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The non-contact (van der Waals) friction is an interesting physical effect which has been the sub-
ject of controversial scientific discussion. The “direct” friction term due to the thermal fluctuations
of the electromagnetic field leads to a friction force proportional to 1/2® (where Z is the atom-wall
distance). The “backaction” friction term takes into account the feedback of thermal fluctuations
of the atomic dipole moment onto the motion of the atom and scales as 1/38. We investigate non-
contact friction effects for the interactions of hydrogen, ground-state helium and metastable helium
atoms with a-quartz (SiOz), gold (Au) and calcium difluorite (CaF3). We find that the backaction
term dominates over the direct term induced by the thermal electromagnetic fluctuations inside the
material, over wide distance ranges. The friction coefficients obtained for gold are smaller than those

for SiO2 and CaF3y by several orders of magnitude.

PACS numbers: 31.30.jh, 12.20.Ds, 68.35.Af, 31.30.J-, 31.15.-p

I. INTRODUCTION

Non-contact friction arises in atom-surface interac-
tions; the theoretical treatment has given rise to some
discussion [1-11]. In a simplified understanding, for an
ion flying by a dielectric surface (“wall”), the quantum
friction effect can be understood in terms of Ohmic heat-
ing of the material by the motion of the image charge
inside the medium. Alternatively, one can understand it
in terms of the thermal fluctuations of the electric fields
in the vicinity of the dielectric, and the backreaction onto
the motion of the ion or atom in the vicinity of the “wall”.

It has recently been argued that one cannot separate
the van-der-Waals force, at finite temperature, from the
friction effect [9]. The backaction effect is due to the fluc-
tuations of the atomic dipole moment [9], which are mir-
rored by the wall and react back onto the atom; this leads
to an additional contribution to the friction force. In con-
trast to the “direct” term created by the electromagnetic
field fluctuations inside the medium [5] (proportional to
1/Z5 where Z is the atom-wall distance), the backaction
term leads to a 1/Z8 effect. A comparison of the magni-
tude of these two effects, for realistic dielectric response
functions of materials, and using a detailed model of the
atomic polarizability, is the subject of the current pa-
per. While the 1/Z% effect is parametrically suppressed
for large atom-wall separations, the numerical coefficients
may still change the hierarchy of the effects.

We should also note that the direct term [5, 9] can
be formulated as an integral over the imaginary part of
the polarizability, and of the dielectric response function
of the material. Recently, we found a conceptually in-
teresting “one-loop” dominance for the imaginary part
of the polarizability [12, 13]. The imaginary part of the
polarizability describes a process where the atom emits
radiation at the same frequency as the incident laser radi-
ation, but in a different direction. Note that, by contrast,
Rabi flopping involves continuous absorption and emis-
sion into the laser mode; the laser-dressed states [14, 15]
are superpositions of states |g,ny +1) and |e, nr), where

ny, is the number of laser photons while |g) and |e) de-
note the atomic ground and excited states. A priori, this
Rabi flopping may proceed off resonance.
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FIG. 1. Feynman diagrams contributing to the imaginary part
of the polarizability. A photon is absorbed from a bath (de-
noted by the external crosses), while a second photon of equal
frequency (nonresonant with respect to an atomic transition)
is emitted (Cutkosky rules).

By contrast, when the ac Stark shift of an atomic level
is formulated perturbatively and the second-order shift
of the atomic level in the external laser field is evalu-
ated using a second-quantized formalism (see Sec. IIT of
Ref. [16]), a resonance condition has to be fulfilled in
order for an imaginary part of the energy shift to be
generated. Namely, the final state atom-+field in the de-
cay process has to have exactly the same energy as the
reference state of atom+field. This is possible only at
exact resonance, when the emitted photon has just the



right frequency to compensate the “quantum jump” of
the bound electron from an excited state to an energet-
ically lower state [16-18]. The ac Stark shift is propor-
tional to the atomic polarizability. Its tree-level imagi-
nary part [12, 13] corresponds to spontaneous emission
of the atom at an exact resonance frequency, still, not
necessarily along the same direction as the incident laser
photon. When quantum electrodynamics is involved, it
is seen that due to quantum fluctuations of the electro-
magnetic field, the spontaneous emission is possible off
resonance. In Refs. [12, 13], the imaginary part of the po-
larizability was found to be dominated by a self-energy
correction to the ac Stark shift. Physically, the imaginary
part of the polarizability corresponds to a “decay rate”
of the reference state |¢,nr) used in the calculation of
the ac Stark shift, to a state |p,ny —1,1;,), where |¢)
is the atomic reference state, the occupation number of
the laser mode is nr, and there is either zero or one pho-
ton in the mode KA. While the laser frequency is equal
to the frequency of the emitted radiation (wp = wg),
the emission proceeds into a different direction as com-
pared to the laser wave vector (k # k). Off resonance,
the quantum electrodynamic one-loop effect calculated
in Refs. [12, 13] thus dominates the imaginary part of
the polarizability, not the tree-level term. This is quite
surprising; the relevant Feynman diagrams are shown in
Fig. 1. The peculiar behavior of the imaginary part of
the polarizability suggests a detailed numerical study of
the non-contact friction integral [5, 9], and comparison,
of the direct and backaction terms.

