)δt/4

1 + ih(t+ δt/4)δt/4
ϕp(t). (23)

The right hand side is evaluated by the matrix iteration method
[42], in which the inverse operator is expanded as

(1 + ihδt′)
−1

=

{
(1 + ih0δt

′)

(
1 +

iVextδt
′

1 + ih0δt′

)}−1

=

(
1 +

iVextδt
′

1 + ih0δt′

)−1
1

1 + ih0δt′

=

∞∑

m=0

(
− iVextδt

′

1 + ih0δt′

)m
1

1 + ih0δt′
, (24)

with δt′ = δt/4. This defines an iterative procedure,

ϕp(t+ δt/2) ≈
Nitr∑

j=0

fj , (25)

(1 + ih0δt
′)f0 = (1− ihδt′)ϕp(t), (26a)

(1 + ih0δt
′)fj = −iVextδt

′fj−1 (j ≥ 1). (26b)

This method has been found to be quite efficient for ioniza-
tion dynamics of atomic hydrogen under the presence of an
intense, long-wavelength laser field [43]. Since h0 is diagonal
in the angular momentum basis and very sparse in the radial
FEDVR basis (see Appendix E), the systems of linear equa-
tions (26) can be solved with computational cost that scales
linearly with respect to K. For the nonlinear, but nonstiff part
on the right-hand side of Eq. (9b), we use the fourth-order
Runge-Kutta propagator.
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IV. NUMERICAL RESULTS FOR HHG IN
MANY-ELECTRON ATOMS

In this section, we present numerical applications of the im-
plementation of the TD-CASSCF method to many-electron
atoms described in the previous section. In all simulations
reported below, the initial state is taken as the ground state
obtained through imaginary time propagation of the EOMs.
We assume a laser field of the following form:

E(t) = E0 sin(ω0t) sin2

(
π
t

τ

)
, 0 ≤ t ≤ τ, (27)

with total duration τ , peak intensity I0 = E2
0 , wavelength

λ = 2π/ω0, and period T = 2π/ω0. For all simulations
presented a uniform finite element length of dFE is used. The
code allows, however, variable element sizes for the radial-
FEDVR basis, if needed.

A. Helium

First we simulate a helium atom subject to a field of 400 nm
wavelength, 4.0×1014 W/cm2 intensity, and total duration of
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FIG. 2. (a) High harmonic generation spectrum of a He atom exposed
to a visible laser pulse with a wavelength of 400 nm and an intensity
of 4×1014 W/cm2. (b) The probability to find both electrons within
a sphere of radius R0 = 20 a.u. Results of the TD-CASSCF (or
MCTDHF) method with different number of active orbitals (0, 0, n)
are compared to the result of the exact TDSE method. (0, 0, 1) cor-
responds to TDHF.

12 periods T of the optical field (τ = 12T ). For this sys-
tem, a direct exact numerical solution of the time-dependent
Schrödinger equation (TDSE) is possible and serves as a
benchmark for the present TD-CASSCF code. Note that for
this two-electron system, the TD-CASSCF method reduces to
TDHF for the orbital choice (nfc = 0, ndc = 0, na = 1) or to
the MCTDHF method for (nfc = 0, ndc = 0, na > 1). The
TDSE simulations are performed using the code developed
at Vienna University of Technology [17, 18, 47], in which
the six-dimensional two electron wave function is expanded
with coupled spherical harmonics, and the radial coordinates
are discretized with a FEDVR basis. The code is highly opti-
mized and massively parallelized enabling the large scale sim-
ulations as presented below. Here we aim at a rigorous com-
parison between the TD-CASSCF (or MCTDHF) method and
the TDSE results under otherwise identical simulation condi-
tions.

We use the radial-FEDVR basis with KFE = 80, dFE =
4.0, KDVR = 11, and Rmax = 320, and spherical harmonics
expansions with Lmax = Lee = 13. To avoid a reflection at
the simulation box boundary, orbital functions on the radial
grid points rk > 256 are masked after each time propaga-
tion by a cos1/4 function. Both TDSE and MCTDHF simula-
tions employ the velocity gauge. Several time-step sizes are
tested (from 20000 to 40000 steps per cycle) for the MCT-
DHF method. The TDSE simulation uses the short iterative
Lanczos propagator with self-adaptive time-step sizes. We
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FIG. 3. HHG spectra of He exposed to an IR laser pulse with a
wavelength of 800 nm and an intensity of 8×1014 W/cm2. Results
for (a) length gauge (LG) and (b) velocity gauge (VG) simulations
with the TD-CASSCF (or MCTDHF) method with fixed orbital in-
dices (0, 0, 5) as a function of maximum angular momentum Lmax

in the orbital expansion.
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have carefully checked that the spatial and temporal resolu-
tions used are sufficient for reaching fully converged results
both for TDSE and MCTDHF simulations.

