
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spectroscopic probe of the van der Waals interaction
between polar molecules and a curved surface

Giuseppe Bimonte, Thorsten Emig, R. L. Jaffe, and Mehran Kardar
Phys. Rev. A 94, 022509 — Published 17 August 2016

DOI: 10.1103/PhysRevA.94.022509

http://dx.doi.org/10.1103/PhysRevA.94.022509


Spectroscopic Probe of the van der Waals Interaction
between Polar Molecules and a Curved Surface

Giuseppe Bimonte1,2, Thorsten Emig3,4,5, R. L. Jaffe5,6, and Mehran Kardar5
1Dipartimento di Fisica E. Pancini, Università di Napoli Federico II,
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We study the shift of rotational levels of a diatomic polar molecule due to its van der Waals (vdW)
interaction with a gently curved dielectric surface at temperature T , and submicron separations. The
molecule is assumed to be in its electronic and vibrational ground state, and the rotational degrees
are described by a rigid rotor model. We show that under these conditions retardation effects and
surface dispersion can be neglected. The level shifts are found to be independent of T , and given
by the quantum state averaged classical electrostatic interaction of the dipole with its image on
the surface. We use a derivative expansion for the static Green’s function to express the shifts in
terms of surface curvature. We argue that the curvature induced line splitting is experimentally
observable, and not obscured by natural line widths and thermal broadening.

PACS numbers:
Keywords:

I. INTRODUCTION

The van der Waals (vdW) interaction of neutral par-
ticles like atoms and molecules with macroscopic sur-
faces underlies many surface induced processes in physics,
chemistry and biology [1]. Also appearing in the guises
of London and Casimir-Polder forces [2, 3] these interac-
tions originate from quantum dipole fluctuations of the
particle that induce correlated fluctuations on the sur-
face. While generally attractive, resonant coupling to
surface excitations can lead to repulsive forces [4]. These
fluctuation induced forces have typically been measured
for macroscopic bodies, while the vdW interaction of a
free atom or molecule is less studied.

Vacuum fluctuations of the electromagnetic field not
only give rise to Casimir forces between bodies, but also
have observable effects on isolated particles, notably they
modify energy levels of an atom, an effect known as the
Lamb shift. When a quantum particle is brought near
a surface, the vdW interaction perturbs its energy lev-
els. It has been shown that surface curvature leads to
small corrections to the interaction of the particle with
the surface [5, 6]. Hence, one can expect also small cor-
rections to the level shifts due to curvature. Here we shall
demonstrate and explicitly quantify these shifts for the
rotational levels of polar molecules.

For a flat metallic surface, the attractive vdW inter-
action potential was first measured with high precision
for a sodium atom in 1992 by looking at the shifts of
spectral lines using laser spectroscopy in the micrometer
distance range. [7] More recently, for a sapphire surface
supporting polariton excitations, a repulsive vdW poten-

tial acting on excited cesium atoms was observed in the
100nm distance range, by using selective reflection spec-
troscopy that allows for the observation of short-lived
states [4]. Thermal fluctuations within a hot surface can
excite surface-polariton modes which can cause a strong
temperature dependence of the vdW interaction. Indeed,
an up to 50% increase was measured spectroscopically
for a cesium atom at short distances of 100nm away
from a sapphire surface in the 500 to 1000K temperature
range [8].

Unlike atoms, polar molecules have rotational and vi-
brational states that can be excited by radiation, or via
the interaction with fluctuations in macroscopic bodies.
The corresponding transition energies are often small
compared to thermal energies. The resulting rotational
and vibrational heating of cold diatomic molecules placed
near a hot surface can imposes severe lifetime limits to
the trapping of these particles which is relevant to the
development of ‘molecular chips’ using structured sur-
faces [9]. These and other specially designed nano- or
micro-structured surfaces provide another tool to control
vdW interactions. Hence, it is important to understand
the influence of a non-trivial surface geometries on the in-
ternal dynamics of polar molecules which is governed by
their spectral transitions. Recently, the non-equilibrium
vdW force on a polar molecule near a metallic surface was
computed and shown to saturate for high temperatures,
making it distinct from the interaction for atoms [10].