This paper is organized as follows. In Sec. II, we at-
tempt to shed some light on the derivation of the effect.
Full SI mksA units are kept throughout the derivation.
The numerical calculations of the quantum friction for
the hydrogen and helium interactions with a-quartz, gold
and CaFy are described in Sec. III, where we shall use
atomic units for frequency and other data in Tables I—
V. We employ a convenient fit to the vibrational and
interband excitations of the a-quartz and CaFs lattices.
Finally, conclusions are drawn in Sec. I'V.

II. DERIVATION

Our derivation is in part inspired by Ref. [9]; we supple-
ment the discussion with some explanatory remarks and
simplified formulas where appropriate. The electric field
at the position of the atomic dipole (i.e., at the position
of the atom) is written as

E(t) = Eo A O efi(wwo)tv (1)

where w is the frequency component of the (thermal)
fluctuation, and wy describes a small displacement of the
atom’s position itself. The contribution proportional to
E; is included as a result of a backaction term, which
takes the variation of the spontaneous and induced fields
over the spatial amplitude of the oscillatory motion of

the atom into account [see Eq. (9)]. Hence, the angular
frequency of the motion (wy) is added to the thermal fre-
quency, and the term is proportional to exp[—i(w+wo) t].
The displacement of the atom is of angular frequency wy,

Q(t) = ige 0t F(t) =i + i(t). (2)

The dipole density of the isolated atom is supposed to
perform oscillations of the form

—
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Here, the second term is generated by the displacement
of the atom, i.e., by the expansion of the Dirac § function
§G) (7 — 7% — 1i(t)) to first order in (t). While the atomic
dipole moment is a sum of a fluctuating term d’ and an
induced term (by the corresponding frequency compo-
nent of the electric field at the position of the atom),

1

do; = dzf =+ a(w) FEy; , (4)

the frequency component for w + wg only contains an
induced term, d; = a(w + wp) Ej.

Let Gi;(7, 7y, w) denote the frequency component of
the Green tensor which determines the electric field gen-
erated at position 7 by a point dipole at 7. In the non-
retardation approximation [Eq. (1) of Ref. [5]], it reads

97 7sw) = 47360 <|F—1F’|
e(w)—1 1
Ce(w)+ 1 [P =7 420, (7 m)|> ’
Gij (7,7, w) = = V; V) g(7, 7, w) (5)

Here, n = é, is the surface normal (the surface of the
dielectric is the zy plane). The result

elw)—1 2 . .
Z3+m§, rz=¢.2, (6)

reflects the fact that a dipole oriented in parallel to the
z axis generates a mirror dipole which also is oriented in
parallel to the z axis (not antiparallel, see red dipoles in
Fig. 2). Because of this, the second term on the right-
hand side of Eq. (6) has the same sign as the first term.

Self-consistency dictates that the field Ey = EO(FO) at
the position of the atom is equal to the sum of the field
generated by the dipole moment dy;, and the fluctuating
component Ef (7, w) of the electric field,

Eoi = Gii(70, 70, w) doi + E; (70, w)
= G (70, T, w) a(w) Eo; + Gii(Fo,Foaw)d{
+ Ef (70, w) (7)
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FIG. 2. (Color online.) Mirroring a dipole in the xy plane. A
dipole aligned along the z axis gives rise to an antiparallel
mirror dipole, whereas a dipole aligned along the z axis gives
rise to a parallel mirror dipole. Recall that mirror charges
have the opposite sign as compared to the original ones.

where no summation over 7 is carried out [one has G;; =
Gii 6;5 at equal spatial coordinates|. So,

Gii (7o, 7o, w) df + E3 (7o, w)
1 — Gii(’FQ,’FQ,CU) a(w) ’

df + a(w) B; (7o, )
1-— a(w) Gii(F07 Fo,w) ’

Eoi =

(8a)

do; = (8b)
where in Eq. (8b) we have taken into account Eq. (4).