The HHG spectra [Fig. 2 (a)] calculated as the modulus
squared of the Fourier transform of the dipole acceleration
[using the Ehrenfest expression Eq. (29b) below] display in-
creasing agreement between MCTDHF and TDSE results as
the number of orbitals is increased. The MCTDHF with n ≥ 5
essentially reproduces the TDSE spectrum, and in particular,
with n = 14 the agreement is almost perfect over a dynamical
range of 5 orders of magnitude. Likewise, the probability of
finding both two electrons inside a sphere of radius R0 = 20
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FIG. 4. (a) HHG spectra of He exposed to an IR laser pulse with a
wavelength of 800 nm and an intensity of 8×1014 W/cm2, (b) close-
up of the region between the 80th and the 118th harmonic, and (c) the
probability to find both electrons within a sphere of radius R0 = 20
a.u. Results of the TD-CASSCF (or MCTDHF) method are obtained
with different number n of active orbitals (0, 0, n) and maximum
angular momentum Lmax = 59.
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FIG. 5. HHG spectra of He exposed to an IR laser pulse with a
wavelength of 800 nm and varying intensities of 4, 8, and 14×1014

W/cm2, obtained with the TD-CASSCF (or MCTDHF) method
with orbital indices (0, 0, 14) and maximum angular momentum of
Lmax = 71.

a.u. (referred to as survival probability hereafter) measuring
the temporal evolution of the complement to ionization or for-
mation of Rydberg states [Fig. 2 (b)] yields close agreement
for (0, 0, n) with n > 2. For n = 14 the MCTDHF re-
sults become indistinguishable from TDSE. Note, however,
significant differences to the TDHF limit pointing to the cru-
cial role of correlations included in the MCTDHF method but
neglected by TDHF.

Next we proceed to the convergence test as a function of
Lmax (= Lee) for both LG and VG. We consider now the
longer-wavelength and higher-intensity regime (λ = 800 nm,
I0 = 8×1014 W/cm2, and τ = 6T ), for which convergence of
the exact TDSE code is still difficult to achieve. We reduce the
FEDVR-element size to dFE = 2.0 in order to improve the rep-
resentation of higher-energy electrons and fix the orbital set to
(0, 0, 5). The HHG spectrum converges for VG (Fig. 3) much
faster than for LG. While in the VG Lmax = 47 suffices to
reach overall good agreement with the fully converged results,
angular momenta up to Lmax ≈ 90 are needed in the LG for
comparable accuracy. The convergence of the survival proba-
bility and of the harmonic spectrum as a function of n (Fig. 4)
is fairly rapid. Slight underestimation (n = 1) and overesti-
mation (n = 2) of harmonic intensities as seen [Fig. 4 (b)] in
the upper plateau region, are closely related to the underesti-
mation (n = 1) and overestimation (n = 2) of the ionization
[Fig. 4 (c)].

Figure 5 presents HHG spectra for the wavelength 800 nm
and three different intensities, 4, 8, and 14 × 1014 W/cm2.
The results are converged, up to the cutoff frequencies, in ra-
dial resolution (dFE = 2), angular resolution (Lmax = Lee =
71), temporal resolution (20000 steps per cycle), and num-
ber of orbitals (n = 14). We stress the importance of the
VG implementation, with LG the convergence with respect to
Lmax was hardly reachable for the highest intensity. Finally,
we compare the converged TD-CASSCF survival probabil-
ity with predictions of the widely adopted Ammosov-Delone-
Kraǐnov (ADK) [53] and Perelomov-Popov-Terentev (PPT)
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FIG. 6. Time evolution of the survival probability of helium ob-
tained with TD-CASSCF with 14 active orbitals (0, 0, 14) as well as
ADK and PPT with the same computational condition as for Fig. 5, a
wavelength of 800 nm and intensities of (a) 4, (b) 8, and (c) 14×1014

W/cm2. For the survival probabilities to match those of TD-CASSCF
the ADK rates must be scaled by 2.55, 1.35, and 0.96 for the three in-
tensities in ascending order. The analogous factors for the PPT rates
are 1.24, 1.27, and 1.24. The ADK and PPT probabilities are shifted
in time to take into account the time required for an ejected electron
to propagate classically to R0 = 20 a.u.

models [54] (see Fig. 6). The ADK and PPT probabilities
are calculated by integrating over the temporal profile of the
laser electric field. The ADK model fails to reproduce the
intensity dependence of the survival probability underestimat-
ing the ionization probability at moderate intensity while ap-
proaching the TD-CASSCF result at high intensity. The PPT
model, on the other hand, consistently underestimates the ion-
ization by a nearly constant factor independent of the inten-
sity. The present simulation for helium demonstrates the ac-
curacy of the present TD-CASSCF implementation by both
the excellent agreement with the TDSE (where available) and
the convergence with respect to all parameters characterizing
the CASSCF orbital expansion.