The paper is organized as follows: In the next section
we review the general theory for the finite temperature
Casimir–Polder interaction between a quantum particle
in an excited state and a dielectric surface. In Sec. III
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FIG. 1: Parametrization of the profile of a gently curved di-
electric surface near an atom or molecule.

we compute that shifts of the rotational levels of a di-
atomic molecule in terms of the static Green’s function,
and summarize characteristic parameters for experimen-
tally relevant molecules and surface materials. A deriva-
tive expansion for the Green’s function of curved surfaces
is presented in Sec. IV, and this result is then used in
Sec. V to estimate the curvature corrections to the en-
ergy levels of a simple rigid rotor model for a diatomic
polar molecule. Finally, in the last section the magni-
tude and curvature dependence of the transition lines of
the modified rotational spectrum is estimated, and their
experimental observability is discussed.

II. CASIMIR-POLDER INTERACTION:
GENERAL FORMULAE

We consider a quantum particle in a non-degenerate
state |a〉, placed at a point r having (minimum) distance
d from a dielectric surface S at temperature T (see Fig.1).
We assume the separation d be much larger than the par-
ticle’s size, such that the particle can be modeled as a
dipole. The material constituting the surface is assumed
to be homogeneous and isotropic, described by (complex)
dynamic permittivity ε(ω). The Casimir-Polder (CP) in-
teraction of the particle with the surface engenders a
shift ∆Fa in the free energy of state |a〉. As shown in
Refs. [11, 12], ∆Fa can be conveniently expressed as a
sum of two terms

∆Fa = ∆F nr
a + ∆F r

a . (1)

The first term, ∆F nr
a , is a non-resonant contribution hav-

ing a form similar to the familiar expression of the CP
energy shift for a particle in equilibrium with a surface
at temperature T [13]:

∆F nr
a = −kBT

∞ ′∑
n=0

α
(a)
ij (i ξn) G

(S)
ij (r, r; i ξn) , (2)

while the second term represents a resonant out-of-
equilibrium contribution:

∆F r
a =

∑
b6=a

n(ωab, T )µabi µbaj Re[G
(S)
ij (r, r; |ωba|)] . (3)

In these equations ωab = (Eb − Ea)/~ are the particle’s
transition frequencies, ξn = 2πnkBT/~ are the (imag-
inary) Matsubara frequencies, µbai = 〈b|µ̂i|a〉 are the
matrix elements of the cartesian components (labelled
by the latin index i) of the dipole moment operator µ̂,
n(ω, T ) = [exp(~ω/kBT )− 1]−1 is the Bose-Einstein dis-
tribution function, the prime symbol in the sum over n
in Eq. (2) indicates that the n = 0 term is taken with

weight 1/2, and α
(a)
ij (i ξ) is the polarizability (relative to

the state |a〉) of the particle:

α
(a)
ij (i ξn) =

2

~
∑
b6=a

µabi µbaj
ωab

ξ2n + ω2
ab

. (4)

Finally, G
(S)
ij (r, r′, ω) denotes the (Fourier transform of

the) surface contribution to the electromagnetic Green’s
function, which is constructed as follows. Recall that the
Green’s function Gij(r, r

′, ω) provides the electric field
E(r) at point r sourced by an oscillating dipole p(ω) =
p0e
−iωt placed at the point r′, as

Ei(r) = Gij(r, r
′, ω) pj(ω) ,. (5)

The surface Green’s function G
(S)
ij (r, r′, ω) is defined by

the following decomposition of Gij(r, r
′, ω),

Gij(r, r
′, ω) = G

(0)
ij (r, r′, ω) +G

(S)
ij (r, r′, ω) , (6)

where G
(0)
ij (r, r′, ω) is the free-space Green’s function.