The electric field EO and the dipole moment do are given
in terms of fluctuating terms; the denominators in Eq. (8)

take the backaction into account. For El, one obtains the
following equation, after one partial integration,

Evi = Gii(70, T, w 4+ wo) a(w + wo) F1;

+ iy - Vi (B (

7? ) ZJ(FO,F,w+w0)doj
+G’Lj (Tv To, W ) d
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This equation can be trivially solved for E;. The thermal
J
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2
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fluctuations are described by the following equations [5],

<df d;c> = %L‘)’T) 0i; Im av(w) (10a)
E@ B, = 229D e, 77.w) . (10b)

w

where O(w,T) = hw (3 +n(w)) = $hw coth (3 Bhw)
is the Kallen-Welton thermal factor, with n(w) =
lexp(Bhw) — 1]7%, and B = 1/(kpT) where kg is the
Boltzmann constant. With the help of p = -V - p and
j = O¢p, one formulates a time-dependent force,

F(t) = / aBr <p(F, t) E*(7,t) + j(7,t) x B*(F, t)>

9 - .
S FL(t) + Fy(w,wo) e

—iwg t

= Fy(t) + o - (11)
Here, Fs(t) is the static van-der-Waals force, g - %ﬁs (t)
describes the variation of the van-der-Waals force with
the oscillating position of the atom, and Fy(w,wp) is a
Fourier component of the friction force. An integration
over the thermal fluctuations of all Fourier components
of the friction force gives the total friction force,

L1 [

- in [nz (quéz + uOyéy) + 7z uzéz]

= — Ny (Vp€s + Vyéy) — Nyv.E, .

dw wo 9 <ﬁ(w,w0)>

2 Bwo

wo =0

(12)

Here, 7, and 7, are the friction coefficient for motion
along the x and z directions, respectively. The additional
assumption of a small mechanical motion with velocity
T =0, tpe” | = —iwg iy is made.

The result for 7, is obtained as,

02 . a(w)
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This result can be written as 7, = 773(51) (2), where ng(f)

With the help of 32, 52— Tm G (7, 7) = Im (emﬂ

3
e(w)+1 ) 16meg Z°°
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=Tz

is generated by the term in curly brackets in the integrand.

one verifies that the leading-order, linear term in the



polarizability (see Ref. [5]), from Eq. (13), is given as

2 oo 2 2 e
1) _ Bh= / dw 0 I —_ _ 3B8h / dw Im[a(w)] I e(w)—1
T %y sk ( B ho) e_%z prow IO = 550 75 s (3 phe) o \ew) 7 1)
(14)
In Eq. (13), the term of second order in the polarizability is given as follows,
2 7 2 2 2
<2>:@/M o - I P -
;5 - J sinh%%ﬂhw) 552 SIm G, (7, 7z,w) ¢ InG..(7z,7z,w) — 2 8ZImGzz(r,rg,w)
P =iz
2 ® 2 _ 2
___9n /dw o) {Im (E(‘“) 1)] . (15)
4096 73 €3 Z8 sinh?(1 B hw) e(w) +1
0

For friction in the z direction, one derives n, = ngl) +nz

with ngl) = 21722) and n( ) = 777;(5 ), confirming Ref. [9 ]

The term 7(®) is generated by the “backaction denomi-
nators” from Eqgs. (8a) and (8b). For the numerical eval-
uation of the term "), the following result

(2)

Im[a(w)] = Im[ag(w)] + e [(w)]?, (16a)
Im [ag(w)] = Im [, (w)] — Im [ (—w)] , (16b)
Im [ (w)] =5 Z Efmo m — F + hw), (16¢)

has recently been derived in Ref. [12]. Here, f,,0 are the
oscillator strengths [19, 20] for the dipole transitions from
the ground state of the atom with energy E to the excited
states |m) with energy F,,. The “one-loop” term in the
result for Im[a(w)], proportional to a(w)?, implies that
the numerical evaluation of both n(*) and 1? is related;
because typical thermal wave vectors (inversely related
to the thermal wavelengths) are much smaller than typ-
ical atomic transition frequencies, 7 is the dominant
term. The resonant, tree-level contribution to the atomic
polarizability is denoted as Im [a,-(w)].

