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Total and differential cross sections for mutual neutralization in He+ and H− collisions at low
to intermediate (0.001 eV to 100 eV) are calculated ab initio and fully quantum mechanically.
Atomic final state distributions and isotope effects are investigated. The theoretical model includes
dynamics on eleven coupled states of 2Σ+ symmetry, where autoionization is incorporated. The
potential energy curves, autoionization widths and non-adiabatic couplings of electronic resonant
states of HeH are computed by combining structure calculations with electron scattering calculations.
The nuclear dynamics is studied using a strict diabatic representation of the resonant states. Effects
of rotational couplings between 2Σ+ and 2Π electronic states are investigated in the pure precession
approximation.

PACS numbers:

I. INTRODUCTION

In mutual neutralization, oppositely charged ions col-
lide and driven by non-adiabatic couplings, an electron is
transferred resulting in formation of neutral fragments.
An ab initio description of the reaction is challenging
since dynamics on highly excited electronic states has
to be considered and the reaction is induced by non-
adiabatic couplings between ionic and covalent states,
often occurring at large internuclear distances. In the
past there have been numerous semi-classical studies [1–
3] of the process using e.g. the Landau-Zener model [4, 5]
or similar approaches. Currently, there are just a handful
of fully quantum mechanical ab initio studies of the MN
reaction and all are limited to collisions between atomic
ions [6–14].
Here, mutual neutralization in collisions of He+ with

H− is theoretically studied, i.e.

He+ +H− → HeH∗ → He∗ +H, (1)

where the asterisk denotes electronic excitation. The cal-
culation is performed ab initio and fully quantum me-
chanically. Potential energy curves and non-adiabatic
interactions are computed using the configuration inter-
action method. The electronic states of the HeH com-
plex formed in the reaction are autoionizing states (they
are electronic resonant states) since they have potential
energies larger than the energy of the ground state of
HeH+. The present model includes autoionization using
local complex potentials. With the complex-Kohn varia-
tional method [15], fixed nuclei electron scattering calcu-
lations are carried out and the autoionization widths are
computed. The adiabatic resonant states are diabatized
and the nuclear dynamics are studied using Johnson’s
log-derivative method [16, 17].
The He+ + H− mutual neutralization reaction is an

ideal reaction for testing theory. The reaction forms a
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molecular complex simple enough for accurate quantum
chemistry and electron scattering calculations. However,
the reaction is also challenging to theoretically describe
since it involves very highly excited electronic states that
couple to the ionization continuum. To accurately de-
scribe the process, a manifold of avoided crossings occur-
ring at internuclear distances ranging from 7 a0 to 37 a0,
must be considered.

Using crossed and merged beam experiments, the cross
section for mutual neutralization in collisions of 4He+

with H− has been measured, for energies ranging from
a few eV to several keV [18–22]. Additionally, measure-
ments on the cross section for mutual neutralization in
4He+ + D− collisions have been performed [2, 22].

The He+ +H− mutual neutralization reaction was first
theoretically studied using the semi-classical Landau-
Zener model including ten coupled states [2]. It was
found that the cross section depends on the ionic-covalent
coupling parameters used in the model. By applying
coupling elements developed by Olson et al. [2], good
agreement with measured cross section below 2 keV was
obtained. In 1992, Ermolaev [23] calculated the neu-
tralization cross section at higher collision energies using
a one-active-electron model. In the theoretical study by
Chibisov et al. [24], all three electrons were included. The
nuclear motion was described classically and autoioniza-
tion was not considered. The total cross section as well as
the final state distributions were calculated for collision
energies ranging between 40 to 4000 eV.

The present study presents a theoretical ab initio in-
vestigation of the mutual neutralization reaction where
all degrees of freedom are described quantum mechani-
cally and autoionization is incorporated. Section II de-
scribes how the relevant potential energy curves and au-
toionization widths of the resonant states are obtained
by combining electron scattering and structure calcula-
tions. Additionally, the non-adiabatic couplings driving
the reaction are computed. We also formulate the cou-
pled nuclear Schrödinger equation for the resonant states
and describe the diabatization procedure and how the re-
sulting coupled equation is solved using the log-derivative
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Figure 1: (Color online) Potential energy curves of the HeH+

and HeH systems. The potential energy curves of the ground
and first two excited states of HeH+ are displayed with thick
red curves. The potential energy curves of the Rydberg states
of HeH converging to the ground ionic core are shown with
thin dashed blue curves, while thin black curves are the elec-
tronic resonant states. The dashed green curve illustrates the
quasidiabatic Coulomb potential of the ion-pair state.

method. In section III, we present not only the total
neutralization cross section, but also the final state dis-
tributions, differential cross section as well as an analysis
of the effect of isotopic substitution. Unless otherwise
mentioned, atomic units are used.