Thus G
(S)
ij (r, r′, ω) can be physically interpreted as de-

scribing the field generated by the induced dipoles on
the surface S. We note that in the coincidence limit
r = r′, the surface Green’s function G

(S)
ij (r, r′, ω) attains

a finite limit (unlike from the free space contribution

G
(0)
ij (r, r′, ω) which diverges in this limit), which ensures

that the CP energy shift in Eq. (1) is well defined. It
is also important to bear in mind that the frequency-

dependence of the surface Green’s function G
(S)
ij (r, r′, ω)

is twofold: besides an explicit frequency-dependence, due
to retardation effects, there is the implicit frequency-
depence due to dispersion in the response function ε(ω)
of the surface.

III. SHIFTS OF ROTATIONAL LEVELS OF
DIATOMIC MOLECULES

We shall use Eqs. (1–3) to estimate the shifts ∆Fa of
the rotational levels of a polar diatomic molecule with a
closed electronic shell (i.e. in a 1Σ+ state), in its ground
electronic and vibrational state (for a review of rotational
spectroscopy of diatomic molecules see Ref. [14]).

Some characteristic parameters (the angular frequency
ωr and the wavelength λr corresponding to transitions
from the ground state to the first excited rotational state,
and the dipole moment µ) of typical polar molecules are
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listed in Table I. The computation of the shifts of rota-
tional levels of diatomic molecules is indeed very simple,
thanks to the simplifying circumstance that in the eval-
uating Eqs. (1–3) both sources of frequency dependence

in the dynamic Green’s function G
(S)
ij (r, r′, ω), i.e. retar-

dation effects and surface dispersion, can be neglected.
Let us consider retardation effects first. We will see

later on that measurable shifts of the rotational levels oc-
cur only for submicron separations between the molecule
and the surface. For such small separations, we can safely
neglect retardation effects. This is so because for a po-
lar diatomic molecule the largest matrix elements µbai of
the dipole moment operator are relative to transitions
between adjacent rotational levels [14], which have char-
acteristic frequencies of order ωr. This implies at once
that both the resonant and the non-resonant contribu-
tions to the shift ∆Fa are dominated by frequencies of
order ωr or smaller. This is obvious for the resonant
contribution ∆F r

a, because from Eq. (3) we see that the
frequency argument of G(S)(r, r; |ωba|) is indeed of order
ωr. As to the non resonant contribution, we see from Eq.
(2) that ∆F nr

a receives its dominant contribution from
the Matsubara modes ξn such that the molecule’s polar-

izability α
(a)
ij (i ξn) is significant. In view of Eq. (4) it

is clear that this is the case only if ξn is of order ωr or
smaller. It follows from these considerations that retar-
dation effects become important only for separations of
the order of λr = 2πc/ωr or larger. As seen from Table I,
the wavelength of transitions between rotational states of
diatomic molecules is of the order of millimeters, show-
ing that for experimentally relevant distances retardation
effect are indeed negligible.

ωr(109rad/s) λr(mm) µ(10−30 C m)

LiH 2790 0.7 19.6

LiRb 83 22.7 13.5

LiCs 73 25.8 21.0

NaRb 25.5 73.8 11.7

NaCs 22.2 84.8 19.5

TABLE I: Characteristic parameters of some polar diatomic
molecules with closed electron shells.