The expression for Im [, (w)] takes into account only
resonant processes, with Dirac-d peaks near the resonant
transitions. However, this concept ignores the possibil-
ity of off-resonant driving of an atomic transition, where
the atom would absorb an off-resonant photon and emit
a photon of the same frequency as the absorbed, off-
resonant one, but in a different spatial direction. Indeed,
it has been argued in Ref. [21] that the off-resonant driv-
ing of an atomic transition mediates the dominant mech-
anism in the determination of the quantum friction force.
The same argument applies to the atom-surface quan-
tum friction force mediated by the dragging of the image
dipole inside the medium, which is the subject of the
current investigation. We have recently considered (see
Ref. [13]) the Feynman diagrams in Fig. 1, where the
“srounded” external photon lines (those “anchored” by
the external crosses) represent the absorption of an off-

resonant photon from the quantized radiation field (e.g.,
a laser field or a bath of thermal photons), the verti-
cal internal line denotes the “cutting” of the diagram at
the point where the photon is emitted, and the photon
loop denotes the self-interaction of the atomic electron
(the imaginary of the corresponding energy shift is di-
rectly proportional to the imaginary part of the polar-
izability [22]). The overall result is obtained by adding
the (in this case dominant) one-loop “correction” to the
resonant imaginary part of the polarizability.

III. NUMERICAL EVALUATION

The structure of Eqs. (14) and (15), which we recall

for convenience,
38K [ ety (e
ew)+1)"

T 32m2e 20 sinh®($ B hw)
(17a)
(2 _ _ 98R°
T T 1096 73 €2 28
00 9 _ 2
x/dwig(w) [Im (Lw) 1)} ,
J sinh®(3 Bhw) elw)+1
(17b)

implies that, for the evaluation of the quantum friction
coefficient in the vicinity of a dielectric, we need to have
reliable data for both the imaginary part of the polariz-
ability of the atom, Im[a(w)], as well as the imaginary
part of the dielectric response function, which is given as
Im[(e(w) —1)/(e(w) +1)]. A related problem, namely, the
calculation of black-body friction for an atom immersed
in a thermal bath of photons, has recently been consid-
ered in Ref. [21]. It has been argued that the inclusion of
the width I',, of the virtual states in the expression for
the polarizability is crucial for obtaining reliable predic-
tions. The imaginary part of the polarizability is given in



TABLE I. Coefficients for the first few resonances for a-quartz
according to the fitting formula (21) (ordinary and extraor-
dinary optical axes). The wj; and 7 are measured in atomic
units, i.e., in units of the Fj/h, where Ej is the Hartree en-
ergy. The fitting parameters have been obtained from data
tabulated in Ref. [23] (see also Ref. [24]).

Vibrational Excitations (Ordinary Axis)

k g Wk Vi
1 1.04x1072 1.83x107° 1.29x107°
2 853x107%2 222x107% 1.83x107°
3 0.16x1072 318x107% 3.16x107°
4 1.06x1072 367x107% 3.20x107°
5  552x1072 523x107% 3.61x107°
6 455x1072 534x107% 3.89x 107°

Interband Excitations (Ordinary Axis)

k Qg Wk Yk
7 1.05x1072 3.89x107' 1.12x1072
8  471x1072  445x107' 528 x 1072
9 498x107%2 537x107!  7.32x107?
10 1.06x107" 658x107Y 1.30x 107!
11 1.12x107'  826x 107!  240x 107!
Vibrational Excitations (Extraordinary Axis)

k Qg Wk Vi
1 363x1072 1.74x107% 232x107°
2 845x107* 231x107% 1.52x107°
3 754x107%  242x107%  3.00x 107°
4 1.08x1072 358x107% 3.49x107°
5 1.03x107' 531x107% 446 x107°
Interband Excitations (Extraordinary Axis)

k g Wk Vi
6 1.05x1072 389x107! 1.12x 1072
7 471x1072  445x107'  5.28 x 1072
8 498x107%2 537x107!  7.32x107?
9 1.06x107" 658x107' 1.30x 1072
10 1.12x107' 826x 107! 240 x 1072

Eq. (16).

In the SI mksA unit system [30], the atomic dipole
polarizability describes the dynamically induced dipole,
which is created when the atom is irradiated with a light
field (electric field). Thus, the physical dimension of the
polarizability, in ST mksA units, is determined by the re-
quirement that one should obtain a dipole moment upon
multiplying the polarizability a(w) by an electric field. In
atomic units (a.u.) with Ai=1,c¢=1/a, and ¢ = 1/(47),
one has

203
mfa(@)]l, . = Imlar@)l,,. + == {&* @]}, -
(18)
In natural as well as atomic units [19], physical quanti-
ties are identified with the corresponding reduced quanti-
ties, i.e., with the numbers that multiply the fundamental
units in the respective unit systems. In order to convert

TABLE II. Same as Table I but the data are for CaFs. The
fitting parameters are obtained using numerical data compiled
in Refs. [23, 25-29] for the optical response function of CaF's.