B. Beryllium

Beryllium is the first test case for the decomposition into
frozen- and dynamical-core orbitals as well as active orbitals

available in the TD-CASSCF method. Extraction of the har-
monic spectrum via the expectation value of the dipole accel-
eration using the Ehrenfest theorem requires additional care in
the presence of frozen orbitals. Using the Ehrenfest theorem
and the canonical commutation relation [ẑ, p̂z] = i, the dipole
moment, dipole velocity, and dipole acceleration are given by

〈ẑ〉 = 〈Ψ|ẑ|Ψ〉, (28)

d

dt
〈ẑ〉 = 〈Ψ|p̂z|Ψ〉, (29a)

and

d2

dt2
〈ẑ〉 = −〈Ψ|

(
∂V̂0

∂z
+
∂V̂ext

∂z

)
|Ψ〉, (29b)

respectively. Equations (28) and (29) hold for the solutions
|Ψ〉 of the TDSE as well as the TD-MCSCF. However, in the
presence of frozen orbitals, Eqs. (29) must be modified to (for
details see Appendix D),

d

dt
〈ẑ〉fc = 〈Ψ|p̂z|Ψ〉+ ∆(ż), (30a)

d2

dt2
〈ẑ〉fc = −〈Ψ|

(
∂V̂0

∂z
+
∂V̂ext

∂z

)
|Ψ〉+ ∆(ṗz),(30b)

where the additional term ∆ is defined by Eq. (D5).
The appearance of this correction term in the presence of
frozen orbitals can be qualitatively easily understood as fol-
lows: Focusing at the moment on the equations for the force
[Eqs. (29b), (30b)], the dipole acceleration is given by the ex-
pectation value 〈−∂H∂z 〉 of the total force on the electronic sys-
tem. It consists of the laser acting on the active electrons, fla,
the laser acting on the core electrons, flc, the nuclear force
acting on active, fna, and core electrons, fnc, and the inter-
electronic forces, fac and fca. With the action-reaction law,
fac = −fca, the total force becomes

f = (fna + fnc) + (fla + flc), (31)

which corresponds to the Ehrenfest expression Eq. (29b).
However, for the case of frozen-core orbitals, we have to in-
clude an additional “binding force” fb to render the frozen-
core immobile,

f = (fna + fnc) + (fla + flc) + fb. (32)

The “binding force” fb must cancel all forces acting on
frozen-core electrons,

fb = −fnc − flc − fac. (33)

Consequently, the effective force in the presence of a frozen
core becomes

feff = (fna + fca) + fla, (34)

i.e., the inter-electronic force no longer cancels. The cor-
rection term ∆(ṗz) represents the binding force fb [see
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Eq. (D9)], and Eq. (30b) is the proper quantum expression
for the effective force [Eq. (34)]. Use of the correct ex-
pression Eq. (30b) is essential; otherwise the missing bind-
ing force would lead to an incorrect evaluation of the dipole
acceleration. This is illustrated in Fig. 7 showing the time
evolutions of (a) the dipole moment, (b) the dipole veloc-
ity, and (c) the dipole acceleration of Be irradiated by an
intense NIR laser pulse (λ = 800 nm, I0 = 4.0 × 1014

W/cm2, and τ = 3T ) calculated with the TD-CASSCF
method either with the DC [(nfc, ndc, na) = (0, 1, 5)] or the
FC [(nfc, ndc, na) = (1, 0, 5)] treatment of the initial 1s or-
bital. For the FC case, we compare the standard Ehrenfest
expression, Eq. (29), and the one with the correction term,
Eq. (30). The dipole moment, velocity, and acceleration ob-
tained with DC and FC simulations [Eqs. (30)] agree very
well with each other, suggesting that FC is a good approx-
imation for beryllium. The FC velocities calculated with
Eq. (29) and Eq. (30) are similar to each other, reflecting the
fact that ∆(ż) ≈ 0 as demonstrated in Appendix D. How-
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FIG. 8. The HHG spectra of Be for the same laser pulse and
the simulation condition as those in Fig. 7. (a) The HHG spec-
tra computed from the dipole acceleration using the active spaces
(nfc, ndc, na) = (1, 0, 5) and (0, 1, 5). (b) Comparison of the spectra
computed from the dipole velocity and the dipole acceleration using
the active space (1, 0, 5).

ever, the FC acceleration evaluated by the standard Ehrenfest
expression, Eq. (29b), fails. Only when the correction term
∆(ṗz) is included [Eq. (30b)] excellent agreement between
the FC and DC treatment is achieved for the dipole accelera-
tion [Fig. 7 (c)], and therefore the HHG spectrum [Fig. 8 (a)]
calculated as the modulus squared of the Fourier transform of
the dipole acceleration.

The point to be emphasized is that it is not the FC ap-
proximation itself but the evaluation of the nonlinear response
via the standard Ehrenfest expression, Eq. (29b), that fails.
This observation has implications also for other approxima-
tion schemes in which the core is kept frozen, most notably
for TDSE solutions of many-electron systems in the single-
active electron (SAE) approximation. For example, Gordon
et al. [55] have argued that one should use Eq. (31) [Eq. (10)
of Ref. [55]] rather than Eq. (34) [equivalent to (the second
time derivative of) Eq. (6) of Ref. [55]]. The present results
suggest the opposite, i.e., that acceleration in the screened ef-
fective potential [Eq. (34)] rather than bare nuclear potential
[Eq. (31)] should be used.