II. THEORY

A. Electronic structure and scattering calculations

In Fig. 1, the potential energy curves of the HeH+

and HeH systems are shown. The X1Σ+ electronic
ground state of HeH+ has the dominant configuration
(1σ)2. This state is associated with the He + H+ frag-
ments at large internuclear distances. The two lowest
excited electronic states of the ion are the a3Σ+ and
A1Σ+ states with dominant configurations correspond-
ing to triplet and singlet coupled (1σ)1(2σ)1, respectively.
These states have repulsive potential energy curves dis-
sociating into He+ + H. The X2Σ+ electronic ground
state of HeH has a repulsive potential. Below the poten-
tial of the ground state of HeH+, there are manifolds of
Rydberg states with potential energy curves similar to
the ground state of the ion. These are displayed with
thin blue dashed curves in Fig. 1. There are also Ryd-
berg states converging to the excited ionic cores. These
states have potential energy curves situated in the ion-
ization continuum of the ground ionic state and through
electronic interactions, they will interact with the contin-
uum and hence they are electronic resonant states. These
states dissociate into He∗ + H and are illustrated with
thin solid balck curves in fig. 1. The ion-pair fragments

He+ + H− form a molecular state of 2Σ+ symmetry. At
large internuclear distances the potential of the ion-pair
state is described by an attractive Coulomb potential and
it will cross many of the covalent resonant states dissoci-
ating into He∗ + H.

The present study includes eleven electronic resonant
states of HeH of 2Σ+ symmetry. These are the electronic
states associated with He[(1s)1(nl)1] + H[(1s)1] limits,
where n = 2 and n = 3. The n = 4 states are energet-
ically below the ion-pair limit, but the avoided crossing
distances induced by the ionic-covalent interactions are
anticipated to be larger than 100 a0 and these states are
therefore neglected [7].

The electronic scattering and structure calculations are
carried out using the MESA program [25]. To calculate
potential energy curves of the HeH+ and HeH systems,
the full configuration interaction (FCI) method is used
with the aug-cc-pVQZ basis set for He [26] and the aug-
cc-pVTZ basis set for H [27]. Extra diffuse functions are
added on He to accurately describe the 3d-orbitals.

The electron scattering calculations can not be car-
ried out at the full-CI level. Instead by employing the
complex-Kohn variational method [15], the same basis is
used to construct natural orbitals of the ground state of
HeH at the full-CI level. This is followed by a multi-
reference configuration interaction (MRCI) calculation,
where the reference configurations are obtained by al-
lowing for excitations of the three electrons among ten
natural orbitals. Single external excitations are then
added. By minimizing the complex-Kohn functional [15],
unknown parameters of the scattering trial wave func-
tion can be optimized. This allows for determination of
the scattering matrix and the corresponding eigenphase
sum. We then extract fixed nuclei energy positions and
autoionization widths of the resonant state by fitting the
eigenphase sum to a Breit-Wigner form [28].

The radial first-derivative non-adiabatic coupling el-
ements, fij (R) =

〈

Φi

∣

∣

∂
∂R

∣

∣Φj

〉

, are calculated analyti-
cally [29] using the MESA program. These calculations
can not be performed at the FCI level. Instead, using
the same basis set, the Multi-Configuration Self Consis-
tent Field (MCSCF) method is used with an active space
including all three electrons and ten orbitals. This is fol-
lowed by a MRCI calculation where the reference config-
urations are generated by allowing for excitations of the
three electrons among ten orbitals. Up to double exter-
nal excitations are then included. These calculations are
carried out in no symmetry. The resonant states are iden-
tified by analyzing the dominant configurations of the CI
wave function. Since the sign of the electronic wave func-
tion is arbitrary, there are ambiguities in the signs of the
coupling elements. The signs of these couplings are de-
termined by an optimization procedure where all signs of
the electronic wave functions are optimized such that the
difference between the sum of all coupling elements with
previous calculated point is minimized.