Vibrational Excitations (CaF2)

k o W Yk

1 425x107"  1.74x1073% 1.49x107*
Interband Excitations (CaFsg)

k o W Yk

2 985x107% 4.12x107' 1.98x 1072

3 1.62x107t 574x107Y  1.72x 107t

4  157x107'  1.13 x 10° 5.58 x 107!

the relation (16¢) into atomic units, we recall that the
atomic units for charge (e), length (Bohr radius ag), and
energy (Hartree E},) are as follows,

le] = 1.60218 x 1077 C, (19a)

ag = =5.29177 x 10~ "'m, (19b)
Mg C

Ep =me(ac)® =4.35974 x 10718 J ~ 27.2eV. (19c)

Here, |e| is the modulus of the elementary charge (we re-
serve the symbol e for the electron charge, see Ref. [31]),
« is Sommerfeld’s fine-structure constant, while m, is the
electron mass and ¢ denotes the speed of light. The funda-
mental atomic unit of energy is obtained by multiplying
the fundamental atomic mass unit by the fundamental
atomic unit of velocity, which is ac. In atomic units,
then, the reduced quantities fulfill the relations ¢ = 1/«
and e = h=m, =1, while ¢ = 1/(47).

For completeness, we also indicate the explicit overall
conversion from natural (n.u.) and atomic (a.u.) units to
SI mksA for the polarizability, which reads as

€0 h3
33 Oé(w)”n,u,

dmey 3

=53 Wl - (20)

a3 m3 3

a(@)llg =

Judicious unit conversion helps to eliminate conceivable
sources of numerical error in the final results for the fric-
tion coefficients. The hydrogen and helium polarizabil-
ities, in the natural and atomic unit systems, are well
known [32-38]. From now on, for the remainder of the
current section, we switch to atomic units.

In our numerical calculations, we concentrate on the
evaluation of dielectric response function of a-quartz
(Si02), gold (Au) and calcium difluorite (CaFsg). Indeed,
a collection of references on optical properties of solids
has been given in Refs. [23, 25-29]. Following Ref. [24],
we employ the following functional form for SiO; and
CaFs which leads to a satisfactory fit of the available



TABLE III. Normalized friction coefficients né? and néi)7 given in atomic units (denoted as a.u.), for a distance of Z = ag
from the a-quartz surface, obtained using the expression (18) for the imaginary part of the atomic polarizability and using
Eqgs. (17a) and (17b) for the friction coefficients. The friction coefficient, in SI mksA units, is obtained from Egs. (27)

and (31a).
Friction Coefficients for SiO2 [Ordinary Axis]
Atomic Hydrogen (15) Helium (1.5) Helium (2351)
1 2 1 2 1 2
T K] o) 0y o) 0y o) 0y
273 2.05 x 10715 1.76 x 1071 1.94 x 10716 1.67 x 1072 1.03 x 10~ 8.75 x 10?
208 2.78 x 10715 2.14 x 107! 2.63 x 10716 2.02 x 1072 1.40 x 10~1* 1.06 x 103
300 2.85 x 10715 217 x 107! 2.69 x 10716 2.05 x 1072 1.43 x 10~ 1.08 x 10°
Friction Coefficients for SiO; [Extraordinary Axis]
Atomic Hydrogen (15) Helium (15) Helium (254)
T [K] o) e o) e o) e
273 2.00 x 1071° 9.19 x 1072 1.89 x 10716 1.67 x 1072 1.01 x 10~ 4.57 x 10?
298 2.70 x 10715 1.14 x 1071 2.55 x 10716 2.02 x 1072 1.36 x 1071¢ 5.69 x 102
300 2.76 x 10715 1.16 x 1071 2.61 x 10716 2.05 x 1072 1.39 x 107! 5.78 x 10?
TABLE IV. Same as Table III, but for the hydrogen and helium interactions with gold (Au).
Friction Coefficients for Gold (Au)
Atomic Hydrogen (15) Helium (15) Helium (2251)
T [K] e 'y e e o e
273 8.67 x 10719 1.05 x 107° 8.19 x 1029 9.91 x 10~ 4.38 x 1071° 5.20 x 107
208 1.26 x 1071° 1.27 x 107° 1.19 x 1071 1.20 x 10710 6.41 x 1071° 6.32 x 107
300 1.30 x 1071° 1.29 x 107° 1.23 x 1071° 1.22 x 10719 6.60 x 1071° 6.41 x 1076

data (see Tables I and II),
cw)—1  [n(w)+ikw)]?—1

P = T2 ) T k@) T2
~ Qg wi (21)