As a further confirmation for the validity of the modified
Ehrenfest theorem [Eq. 30b] we find excellent agreement be-
tween HHG spectra obtained from the dipole acceleration
[Eq. (30b)] and the dipole velocity [Eq. (30a)], when the lat-
ter is Fourier transformed after the numerical differentiation
with respect to time [Fig. 8 (b)]. Moreover, this agreement
demonstrates numerical convergence.
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FIG. 9. (a) HHG spectra of Be exposed to an IR laser pulse with
a wavelength of 800 nm and an intensity of 3×1014 W/cm2. (b)
Probability to find all electrons within a sphere of radius R0 = 20
a.u. Results of TDHF and TD-CASSCF with (nfc, ndc, na)=(0, 0, 2),
(1, 0, 5), (0, 1, 5), and (0, 0, 11).

The HHG spectrum as well as the survival probability of
beryllium (Fig. 9) for the same laser parameters as in Fig. 7
indicate rapid convergence of the TD-CASSCF method as a
function of the size of the active space. We have checked that
the employed spherical-FEDVR basis (dFE = 4,KDVR =
21, Rbox = 320, and Lmax = Lee = 47) and the time-step
size (20000 steps per cycle) are sufficient for convergence.
Results for various active spaces (nfc, ndc, na) = (1, 0, 5),
(0, 1, 5), and (0, 0, 11) closely agree with each other indicat-
ing convergence with respect to correlation. By contrast, the
TDHF method which lacks correlation gives significant devi-
ations. Unlike for helium where the TDHF underestimates
HHG (Fig. 4) it overestimates HHG in beryllium (Fig. 9).
This can be qualitatively easily understood as follows. In the
strong-field regime and following the three-step model [56]
the harmonic yield P (ω) is expected to scale with the prod-
uct of the ionization rate at tunneling time ∼ |Ṗ0(ti)| and the
probability for finding the occupied ground state at recombi-
nation time ∼ P0(tr),

P (ω) ∝ |Ṗ0(ti)|P0(tr). (35)

In general, TDHF tends to underestimate the ionization rate
|Ṗ0(t)| and therefore overestimate the ground-state probabil-

ity ∼ P0(t) [57], as can be seen in Figs. 4 (c) and 9 (b). For
the deeply bound helium electron (Fig. 4), P0(t) ≈ 1 holds
for all t for intensities I.1014 W/cm2. Thus, the ionization
rate |Ṗ0(t)| is the dominant factor in Eq. (35), leading to an
underestimate of the harmonic intensity [Fig. 4 (c)]. On the
other hand, for beryllium with a relatively weakly bound 2s
valence electron, the atom experiences almost complete de-
pletion of the ground state P0 at t > 1.5T , which controls
now the efficiency of harmonic emission. Since TDHF again
largely overestimates P0 especially at t > 1.5T [Fig. 9 (b)]
which is the relevant recombination time tr contributing to the
plateau and cut-off region of the harmonic spectrum, it now
overestimates the harmonic intensity. This example nicely il-
lustrates the importance to go beyond the mean-field level of
the TDHF approximation (or TDDFT where the same trends
can be observed).

C. Neon

Finally, we calculate the HHG spectrum of Ne subject to
a laser field with λ = 800 nm, I0 = 8.0×1014 W/cm2, and
τ = 3T . We use the spherical-FEDVR basis with dFE = 4.0,
KDVR = 21, and Lmax = Lee = 47. Simulations are
performed in VG, and the HHG spectrum is calculated in
the acceleration form. For this 10-electron system we ap-
ply the TD-CASSCF method for various active spaces with
(nfc, ndc, na) = (2, 0, 7), (1, 0, 8), and (0, 0, 9). The 9 orbitals
included are initially characterized as the atomic orbitals 1s,
2s, 2pm, 3s, 3pm, with m ∈ {−1, 0, 1}. We consider either
the 1s electrons to be frozen corresponding to (1, 0, 8), or both
1s and 2s electrons to be frozen corresponding to (2, 0, 7), or
all electrons active (0, 0, 9) (see Fig. 1). We obtain excellent
agreement among all three active space configurations with a
fixed total number of orbitals (Fig. 10) indicating that the elec-
tron dynamics governing HHG is dominated by the 2p elec-
trons. For a convergence check with respect to correlation, we
also performed a TD-CASSCF calculation with a larger num-
ber of active orbitals with frozen 1s orbital (1, 0, 13). We find
near-perfect agreement among all TD-CASSCF calculations.
Only the TDHF calculation shows systematic deviations un-
derestimating the harmonic intensity as was the case for he-
lium (see Fig. 4). The TD-CASSCF method is key to system-
atically explore the inclusion of correlation effects. The CI
dimension for the TD-CASSCF(1, 0, 13) is about 1/8 (∼ 500
thousands) of that for all active MCTDHF method (∼ 4 mil-
lion) with the same number of occupied orbitals. In addition,
the FC approximation brings further computational efficiency:
freezing the deepest bound 1s orbital improves the stability of
the propagation over the duration of the laser pulse.