It should be noted that at small internuclear distances
(R < 5 a0), the autoionization widths of the resonant
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states are non-zero. This is the region where these states
become resonant states and will couple to the ionization
continuum. When the non-adiabatic coupling elements
are computed, the continuum part of the wave function
of the resonant states is not included. The resonant states
are treated as bound states and this is an approximation.
To accurately compute non-adiabatic couplings among
electronic resonant states is an interesting and challeng-
ing project beyond the goal of present work. Addition-
ally, as will be seen below, the non-adiabatic couplings
among the resonant states occurring at small internuclear
distances are not significant for the mutual neutralization
reaction studied here.
To confirm the non-adiabatic couplings, they have also

been computed at the full CI level using a three-point
finite difference method with a step-size of 0.1 a0. In
our FCI calculation, we use molecular orbitals that were
optimized for R = 40.0 a0. Therefore, the atomic or-
bital coefficients are R-independent, and we assume all
derivatives in the electronic wave functions originate from
derivatives in the CI-coefficients. The non-adiabatic cou-
pling elements computed using finite difference and the
analytical method are similar in magnitude and shape.

B. Nuclear Schrödinger equation for the resonant

states

Following the P- and Q- projection operator formal-
ism [30, 31] an equation for the nuclear motions on the
resonant states can be derived. These adiabatic resonant
states are still interacting to each other by non-adiabatic
interactions and by applying a partial wave expansion of
the nuclear wave function, the radial Schrödinger equa-
tion for the dynamics on the resonant states can be de-
rived. For fixed angular momentum ℓ, the equation is
given by

[

− 1

2µ

d2

dR2
+ Vi +

ℓ (ℓ+ 1)

2µR2

]

ui,ℓ +

∑

j

[

Wij −
1

µ
fij

d

dR
− 1

2µ
gij

]

uj,ℓ = Eui,ℓ. (2)

Here, the electronic states are approximate eigenstates

of the electronic Hamiltonian
〈

Φi

∣

∣

∣
Ĥel

∣

∣

∣
Φj

〉

= Vi (R) δij

coupled by the non-adiabatic coupling elements fij (R) =
〈

Φi

∣

∣

∂
∂R

∣

∣Φj

〉

and gij (R) =
〈

Φi

∣

∣

∣

∂2

∂R2

∣

∣

∣
Φj

〉

. Autoioniza-

tion is included through the complex matrix elements
Wij . For electronic resonant states with high enough
energy, the “local Boomerang approximation” [32, 33] is
justified, where autoionization into a complete set of vi-
brational eigenstates is assumed. We neglect the energy-
shift of the resonant states and the Wij elements becomes
purely imaginary of the form [31, 34]

Wij(R) = −i

√

Γi(R)Γj(R)

2
. (3)

The diagonal elements Wii = −iΓi/2 account for the
autoionization, while the off-diagonal elements cause in-
direct electronic couplings between the resonant states
through the ionization continuum. By combining the
electronic structure with the electron scattering calcu-
lations described above, the potential energies of the adi-
abatic resonant states Vi(R), non-adiabatic coupling ele-
ments fij(R) and autoionization widths Γi(R) are com-
puted.

C. Diabatization

We assume that a finite number (11 in present study)
adiabatic electronic HeH states of 2Σ+ symmetry are cou-
pled by non-adiabatic couplings. By applying an orthog-
onal transformation, the adiabatic states may be trans-
formed to a “strict diabatic” representation [35]. The
transformation matrix, T, can be obtained by integrat-
ing the equation

(

1
d

dR
+ f

)

T = 0. (4)

Here f is an anti-symmetric matrix containing the first-
derivative non-adiabatic coupling elements. The bound-
ary condition of the transformation matrix is given by
the unit matrix at large internuclear distances. We thus
assume that asymptotically, the adiabatic and diabatic
states are identical and any non-zero asymptotic non-
adiabatic couplings are hence neglected. Once the trans-
formation matrix is computed, we transform the adia-
batic nuclear Schrödinger equation (2) to the correspond-
ing diabatic one
[

− 1

2µ

d2

dR2
+

ℓ (ℓ+ 1)

2µR2

]

ũi,ℓ+
∑

j

[

Ṽij + W̃ij

]

ũj,ℓ = Eũi,ℓ,

(5)

where Ṽ = TTVT and W̃ = TTWT.