We have applied a model of this functional form to a-
quartz (ordinary and extraordinary axis), Au and CaFs.
The form of p is inspired by the Clausius—Mossotti
equation, which suggests that the expression [(e(w) —
1)/(e(w) + 2)] should be identified as a kind of polar-
izability function of the underlying medium. This func-
tion, in turn, exactly has the functional form indicated on
the right-hand side of Eq. (21). The dimensionless per-
mittivity e(w) is obtained as e(w) = (1 + 2p)/(1 — p).
Also, it is useful to point out that the response function
(e(w) — 1)/(e(w) + 1), whose imaginary part enters the
integrand in Eq. (17a), can be reproduced as follows,

ew)—1 _ 3p(w)
ew)+1  pw)+2°

Formula (21) leads to a satisfactory representation of the

(22)

data for both infrared and ultraviolet absorption bands
of SiOs.

In order to model the dielectric response function of
gold (Au), we proceed in two steps. First, we employ a
Drude model,

2

- m + AE(O.)) (23)

e(w) =

with w, = 0.3330 B, /h and 4, = 1.164 x 1073 E), /A (the
specification in terms of Fj/h is equivalent to the use of
atomic units). For the remainder function Ae(w), we find
the following representation,

Ae(w) -1 N aw?

with @ = 1.5373, wo = 1.462 E} /h, and o = 4.550 E}, /h.
In view of the asymptotics

(24)

2 _ 2
wg — Iyow —w

ia
Aplw) =1+ "L,

wo

w0, (25)

the functional form (24) ensures that the the dielectric
permittivity of gold, as modeled by the leading Drude



TABLE V. Same as Table III, but for the hydrogen and helium interactions with CakFs.

Friction Coefficients for CaFs

Atomic Hydrogen (15)

T [K] o) e o)

Helium (15)
(2) (1) (2)

Helium (254)

Nz0 Mz0 Nz0
273 3.12 x 10715 4.79 x 1071 8.34 x 10716 4.53 x 1072 1.54 x 10711 2.37 x 103
298 3.61 x 10719 5.09 x 107! 8.85 x 10716 4.81 x 1072 1.78 x 107 2.52 x 10°
300 3.65 x 10715 5.11 x 1071 8.88 x 10716 4.83 x 1072 1.80 x 107! 2.53 x 10°

model term (23), for w — 0, retains its form of a lead-
ing term, equal to unity, plus an imaginary part which
models the (nearly perfect) conductivity of gold for small
driving frequencies.

Our discussion of atomic units provides us with an
excellent opportunity to discuss the natural unit of the
normalized friction coefficient 7. In order to convert 7
from atomic to SI mksA units, one needs to examine the
functional relationship F,, = —nv,, where v, is the parti-
cle’s velocity. The atomic unit of velocity is a ¢, while the
atomic unit of force is equal to the force experienced by
two elementary charges which are apart from each other
by a Bohr radius. Denoting the atomic unit of force, for
which we have not found a commonly accepted symbol
in the literature, as Fy.11., we have

2

Fau. —=8.23872 x 107 ®N. (26)

= 2
dmep ag

The atomic unit 74,1, for the friction coefficient thus con-
verts to SI mksA units as follows,

k
= 3.76594 x 10~ 14 § RN CY!

Fa.u.

Na.u. =

For completeness, we also note the atomic units wgy 1.
and vy, . of angular frequency and the cycles per second,
respectively,

06 @

E
wa, = 7’1 =4.13414 1 (28)

E
vau. = =" = 65796810 Hz. (29)

The data published in the reference volume of Pa-
lik [23] for the optical properties of solids relates to mea-
surements at room temperature. The integral (17a) car-
ries an explicit temperature dependence in view of the
Boltzmann factor, which appears in disguised form (hy-
perbolic sine function in the denominator), but there is
also an implicit temperature dependence of the dielectric
response function [e(w) — 1]/[e(w) + 1], which has been
analyzed (for CaF3) in Refs. [27-29].

For the SiO3, gold and CaF;y interactions investi-
gated here, we perform the calculations for tempera-
tures around room temperature, i.e., within the range
273K < T < 300 K. We use the spectroscopic data from

Tables I—II, and employ the formula for the imaginary
part of the polarizability given in Eq. (18), and the repre-
sentation of the dielectric response function in Eq. (21).
Because of the narrow temperature range under study,
this procedure is sufficient for a-quartz and to CaF5. For
gold, we take into account the Drude model, as given in
Eq. (23). The uncertainty of our theoretical predictions
should be estimated to be on the level of 10% to 20%, in
view of the necessarily somewhat incomplete character of
any global fit to discrete data on the dielectric constant
and dielectric response function, which persists even if
care is taken to harvest all available data from [23].