V. SUMMARY

We have presented an efficient 3D numerical implementa-
tion of the TD-CASSCF method for atoms subject to a lin-
early polarized strong laser pulse. It features (i) a gauge-
invariant frozen-core approximation allowing velocity gauge
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FIG. 10. HHG spectrum computed from the dipole acceleration
of Ne driven by an IR laser pulse with λ = 800 nm, I =
8.0×1014 W/cm2, obtained with TDHF and TD-CASSCF with
(nfc, ndc, na)=(0, 0, 5), (2, 0, 7), (1, 0, 8), (0, 0, 9), and (1, 0, 13).
Except for TDHF all results coincide within the graphical resolution.

simulations suitable for high-field phenomena, (ii) an efficient
evaluation of the mean field operator with the computational
cost scaling linearly with the number of basis functions, and
(iii) a split-operator method with a stable implicit propagator
for the one-electron Hamiltonian. We have also derived and
implemented the correction to the Ehrenfest expression the of
dipole velocity and acceleration forms to be used with frozen-
core orbitals.

We have applied the present theory to He, Be, and Ne
atoms, and obtained survival probabilities and HHG spectra
for intense NIR laser pulses, convergent with respect to spa-
tial and temporal discretization, as well as the size of the active
space. Our results indicate that the effect of correlation is rel-
atively small for He, but significant for Be and Ne, which un-
derlines the general importance of methods beyond the single-
determinant TDHF approach. Correlation effects are expected
to be even more prominent for processes explicitly involving
motions of two or more electrons, such as nonsequential dou-
ble ionization. For accurately treating multi-electron and cor-
relation effects, high levels of radial and angular resolution
of the orbitals are required. Otherwise such effects would be
obscured by artifacts stemming from an insufficient resolu-
tion of the orbitals as demonstrated in the slow convergence
of HHG spectrum of He with respect to the number of spher-
ical harmonics (Fig. 3). The present efficient implementation
allows to employ a large basis set (several thousands of ra-
dial grid points Krad and a few hundred partial waves Lmax

are feasible on a single-node computer). Further improvement
could be achieved by employing multi-scale resolution grids
recently implemented for molecules [58]. For problems re-
quiring active spaces larger than those realistically accessible
with the TD-CASSCF method, promising lower-cost methods
such as TD-ORMAS method [41] and two-particle reduced
density matrix theory [59] will be considered in the future, for
which the present gauge-invariant FC treatment and the ef-

ficient propagation scheme can be straightforwardly applied.
These develpment will further extend the applicability to sys-
tems with a larger number of electrons and/or broader range
of laser parameters, and will open the possibility of, e.g, ab
initio simulations of XUV-NIR pump-probe experiments.
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Appendix A: Second-quantization formulation

We briefly review the formulation of the TD-MCSCF [40,
41] and TD-CASSCF theories [35] within the framework of
second quantization which allows for a compact presentation
of the theory. Using fermionic creation and annihilation oper-
ators {âµσ, â†µσ : σ ∈ ↑, ↓} which change the occupation of
spin orbitals {ψµ} ⊗ {↑, ↓} with orthonormal spatial orbitals
{ψµ}, the system Hamiltonian, Eq. (2), can be rewritten as

Ĥ = ĥ+ Û (A1)

=
∑

µν

hµν Ê
µ
ν +

1

2

∑

µνγλ

Uµγνλ Ê
µγ
νλ , (A2)

where hνµ and Uνλµγ are matrix elements of the correspond-
ing operators [see Eqs. (3) and (4)] , Êµν =

∑
σ â
†
µσâνσ, and

Êµγνλ =
∑
σσ′ â†µσâ

†
γσ′ âλσ′ âνσ.

In the TD-MCSCF method, the full set of orbitals {ψµ} is
classified as n occupied orbitals {ψp; p = 1, 2, . . . , n} and the
remaining as virtual orbitals {ψa; a = n+ 1, n+ 2, . . .}. The
determinant ΦI of Eq. (1) is built from the occupied orbitals
only,

|Ψ〉 =
∑

I

|ΦI〉CI , (A3)

|ΦI〉 =
∏

σ

∏

p

(â†pσ)Ipσ |0〉, (A4)

where |0〉 represents the vacuum state, Ipσ = {0, 1}, and∑
σ

∑
p Ipσ = N .
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Time derivatives of orbitals are conveniently represented by
the Hermitian one-electron operator X̂ [35, 60]

i|ψ̇p〉 = X̂|ψp〉, X̂ =
∑

µν

Xµ
ν Ê

µ
ν . (A5a)

The EOMs for the TD-MCSCF method are derived based
on the time-dependent variational principle, i.e., by requiring
the action integral of Eq. (8) to be stationary with respect to
the variation of CI coefficients and orbitals, ∂S/∂CI = 0,
∂S/∂∆µν = 0, where ∆µν is an anti-Hermitian matrix gen-
erating orthonormality-conserving variations of orbitals as
δψp =

∑
µ ψµ∆µp [35, 41]. The resulting EOM for the CI

coefficients is

iĊI = 〈ΦI |Ĥ − X̂|Ψ〉, (A5b)

and the EOMs for the orbitals Eq. (A5a) are determined by
∑

γλ

AνγµλX
λ
γ = Bνµ, (A5c)

where

Aνγµλ = 〈Ψν
µ|(1− Π̂)|Ψγ

λ〉 − 〈Ψλ
γ |(1− Π̂)|Ψµ

ν 〉, (A6)