Dispersion effects within the surface can also be ig-
nored as the angular motion of diatomic molecules is
much slower than relaxation processes characterizing typ-
ical dielectric materials. Common dielectrics used in ex-
periments are sapphire, CaF2, BaF2 and SiC. Among
these, sapphire is frequently employed in atom-surface
interaction experiments, while SiC is normally used in
experiments on near-field heat transfer. The common
feature of these materials is that their optical proper-
ties is well described by a single-resonance model over a
wide range frequencies extending to visible range. In this
model, the complex permittivity ε(ω) is described by

ε(ω) = εinf +
(εst − εinf)ω2

T

ω2
T − ω2 − iΓω

, (7)

where εst and εinf represent the static and optical dielec-
tric constants respectively, Γ is a phenomenological re-
laxation frequency, and ωT is the transverse optical (TO)
phonon frequency. Values of these parameters for the ma-
terials considered are listed in Table II [12]. According

εst εinf ωT (1012rad/s) Γ(1012rad/s)

BaF2 7.16 2.12 33.9 0.4

CaF2 6.82 2.02 48.7 0.8

Sapphire 9.32 3.03 97.6 0.5

SiC 10 6.7 149.4 0.14

TABLE II: Parameters for complex permittivity of sapphire,
CaF2, BaF2 and SiC.

to Eq. (7) the frequency dependent permittivity ε(ω) is
well approximated by the static dielectric constant εst
for frequencies ω � ωT . The shifts ∆Fa of the rotational
levels of a molecule arise mostly from transitions between
adjacent rotational states, with characteristic frequencies
of the order of ωr. By comparing Table I with Table II,
we see that for all considered molecules and dielectrics
ωr � ωT , and thus the static permittivity εst of the sur-
face can be safely used to estimate the shifts ∆Fa.

Summarizing the above considerations, for experimen-
tally relevant molecule-surface separations and for re-
alistic dielectric materials, the CP energy shifts of ro-
tational levels of diatomic molecules can be estimated
by substituting into Eqs. (1–3) the static Green’ func-

tion Ḡ
(S)
ij (r, r; εst) for the full dynamical Green’s func-

tion G
(S)
ij (r, r; i ξn) or G

(S)
ij (r, r; i |ωba|). In what follows,

we shall denote by Ḡ
(S)
ij (d, εst) ≡ Ḡ(S)

ij (r, r, εst) the static
Green’s function of the surface S evaluated at the po-
sition r occupied by the molecule. After substituting

G
(S)
ij (r, r; i ξn) by Ḡ

(S)
ij (d, εst), the expression for ∆Fa

nr

simplifies considerably. Summing over the Matsubara
frequencies, ∆F nr

a is obtained as

∆F nr
a = −1

2
Ḡ

(S)
ij (d, εst)

∑
b6=a

µabi µbaj coth

(
~ωab
2kBT

)
. (8)

Similarly for ∆F r
a, using the identity

n(ω, T ) =
1

2

[
coth

(
~ωab
2kBT

)
− 1

]
, (9)

and noting that Re[Ḡ
(S)
ij (d, εst)] = Ḡ

(S)
ij (d, εst) since εst is

real, we find

∆F r
a =

1

2
Ḡ

(S)
ij (d, εst)

∑
b6=a

µabi µbaj

[
coth

(
~ωab
2kBT

)
− 1

]
.

(10)
Adding Eqs. (8) and (10), now leads to the compact form
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(see also Eq. (10) of Ref.[10])

∆Fa = −1

2
Ḡ

(S)
ij (d, εst)

∑
b6=a

µabi µbaj

= −1

2
Ḡ

(S)
ij (d, εst) 〈a|µi µj |a〉 . (11)

The final result is very simple: it shows that the energy
shift of the rotational state |a〉 of a diatomic molecule
is independent of the surface temperature, and coincides
with the classical electrostatic interaction energy of the
dipole with its image on the surface [15], averaged over
the quantum state |a〉 of the molecule. The temperature
independence of the non-retarded Casimir-Polder poten-
tial for a molecule placed near a dielectric surface has
been noted before in the literature, as a result of cancel-
lations between non-resonant potential components and
those due to evenescent waves [10, 16].