D. Log-derivative method

Instead of directly solving the coupled nuclear
Schrödinger equation (5) in the diabatic representation,
the logarithmic derivative of the radial wave function
(yℓ = ũ′

ℓũ
−1
ℓ ) is introduced and the radial Schrödinger

equation is transformed to a matrix Riccati equation.
The physical boundary condition for the logarithmic
derivative at origin becomes a diagonal matrix with very
large (approximately infinite) diagonal elements. Using a
numerical procedure developed by Johnson [16, 17, 36],
the matrix Riccati equation is integrated out to a dis-
tance (Rf ) where the potentials have reached their
asymptotic form. In the present study Rf = 50 a0 is
used.
By combining the asymptotic value of logarithmic

derivative with the correct regular and irregular solu-
tions of the asymptotic states, the reactance matrix can
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be calculated [10]. The elements of the scattering ma-
trix [Sij,ℓ(E)] are obtained as a Cayley transformation
between the open partitions of the reactance matrix. Fi-
nally the cross section for mutual neutralization can be
computed from the scattering matrix elements

σij(E) =
π

k2j

∞
∑

ℓ=0

(2ℓ+ 1) |Sij,ℓ − δij |2 , (6)

where kj =
√

2µ
(

E − Eth
j

)

is the asymptotic wave num-

ber of the incoming channel and Eth
j is the asymptotic

energy of state j. The summation of partial waves is
terminated when the ratios of partial cross section to ac-
cumulated total cross section are less than 10−4 for 25
terms in succession. The total neutralization cross sec-
tion is obtained by summarizing the contributions from
all covalent states.
By calculating the scattering amplitude

fij(θ, E) =
1

2i
√

kikj

∞
∑

ℓ=0

(2ℓ+ 1) (Sij,ℓ − δij)Pℓ (cosθ) ,

(7)
where Pℓ are the Legendre polynomials, the differential
cross section is obtained from

dσij

dΩ
=

ki
kj

|fij(θ, E)|2 . (8)

The formalism outlined above are usually applied to
study nuclear dynamics on electronically bound states.
However, the method can also be used to calculate cross
section when autoionization is added to the model using
local complex potentials [11, 37, 38].

III. RESULTS AND DISCUSSION

We start by presenting the potential energy curves, au-
toionization widths and non-adiabatic coupling elements
important for the description of the He+ + H− mutual
neutralization reaction. This is followed by an analysis of
the total neutralization cross section, where we investi-
gate the role of the autoionization widths and rotational
couplings. The reaction is studied for collisions of vari-
ous hydrogen and helium isotopes. Finally, the final state
distributions and differential cross sections are presented.

A. Molecular data of the resonant states

Potential energy curves of electronic resonant HeH
states are computed using the FCI method described
above. At the same level of theory, the lowest three elec-
tronic states of the cation are also computed. As can be
seen in Fig. 2, the potential energy curves of the resonant
states have energies larger than the ground state energy
of the ion. In the figure, we show potential energy curves
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Figure 2: (Color online) Potential energy curves of the 2Σ+

(thin solid black lines) and 2Π (thin dashed red lines) elec-
tronic resonant states of HeH are displayed together with the
three lowest potential energy curves of HeH+ (thick black
lines). The curves show the potential energies obtained with
FCI structure calculations, while the (filled/open) symbols
mark the corresponding energies obtained using electron scat-
tering calculations at the MRCI level for resonant states of
2Σ+ and 2Π symmetries.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1  2  3  4  5  6

A
ut

oi
on

iz
at

io
n 

w
id

th
 (

H
a)

Internuclear distance (a0)

Figure 3: (Color online) Autoionization widths of the 2Σ+

electronic resonant states of HeH obtained using electron scat-
tering calculations at fixed internuclear distances.

of 11 resonant states of 2Σ+ symmetry and 6 2Π reso-
nant states. We also obtain the resonance positions from
the electron scattering calculations carried out with the
MRCI method. These scattering calculations are carried
out for internuclear distances smaller than 5.0 a0. As
can be seen in Fig. 2, the energy positions obtained us-
ing the FCI structure and MRCI scattering calculations
agree well.