Bνµ = 〈Ψν
µ|(1− Π̂)Ĥ|Ψ〉 − 〈Ψ|Ĥ(1− Π̂)|Ψµ

ν 〉, (A7)

with |Ψµ
ν 〉 = Êµν |Ψ〉 and Π̂ =

∑
I |ΦI〉〈ΦI | is the projector

onto the space spanned by those Slater determinants included
in Eq. (A3). Following Eqs. (A5a) and (A5b) the total time
derivative of the wave function is compactly written as

i|Ψ̇〉 = Π̂Ĥ|Ψ〉+ (1− Π̂)X̂|Ψ〉. (A8)

This expression shows that the time derivative of the wave
function can be separated into two orthogonal contributions.
The first term in Eq. (A8) gives the time evolution of the
wave function in the subspace Π̂ spanned by the Slater de-
terminants |ΦI〉. Due to the time-dependence of the orbitals
this subspace itself is time-dependent giving rise to the sec-
ond term in Eq. (A8). This additional contribution directly
reflects the strength of the TD-MCSCF method compared to
the approach with time-independent orbitals where the evo-
lution of the wave function is confined solely within the ini-
tial subspace. Equation (A8) shows that the component of
X̂|Ψ〉 that lies within Π̂ cannot contribute to the evolution
of the wave function. This gives rise to the distinction be-
tween redundant and nonredundant orbital pairs {µ, ν}. Only
if (1 − Π̂)Êµν |Ψ〉 6= 0 or (1 − Π̂)Êνµ|Ψ〉 6= 0, the matrix
element Xµ

ν influences the evolution of the wave function
[see Eq. (A8)] and is, therefore, called nonredundant. Oth-
erwise it is called redundant. For redundant pairs {µ, ν}, as is
clear from Eqs. (A6) and (A7), both Aνγµλ and Bνµ vanish, thus
Eq. (A5c) [or Eq. (B3c) see below] reduces to a trivial iden-
tity, and correspondingly Xν

µ may be an arbitrary Hermitian
matrix element. Therefore, Eq. (A5c) [or Eq. (B3c)] should
be solved only for nonredundant pairs {µ, ν}.

Appendix B: Equivalent forms of EOMs

For the development of the split operator method in
Sec. III B, we also present an equivalent but different form
of EOMs. First we note

Bνµ =
∑

γλ

Aνγµλh
λ
γ + B̃νµ, (B1)

where B̃ is given by Eq. (A7) with Ĥ replaced with Û . Insert-
ing this into Eq. (A5c) and introducing an auxiliary operator

R̂ = X̂−ĥ, (B2)

we can rewrite Eqs. (A5) as

i|ψ̇p〉 = ĥ|ψp〉+ R̂|ψp〉, (B3a)

iĊI = 〈ΦI |Û−R̂|Ψ〉, (B3b)

where R̂ is determined by
∑

γλ

AνγµλR
λ
γ = B̃νµ. (B3c)

The transformed EOMs (B3) are the generalization of those
used in the variational splitting method for MCTDHF [28, 51,
52]. Yet another form of the EOMs can be derived by splitting
off only the time-independent atomic Hamiltonian ĥ0 instead
of ĥ. We have implemented various choices for the EOMs
and the redundant matrix elements Xµ

ν , Rµν . Among them,
the second form Eq. (B3), with the split-operator method de-
scribed in Sec. III B, was found generally most robust. In this
case, all stiff derivative operators (kinetic energy and laser-
electron interaction in VG) and the singular nucleus-electron
interaction are treated with the stable implicit method. The
EOMs Eq. (9) for the TD-CASSCF method are obtained by
applying the general TD-MCSCF EOMs (B3) to the follow-
ing CASSCF ansatz for the total wave function,

|ΨCAS〉 = Φ̂fcΦ̂dc

∑

I

|ΦI〉CI , (B4)

where Φ̂fc ≡
∏FC
i â†i↑â

†
i↓, Φ̂dc ≡

∏DC
i â†i↑â

†
i↓, and |ΦI〉 =∏

σ

∏
t(â
†
tσ)Itσ |0〉, with

∑
tσ Itσ = Na. There still remains

the freedom to choose the redundant part of R̂, which is set to
zero in Eqs. (9).