A priori, the data in Palik’s book [23] pertain to room
temperature. For CaFsy, we may enhance the theoreti-
cal treatment somewhat because the temperature depen-
dence of the dielectric response function has been studied
in Refs. [25, 26, 28, 29]. The dominant effect on the tem-
perature dependence of the dielectric response function
of CaFs is given by the shift of the large-amplitude vi-
brational excitation at w; = 1.74 x 1073 a.u. given in
Table II. We find that the temperature-dependent data
for the response function [e(w) — 1]/[e(w) + 1] given in
Fig. 10 of Ref. [29] can be fitted satisfactorily by introduc-
ing a single temperature-dependent parameter in our fit
function, namely, a temperature-dependent width. The
replacement in terms of the parameters listed in Table 11
is

-7 Ep
a =497 x10 K (30)
(4.97 x 10~ "a.u./K), where Ty = 300K is the room-
temperature reference reference point.

We finally obtain the friction coefficients given in Ta-
bles III-—V. The normalized friction coefficient 7y given
in Tables III-—V is indicated in atomic units, for a dis-
tance of one Bohr radius from the surface. The Z de-
pendence and the conversion to SI mksA units is accom-
plished as follows: One takes the respective entry for 7
from Tables ITI—V, multiplies it by the atomic unit of
the friction coefficient given in Eq. (27) and corrects for
the 1/25 and 1/Z% dependences,

1 —=mn+a(l-"T),

5 k
W] =] (%) 7659ax 1071 =2 31
" ST o au \Z * s’ (31a)
8 k
<2>‘ = @ (@) 376504 x 10~ =8 (311
" ST o aun. \Z * s’ (31D)




This consideration should be supplemented by an ex-

ample. The backaction friction coefficients ng(f) given in

Tables III—V are found to be numerically larger than
the coefficients 773(51) by several orders of magnitude, but
they are suppressed, for larger atom-wall distances, by
the functional form of the effect (1/Z2® versus 1/25).
Let us consider the case of a helium atom (mass mye =

6.695 x 10727 kg), at a distance
ZQO =20 ap (32)

away from the a-quartz surface (extraordinary axis).

We employ the normalized friction coefficients 7761) =

8.81 x 10716 and 5{* = 4.80 x 102 from Table III, for a
temperature 7' = 298 K. With

up = 3.76594 x 10~ kgs™? (33)
being the atomic units of the friction coefficient, the at-
tenuation equation F, = —nuv, is solved by

dv,

1 = — Y Vg, (o (t) = Uz (O) exp(—”y t) ’ (343“)

(1) 5 (2) 8
o (e () L (e ()
MHe Zzo MHe Z20
= (155 x 1077s7") + (10.5557 )

~10.555 1, (34b)
for ground-state helium atoms. This corresponds to an
attenuation time of 7 = 0.0948 s, in the functional rela-
tionship dv, /dt = v, /7.

IV. CONCLUSIONS

In this paper, we have performed the analysis of the
direct and backaction friction coefficients in Sec. II, to
arrive at a unified formula for the quantum friction co-
efficient of a neutral atom, in Egs. (17a) and (17b). The
numerical evaluation for the interactions of atomic hydro-
gen and helium with a-quartz and calcium difluorite are
described in Sec. III. The results in Tables III—V are in-
dicated in atomic units, i.e., in terms of the atomic unit
of the friction coefficient, which is equal to the atomic
force unit (electrostatic force on two elementary charges
a Bohr radius apart), divided by the atomic unit of ve-
locity [equal to the speed of light multiplied by the fine-
structure constant, see Eq. (27)]. The conversion of the
entries given in Tables ITI—V to SI units is governed by
Eq. (31a). The friction coefficients indicated in Table IV
for gold are smaller by several orders of magnitude than
those for SiOg (Table IIT) and CaFy (Table V).

Finally, in Appendix A, we illustrate the result on
the basis of a calculation of the Maxwell stress tensor,
and verify that the zero-temperature contribution to the
quantum friction is suppressed in comparison to the main
term given in Eq. (17a). In Appendix A, we refer to the

zero-point/quantum fluctuations as opposed to the ther-
mal fluctuations of the electromagnetic field.