From the electron scattering calculations not only the
energy positions of the resonant states are obtained, but
also the corresponding autoionization widths displayed
in Fig. 3 for resonant states of 2Σ+ symmetry. The two
lowest resonant states have the largest widths. All widths
become negligible at internuclear distances larger than
5.0 a0.
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Figure 4: (Color online) Potential energy curves of 2Σ+ elec-
tronic resonant states of HeH.

Fig. 4 shows the potential energy curves of the elec-
tronic resonant states of 2Σ+ symmetry. At large in-
ternuclear distances there are avoided crossings occur-
ring due to the interactions between the ion-pair and
covalent states. For distances larger than 20 a0, there
are sharp avoided crossings among the ion-pair state
and the covalent states associated with He[(1s)1(nl)1]+H
limits, where n = 3, as shown in Fig. 5 (a). As will
be seen, non-adiabatic first-derivative coupling elements
fij (R) among theses states are the interactions driving
the He++H− mutual neutralization reaction. These cou-
plings are displayed in Fig. 5 (b). The non-adiabatic
coupling elements are large in the vicinity of the avoided
crossings and they have approximately Lorentzian pro-
files. The large coupling at 26 a0 is not originating from
an interaction between ionic and covalent states, but is
due to an avoided crossing between state 9 and 10.
In Fig 6, the coupling elements between all neighbor-

ing states are displayed for internuclear distances ranging
from 0.5 to 6 a0 in (a) and from 6 to 15 a0 in (b). For
internuclear distances smaller than 5 a0, there are large
non-adiabatic coupling elements due to avoided crossings
among the resonant states that are Rydberg states con-
verging to different excited ionic cores. This is the re-
gion where autoionization widths are non-zero. The res-
onant states are therefore interacting with the ionization
continuum. The approach to compute the non-adiabatic
coupling elements using standard structure calculations
and identifying the resonant states by analyzing the con-
figurations of the wave function, is approximate. How-
ever, as will be shown, for the mutual neutralization reac-
tion the exact magnitudes of the non-adiabatic coupling
elements at small internuclear distances (< 5 a0) are not
significant. The avoided crossing due to interactions be-
tween the ion-pair state and the n = 2 covalent states
occurring around 6-15 a0 are not as sharp and hence
the corresponding coupling elements [see Fig. 6 (b)] are
smaller than the n = 3 coupling elements.
The non-adiabatic coupling elements are computed

both analytically at the MRCI level as well as using the
finite difference method using the FCI wave functions.
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Figure 5: (Color online) In (a), the avoided crossings between
adiabatic potential energy curves of 2Σ+ symmetry originat-
ing from the interactions between the ion-pair state and co-
valent states associated with the He[(1s)1(3l)2]+H limits are
displayed. In (b) the corresponding non-adiabatic coupling
elements (between neighboring states) are shown.

At large internuclear distances, the two methods provide
identical coupling elements, while at small distances they
are similar in form and magnitude.

B. Total cross section and isotope effects

The total mutual neutralization cross section is calcu-
lated for collision energies ranging between 1 meV and
300 eV. In Fig. 7, the 4He+ + H− and 4He+ + D− cross
sections are compared with measured ones [18, 21, 22]
and previous theoretical predictions [23, 24]. At large
energies, the cross sections connect smoothly to the mea-
sured and previous calculated ones. However, at lower
energies the calculated cross section is larger than the
one measured using a merged-beam apparatus by Peart
and Hayton [21]. The measured cross section does not
display the same low-energy E−1 behavior as observed
from the calculation and which is predicted by Wigner’s
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Figure 6: (Color online) Non-adiabatic first derivative cou-
pling elements between neighboring HeH electronic resonant
states of 2Σ+ symmetry at (a) small and (b) intermediate
internuclear distances.
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Figure 7: (Color online) Calculated cross section of mutual
neutralization in collisions of 4He++H− and 4He++D− are
compared with previous measurements [18, 21, 22] and theo-
retical predictions [23, 24].