Appendix C: Conservation of the orbital magnetic quantum
number

We require that, at any given time t, both the total wave
function |Ψ〉 and each spatial orbital |ψµ〉, are eigenfunctions
of the component of the orbital angular momentum parallel to
the laser polarization direction (z-axis),

l̂z = −i
∑

µν

Êµν

∫
drψ∗µ(r)

∂

∂φ
ψν(r), (C1)
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with eigenvalues Mtot and {mµ}, respectively. We show that
within the framework of general TD-MCSCF methods and for
interactions which are rotationally symmetric about the z-axis
(e.g, laser-matter interaction with linear polarization along the
z-axis) Mtot as well as mµ are constant for all times. We
note that the total Hamiltonian Ĥ commutes with l̂z , and any
two eigenstates of l̂z , (|Ψ′〉, |Ψ′′〉) with different eigenvalues
M ′,M ′′ are orthogonal to each other. Thus, l̂z also commutes
with the CI-space projector Π̂. Now we consider Eq. (A5c),
which is solved for nonredundant pairs {µ, ν} as

Xν
µ =

∑

γλ

(A−1)
νγ

µλB
λ
γ , (C2)

where A−1 and B are regarded as a matrix and a vector, re-
spectively. The element Bλγ is nonzero only if mγ = mλ,
since otherwise the state |Ψγ

λ〉 = Êγλ |Ψ〉 would have an eigen-
value different from Mtot,

l̂z|Ψγ
λ〉 = (Mtot +mγ −mλ)|Ψγ

λ〉. (C3)

A similar argument applied to Eq. (A6) yields that the element
Aνγµλ, and thus (A−1)νγµλ, is nonzero only if mµ−mν = mλ−
mγ . Consequently, Xν

µ [Eq. (C2)] vanishes if mµ 6= mν . As
a result, orbitals propagated according to Eq. (A5a) conserve
{mµ}. Now, it follows from Eq. (A8) that l̂z ˙|Ψ〉 = Mtot

˙|Ψ〉,
since [l̂z, X̂] = 0. Therefore, the total projection Mtot is also
conserved.

Appendix D: Ehrenfest theorem for the TD-MCSCF method

We consider the time derivative d〈Ô〉/dt = d〈Ψ|Ô|Ψ〉/dt
of the expectation value of an operator Ô,

d

dt
〈Ô〉 = 〈Ψ̇|Ô|Ψ〉+ 〈Ψ|Ô|Ψ̇〉+ 〈Ψ|∂Ô

∂t
|Ψ〉. (D1)

For an exact solution of the TDSE, inserting i|Ψ̇〉 = Ĥ|Ψ〉
and its hermitian conjugate into Eq. (D1), one can derive the
Ehrenfest theorem,

i
d

dt
〈Ô〉 = 〈Ψ|[Ô, Ĥ]|Ψ〉+ i〈Ψ|∂Ô

∂t
|Ψ〉. (D2)

For the TD-MCSCF method, inserting Eq. (A8) and its her-
mitian conjugate into Eq. (D1), one obtains

i
d

dt
〈Ô〉 = 〈Ψ|ÔΠ̂Ĥ − ĤΠ̂Ô|Ψ〉

+ 〈Ψ|Ô(1− Π̂)X̂ − X̂(1− Π̂)Ô|Ψ〉+ i〈Ψ|∂Ô
∂t
|Ψ〉

= 〈Ψ|[Ô, Ĥ]|Ψ〉+ i〈Ψ|∂Ô
∂t
|Ψ〉

+
∑

µν


∑

γλ

AνγµλX
λ
γ −Bνµ


Oµν ,

= 〈Ψ|[Ô, Ĥ]|Ψ〉+ i〈Ψ|∂Ô
∂t
|Ψ〉+ i∆(Ȯ), (D3)

where the orbital EOMs of TD-MCSCF, Eqs. (A5c)-(A7), are
used for the second equality. The third line defines the quan-
tity ∆(Ȯ), representing the difference from the Ehrenfest ex-
pression (D2),

∆(Ȯ) = −i
∑

µν


∑

γλ

AνγµλX
λ
γ −Bνµ


Oµν . (D4)

In the absence of frozen-core orbitals, Eq. (A5c) holds for all
nonredundant pairs {µ, ν}, thus ∆(Ȯ) = 0, and Eq. (D3)
reduces to Eq. (D2). This establishes the applicability of
the Ehrenfest theorem to TD-MCSCF wave functions. With
frozen-core orbitals {ψk}, however, the equality (A5c) does
not hold for pairs {µ, k} and {k, µ}, and thus ∆(Ȯ) 6= 0.
Instead we have

∆(Ȯ) = i
∑

kµ

Okµ〈Ψ|[Êµk , Ĥ − X̂]|Ψ〉

+ i
∑

kµ

Oµk 〈Ψ|[Êkµ, Ĥ − X̂]|Ψ〉

= 2i
∑

k

〈ψk|
[
Ô, ĥ+ F̂ − X̂

]
|ψk〉 − 2Im

∑

kp

OkpB
p
k ,

(D5)

where Bpk =
∑
q(h

q
k + F qk − X

q
k)Dp

q . For a simple physical
interpretation of ∆, we consider the LG and temporarily ne-
glect the indistinguishability of core and active electrons. In
this case Eq. (D5) reduces to

∆(Ȯ) ≈ i〈Φfc|[Ô, ĥ+ V̂a]|Φfc〉, (D6)

where Φfc is the FC part of the wave function, and V̂a is the
electrostatic potential of active electrons, given in real space
as

Va(r) =

∫
dr′

ρa(r
′)

|r − r′| , (D7)

with ρa being the density of active electrons. Within this ap-
proximation, we obtain,