IV. DERIVATIVE EXPANSION OF THE
STATIC GREEN’S FUNCTION

The static Green’s function Ḡ
(S)
ij (d, εst) for a dielec-

tric surface S, even if simpler than the dynamic Green’s

function G
(S)
ij (r, r′, ω), still cannot be determined for

surfaces of arbitrary shapes. Analytical expressions for

Ḡ
(S)
ij (r, r′, ε) are known only for simple geometries of the

surface such as planes and spheres [17], while for gen-
eral shapes the problem has to be attacked numerically.
Here we show that a derivative expansion can be used to

obtain the asymptotic small-distance form of Ḡ
(S)
ij (d, εst)

for any gently curved dielectric surface. The derivative
expansion has been recently applied successfully to esti-
mate curvature corrections to the Casimir interaction be-
tween two gently curved surfaces [18–20], and to the CP
interaction of a nanoparticle with a curved surface [5, 6].
Here, we apply it to the CP interaction of a quantum
particle with a surface.

Let us denote by Σ1 (see Fig. 1) a plane through
the molecule which is orthogonal to the distance vector
(which we take to be ẑ axis) connecting the molecule
to the point P of the surface S closest to the molecule.
We assume that the surface S is described by a smooth
profile z = H(x), where x = (x, y) is the vector span-
ning Σ1, with origin at the molecule’s position. In what
follows latin indices i, j, k . . . shall label all coordinates
(x, y, z), while greek indices α, β, . . . shall refer to coor-
dinates (x, y) on the plane Σ1.

In the present context, the key idea behind the gradient
expansion is simple to explain: As dipole-dipole interac-
tion falls off rapidly with distance, it is reasonable to
expect that for small separations d the Green’s function

Ḡ
(S)
ij (d) is mainly determined by the shape of the surface

S in a small neighborhood of the point P closest to the
molecule. This physically plausible idea suggests that for
small separations the Green’s function can be expanded
as a series in an increasing number of derivatives of the
height profile, evaluated at the molecule’s position. Up
to second order, and assuming that the surface is homo-
geneous and isotropic, the most general expression that

is invariant under rotations of the (x, y) coordinates, and
that involves at most two derivatives of H [but no first
derivatives, since ∇H(0) = 0] has the form

Ḡ
(S)
αβ (d) = Ḡ

(plane)
αβ (d) +

1

32πε0 d2

{
β
(2)
2 ∇2Hδαβ

+ β
(2)
3

(
∂α∂βH −

1

2
δαβ∇2H

)}
, (12)

Ḡ(S)
zz (d) = Ḡ(plane)

zz (d) +
β
(2)
1

32πε0 d2
∇2H , (13)

Ḡ(S)
αz (d) = Ḡ(S)

zα (d) = 0 . (14)

Here, ∇ is the gradient in the plane Σ1, ε0 is the vac-

uum permittivity, Ḡ
(plane)
ij (d) is the well known Green’s

function for a planar dielectric surface, while the coef-

ficients β
(2)
q are dimensionless functions of the permit-

tivity ε. The geometric significance of the expansion in
Eqs. (12–13) becomes more transparent when x and y
are chosen to be coincident with the principal directions
of S at P , in which case the local expansion of H takes
the simple from H(x, y) = d+x2/(2R1)+y2/(2R2)+ . . . ,
where R1 and R2 are the radii of curvature at P . To be
definite, we assume that d/R1 ≥ d/R2. In this coordinate

system, the derivative expansion of Ḡ
(S)
ij (d, ε) reads:

Ḡ(S)
zz (d) = Ḡ(plane)

zz (d) +
β
(2)
1

32πε0 d3

(
d

R1
+

d

R2

)
, (15)

Ḡ
(S)
xx/yy(d) = Ḡ

(plane)
xx/yy (d) +

1

32πε0 d3

[
β
(2)
2

(
d

R1
+

d

R2

)
±β

(2)
3

2

(
d

R1
− d

R2

)]
. (16)