threshold law [39].
The role of autoionization can be investigated by turn-

ing on and off the imaginary term Wij as described by
equations (2) and (3). In Fig. 8, the total mutual neu-
tralization cross section in collisions of 4He+ and H− is
displayed both when autoionization is included and when
it is not considered. As can be seen, the effect of au-
toionization is negligible. This is due to the fact that
the autoionization widths are non-zero only at small in-
ternuclear distances (R ≤ 5 a0). At low energies, the
centrifugal barrier added the potentials will prevent the
system from reaching these small distances.
The cross sections for mutual neutralization have been

calculated for collisions of different isotopes of the hydro-
gen and helium ions. For the different isotopologues, we
assume the adiabatic potential energy curves and non-
adiabatic coupling elements are the same, but the re-
duced mass of the molecular system is changed. In Fig. 9,
we compare the calculated cross sections for collisions of
3He+ or 4He+ with H− or D−. The cross sections for the
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Figure 8: (Color online) Calculated cross section of mutual
neutralization in collisions of 4He++H− with and without in-
clusion of autoionization.
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Figure 9: (Color online) Calculated cross section of mutual
neutralization in collisions of different isotopes of hydrogen
and helium ions.

heavier isotopologues have a smaller magnitude than the
lighter ones. At large collision energies (E > 200 eV),
the orders of the cross sections are reversed. A similar
isotope effect was found in mutual neutralization in col-
lisions of H+ with H− [14]. When the charge-transfer
reaction is driven by non-adiabatic couplings occurring
at large internuclear distances, the isotope effect will be
relative small. This is the case for both the He+ + H−

and the H+ + H− mutual neutralization reactions. How-
ever, when the reaction is driven by couplings occurring
at smaller internuclear distances, the isotope effect can
be significant. This was observed in collisions of H+ (or
D+) with F− [11]. A similar conclusion is obtained from
studies of charge transfer in collisions of He2+ with H. At
low collision energies, the reaction is driven by rotational
couplings acting at small distances, the isotope effect an
be strong [40].

As described above in section IIIA, there are very
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large non-adiabatic couplings among the resonant states
at small internuclear distances. This is the region where
autoionization widths are non-zero and our approach to
compute the coupling elements using structure methods
is approximate. We investigate the effects of these non-
adiabatic couplings at small distances by running calcula-
tions on the mutual neutralization reaction when all cou-
pling elements smoothly are turned to zero for distances
smaller than 5.0 a0. At low energies, the calculated total
cross section will then decrease by a few percent (1−5 %
for E < 10 eV), while at energies larger than 100 eV,
the reduction increases to 18 %. Thus, the non-adiabatic
couplings at small internuclear distances have no signifi-
cant effect on the mutual neutralization cross section.
Previous quantum mechanical studies on mutual

neutralization reactions have neglected rotational cou-
plings [6–13]. However, in the review on recombination
processes written in 1982, Bardsley pointed out that ro-
tational couplings could be important in mutual neutral-
ization reactions and should be considered [41]. The ro-
tational couplings originate from correlation between the
rotational motion of the nuclei and the electronic motions
and it will give rise to different diagonal and off-diagonal
terms that should be added to the Hamiltonian. The
L-uncoupling terms will induce interactions between the
resonant states of 2Σ+ and 2Π symmetry that approxi-
mately have the form [42]

−
√

ℓ (ℓ+ 1)

2µR2

〈

Φi
Π |L+|Φj

Σ

〉

. (9)

Due to the factor R−2, these rotational couplings are lo-
calized at small internuclear distances. However, the fac-
tor

√

ℓ (ℓ+ 1) will make the rotational couplings large
when high angular momenta quantum numbers con-
tribute. This is the case in the mutual neutralization
reaction presently studied. The rotational couplings are
not calculated ab initio, but are here approximated us-
ing a pure precession approximation. The dominant con-
figurations of the adiabatic states have been identified
and for the 2Σ+ and 2Π states associated with the same
asymptotic limit they only differ by the highest occupied
molecular orbital and we have

〈

Φi
Π |L+|Φj

Σ

〉

≈
〈

(npπ)
1 |l+| (npσ)1

〉

≈
√
2. (10)

For 2Σ+ and 2Π states not associated with the same
asymptotic limits, the rotational couplings are approx-
imated with 0. In the diabatization procedure, the rota-
tional couplings are transformed with a transformation
matrix of block-diagonal form

T̃ =

(

T 0

0 1

)

, (11)

where T is the orthogonal transformation matrix for the
2Σ+ resonant states computed by numerically solving eq.
(4) above and 1 is a 6× 6 unit matrix. No non-adiabatic
interactions among the 2Π states are considered.
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Figure 10: (Color online) Calculated cross sections of mutual
neutralization in 3He+ + H− and 4He+ + D− collisions with
(dotted/dashed lines) and without (solid lines) the inclusion
of rotational couplings between +Σ+ and 2Π resonant states.