For a discussion of experimental possibilities to study
the calculated effects discussed here, we refer to Ref. [12].
An alternative experimental possibility would involve a
laser interferometer [39]. An interferometric apparatus
has recently been proposed for the study of gravitational
interactions of anti-hydrogen atoms (see Refs. [40, 41]);
the tiny gravitational shift of the interference pattern
from atoms, after passing through a grating, should en-
able a test of Einstein’s equivalence principle for anti-
matter (this is the main conceptual idea of the AGE col-
laboration, see Ref. [41]). Adapted to a conceivable quan-
tum friction measurement, one might envisage the instal-
lation of a hot single crystal in one arm of a laser atomic
beam interferometer, with a variable distance from the
beam, in order to measure the predicted Z® scaling of
the effect.
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Appendix A: Quantum Friction for T'=0

We start from the zero-temperature result for the
quantum friction of two semi-infinite solids, which is de-
rived independently in Ref. [42]. Indeed, from Egs. (15),
(25) and (54) of Ref. [42], we have

h oo oo
F‘z = —f dk” k” / dkL 8_2kz
s
0
va k)
X dw Im 761((0)_1} Im {Ez(k” v —w)— 1
e1(w)+1 ex(kjve —w)+1]
0

(A1)

The quantum friction force for an atom can be ob-
tained from the above formula by a matching procedure.
Namely, for a diluted gas of atoms, which we assume to
model the slab with subscript 1, the relative permittivity
can be written as follows,

Ny

e(w)=14 — a(w),
€0

(A2)

where a(w) is the (dipole) polarizability, and Ny is the
(volume) density of atoms. Here, €;(w) is assumed to de-
viate from unity only slightly. We can then substitute

aw) -1 Ny

Q@ E1 — 2eq a(w). (A3)



Here, Ny = S~1dN/dz is equal to the increase dN in
the number of atoms as we shift one of the plates by
a distance dz from the other. The factor dN/dz can
then be brought to the left-hand side where it reads as
F(v)dz/dN. Differentiating with respect to dz, one ob-
tains (dF)(v)/dz) (dz/dN) = dFj(v)/dN, i.e., the force
on the added atom. The net result is that we have to
differentiate Fj over z, and divide the result by S Ny, to
obtain the force on the atom,

h oo oo
P, =— / dkey Ky / dky ke 2%
0 —00

e(kyve —w) — 1
e(kyve —w) +1

] . (A4)

In the limit of small velocities, i.e., v, < Z wq, where wq
is the first resonance frequency of either the atom a(w),
we can replace both the polarizability of the atom as
well as the dielectric function of the solid by their lim-
iting forms for small argument, i.e., small w and small
w" = kjjvy — w, can be replaced by their low-frequency
limits. We assume an atomic polarizability of the func-
tional form

_ an
) = 2 B3 TIT (ha) — (R

n

(A5)

where the oscillator strengths are denoted as fyo and the
E,o are the excitation frequencies of the atom. For the
zero-temperature quantum friction, the relevant limit is
the limit of small angular frequency w < E1/h, and we
assume that the first resonance dominates, with I'; <
E1p. Under these assumptions, we can approximate

Im[a(w)]zZ—l"nhwmia

We have written ag = «(0) for the static polarizability,
and we assume that the sum is dominated by the lowest
resonance corresponding to the first excited state with
n = 1. If the assumptions are not fulfilled, then the rela-
tionship

_ E120 fno

may serve as the definition of the quantity «g. For the
solid, we assume the functional form of a dielectric con-
stant of a conductor, which contains a term with zero
resonance frequency in the decomposition of the dielec-
tric function. We the have (see also Ref. [31]),

E(W) ~1- Q_)(T—il"y) N (A8a)
ew)—1 2wy 2weg
fm L(w) + 1] - w2 ~ op(0) ] (A8b)

where op(0) is the temperature-dependent direct-
current conductivity. Substituting the results obtained
in Egs. (A6)) and (A8)) in Eq. (A1) gives

h Fl (7)) 2’7 e
sz | YRk
ey Eiy wy Jo

o0 Vg k”
></ dkLkef%Z/ dww (kjvy — w)
0

— 00

F,= -

- 45h Fl ’Uz (&%)

T 2672 E2) Z7 op(0)
(A9)

B 45h Tragy vl
C 2w B w2 27

with a 277 dependence. The ¢y factors cancel between
the polarizability and the conductivity. The result van-
ishes in the limit o7(0) — oo, just as we observed for
the ion-surface interaction in the limit of low temper-
ature, where many materials become superconducting
[0(0) = o7 (0) = oo for T — 0].
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