∆(ż) ≈ 〈Φfc|
∂ĥ

∂pz
|Φfc〉 = 〈Φfc|v̂|Φfc〉, (D8)

∆(ṗz) ≈ 〈Φfc|
∂V̂0

∂z
+
∂V̂ext

∂z
+
∂V̂a

∂z
|Φfc〉. (D9)

The FC expectation value of the kinematic momentum oper-
ator v̂ [Eq. (D8)] is time independent in general and vanishes
for atomic systems, i.e., ∆(ż) ≈ 0. Equation (D9) can be
interpreted as the binding force fb discussed in Sec. IV B,

fb = −fnc − flc − fac. (D10)

Appendix E: Matrix elements in the spherical-FEDVR basis

Nonzero matrix elements of one-electron operators in the
spherical-FEDVR basis read

(h0)klmk′lm = −1

2
∇2
kk′ + δkk′

{
l(l + 1)

2r2
k

− Z

rk

}
, (E1)
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(V LG
ext )klmkl′m = rkE(t)αlm, (E2)

(V VG
ext )klmk′l′m = −iA(t)

{
∇kk′ − δkk′

(l + 1)

rk

}
αlm,(E3)

αlm =

√
(l + 1)2 −m2

(2l + 1)(2l + 3)
, (E4)

where l′ = l + 1 and (Vext)
k′l′m
klm = (Vext)

klm∗
k′l′m. The ma-

trix representations of radial derivative operators, ∇kk′ =
〈fk|∇r|fk′〉 and ∇2

kk′ = 〈fk|∇2
r|fk′〉, are sparse due to the

division of the radial coordinate into finite elements, consist-
ing of KFE submatrices of the dimension KDVR × KDVR,
with adjacent submatrices overlapping at only one diagonal
element corresponding to the bridge function. We treat them
as banded matrices with the bandwidth 2KDVR + 1. See, e.g.,
Ref. [47] for more details.

The operator W p
q (rk, θj) (see Eq. 11) describing the

electron-electron interaction is evaluated as follows. First we
transform orbitals into the two-dimensional (rk, θj) grid rep-
resentation,

ϕp(rk, θj) =
1√
wrad
k

Lmax∑

l=|mp|

Gj,lmpϕ
kl
p , (E5)

where Gj,lm = Plm(cos θj), Plm is an associated Legen-
dre polynomial, and {cos θj} and {wang

j } (appearing be-
low) are the nodes and weights of the Gauss-Legendre
quadrature, respectively, of order Lee. Note that the orig-
inal three-dimensional orbital is given by ψp(r, θ, φ) =
eimpφϕp(r, θ)/r. Next, the pair densities {ρpq ≡ ϕ∗pϕq} are
obtained by multiplications on the grid, and transformed back
into the kl basis,

(ρpq)kl =

Lee∑

j=0

G−1
lMp

q ,j
ρpq(rk, θj), (E6)

whereG−1
lm,j = wang

j P ∗lm(cos θj), andMp
q = −mp+mq . The

transformed pair densities serve as the source for the radial

Poisson equation [32, 45] for each partial wave lMp
q ,

∑

k′

{
∇2
kk′ − δkk′

l(l + 1)

r2
k

}
(W p

q )k′l = − 4π(ρpq)kl

rk

√
wrad
k

. (E7)

We solve this equation under the boundary condition
(W p

q )Kradl =
√
wKrad

/Rl [45], obtaining the mean field as

W p
q (rk, θj) =

1

rk

√
wrad
k

Lee∑

l=|Mp
q |

Gj,lMp
q
(W p

q )kl, (E8)

which satisfies W p
q (r, θ, φ) = eiM

p
q φW p

q (r, θ). Due to the
sparsity of the kernel ∇2

kk′ , the Poisson equation for each
partial wave can be solved efficiently with the computational
cost scaling linearly with respect to the number of radial grid
points Krad.

Finally, the two-electron part Fϕp of Eq. (19) is evaluated
as

Fϕp(rk, θj) =
∑

oqsr

(D−1)opP
qs
orW

r
s (rk, θj)ϕq(rk, θj) (E9)

and transformed back into the spherical-FEDVR basis,

Fϕp,kl =

Lee∑

j=0

G−1
lmp,j

Fϕp(rk, θj). (E10)

When we use FC orbitals, their contribution Ffc to the full
operator F is treated separately,

Ffcϕp(rk, θj , t) = ϕp(rk, θj , t)Vfc(rk, θj , t = 0)

−
fc∑

i

ϕi(rk, θj , t)W
i
p(rk, θj , t), (E11)

where the first Coulomb term Vfc = 2
∑fc
i W

i
i is evaluated

once in the beginning of the simulation and serves as a mul-
tiplicative operator, while the second exchange term is eval-
uated at each time step t, with the transformation Eq. (14)
for VG simulations. The exchange term W i

p is evaluated only
within a sphere rk < Rfc

i , where Rfc
i is once determined for

each FC orbital ϕi so that |ϕi(Rfc
i )| is below a given threshold

δfc. In this work we use δfc = 10−15.
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