The total mutual neutralization cross sections are cal-
culated for collisions of all isotopes of hydrogen and he-
lium ions, with and without the inclusion of the ro-
tational couplings as displayed in Fig. 10 with dot-
ted/dashed and solid lines, respectively. The cross sec-
tions are shown for the 3He+ + H− and 4He+ + D−

collisions, which are the isotopologues where the rota-
tional couplings have the largest and smallest effects. As
can be seen, the rotational couplings will at large col-
lision energies (E > 10 eV) increase the neutralization
cross section. The effect is largest for the system where
the most partial waves contribute.

C. Final state distributions

From the scattering matrix elements, not only the total
cross section can be computed, but also the final state
distributions. Fig. 11 shows calculated branching ratios
for collisions of 4He++ H− in (a) and 4He++ D− in (b)
both with (dashed lines) and without (solid lines) the
inclusion of rotational couplings.

The dominant channels are all associated with the
He[(1s)

1
(3l)

1
]+H limits and these are the covalent states

with avoided crossings due to interactions with the ion-
pair state at internuclear distances ranging from 20-40
a0 as displayed in Fig. 4. Most important is the state
associated with the 1s3s 3S limit, which has the low-
est potential energy curve of the n = 3 states shown in
Fig. 5 (a). Note that although the isotope effect in the
total cross section is very small, there are some isotope-
dependence in the final state distributions.
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Figure 11: (Color online) Calculated final state distributions
in mutual neutralization in (a) 4He++ H− and (b) 4He++
D− collisions with (dashed lines) and without (solid lines)
inclusion of rotational couplings.

D. Differential cross section

The differential cross section is calculated from the
scattering amplitude as described by equation (8). In
Fig. 12, the total differential cross section (summed over
all channels) is displayed for selected collision energies for
collisions of 4He+ with H−. As can be seen, the differ-
ential cross section is peaked at small scattering angles
(forward direction), with fast oscillations that at a given
scattering angle becomes slower. Similar shapes of differ-
ential cross sections have been observed in mutual neu-
tralization reactions between other heteronuclear atomic
ions such as Li+ + H− [8] and Li+ + F− [13]. It has
been discussed [8, 43] that this transition between slow
and fast oscillations reflects the Coulomb scattering an-
gle where the transition takes place at the distance of
closest approach and when the collision energy increases,
the transition angle decreases.
The differential cross sections are computed for colli-

sions of the different isotopes of the helium and hydrogen
ions. They all show similar behavior of differential cross
sections, although the exact positions of the oscillations
may vary. As an example, the differential cross sections
for mutual neutralization in collisions of 4He+ + H− and
4He+ + D− at 0.1 eV collision energy are displayed in
Fig. 13.
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Figure 12: (Color online) Differential cross section for mu-
tual neutralization in collisions of 4He+ and H− at selected
collision energies.
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Figure 13: (Color online) Differential cross section for mutual
neutralization in collisions of 4He+ + H− and 4He+ + D− at
0.1 collision energy.

IV. CONCLUSION

Mutual neutralization in collisions of He+ and H− is
studied ab initio, where the nuclear motion is described
quantum mechanically. The reaction involve electronic
resonant states of HeH of 2Σ+ symmetry that have been
computed by combining electron scattering calculations
with structure calculations at the FCI and MRCI level
of theory. Non-adiabatic couplings are computed ana-
lytically. Total and differential cross sections are calcu-
lated as well as final state distributions. The reaction is
studied for collisions of various isotopes of hydrogen and
helium ions. The total cross section is in agreement with
measurements and previous theoretical studies at higher
energies, but is larger than the cross section measured
using a merged beam apparatus [21] at relative low ener-
gies. At low collision energies, the autoionization and the
rotational couplings between the 2Σ+ and 2Π states, esti-
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mated using a pure precession approximation, are found
to have a small effect on the outcome of the reaction.
The mutual neutralization reaction will be dominated by
formation of He[1s3s 3S]+H followed by He[1s3p 3P ]+H
with ratios of approximately 50% and 30%, respectively
at low collision energies. The calculated differential cross
section is peaked in the forward direction.
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