The procedure to determine the coefficients β
(2)
q is ex-

plained in detail in Refs. [5, 6], and based on the fol-
lowing: The derivative expansion in Eqs. (12–13) is valid
for surfaces of small-slope, i.e. for d/R � 1 where R is
a characteristic radius of curvature. However, for height
profiles of small amplitude H(x, y) = d+h(x, y) such that

h(x, y)/d � 1, the Green’s function Ḡ
(S)
ij (d) can also be

Taylor expanded in powers of h(x, y). It is sufficient to
consider the latter expansion to first order in h(x, y),

Ḡ
(S)
ij (d) = Ḡ

(plane)
ij (d) +

∫
d2k

(2π2)
Ḡ

(2)∗
ij (k, d)h̃(k) , (17)

where k is the in-plane wave vector and h̃(k) is the
Fourier transform of the h(x, y). After the kernel

Ḡ
(2)
ij (k, d) is computed, the coefficients β

(2)
q are deter-

mined by matching, in the common domain of validity,

the derivative expansion of Ḡ
(S)
ij (d) in Eqs. (13–12) with

the Taylor expansion in Eq. (17). By following these steps
one arrives at the following small-distance expansion:
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Ḡ
(S)
xx/yy(d) =

1

32πε0 d3
ε− 1

ε+ 1

{
1− 5 + 3ε

4(ε+ 1)

(
d

R1
+

d

R2

)
∓ 1 + 3ε

8(ε+ 1)

(
d

R1
− d

R2

)
+O

(
(
d

R
)2
)}

, (18)

Ḡ(S)
zz (d) =

1

16πε0 d3
ε− 1

ε+ 1

{
1− 3 + ε

4(ε+ 1)

(
d

R1
+

d

R2

)
+O

(
(
d

R
)2
)}

. (19)

V. A SIMPLE MODEL: THE RIGID ROTOR

In this Section we use Eq. (11), together with Eqs. (18–
19), to estimate the shifts ∆Fa of the rotational levels of
a diatomic polar molecule, near a gently curved surface.
To estimate the matrix elements of the dipole-moment
operator in the rotational states of the molecule in its
ground electronic state, we shall model the diatomic po-
lar molecule as a simple rigid rotor [14]. In what follows,
we shall neglect the hyperfine structure of the rotational
spectrum. For molecules in a 1Σ+ state the hyperfine
structure is mainly due to the electric quadrupole in-
teraction between the nuclear quadrupole moment and
the electric-field gradient at the nucleus [14]. The nu-
clear quadrupole hyperfine splitting in 1Σ+ states typi-
cally ranges from tens of kHz to one or two hundred kHz.
We shall see later on that the level splitting determined
by the CP interaction can be as large as several MHz,
which justifies neglecting the hyperfine structure.

According to the rigid rotor model, far from the sur-
face, the Hamiltonian operator Ĥ describing the molecule
is

Ĥ =
L̂2

2 I
, (20)

where L̂ is the rotational angular momentum, and I is
the moment of inertia. The energy eigenstates |l,m〉 are
labelled by the quantum numbers l = 0, 1, 2, . . . and m,
with −l ≤ m ≤ l corresponding, respectively, to the ro-
tational angular momentum and to its z-component L̂z
(we choose as z axis the line connecting the molecule to
the point P of the surface S closest to the molecule, see
Fig. 1), such that

L̂2|l,m〉 = ~2 l (l + 1)|l,m〉 , (21)

L̂z|l,m〉 = ~m|l,m〉 . (22)

Then,

Ĥ|l,m〉 = El|l,m〉 , (23)

where

El =
~ωr

2
l (l + 1) , (24)

and we set ωr = ~/I. The level of energy El consists of
2l + 1 degenerate states, distinguished by the azimuthal
quantum number m.

When the molecule is brought near the surface, the CP
interaction perturbs its energy levels. To analyze the ef-
fect of the interaction with the surface, we consider that
for a gently curved surface such that d/R� 1, curvature
effects are expected to cause a small correction to the
perturbation determined by a planar surface. This sug-
gests to split the computation of the energy shifts ∆Fa in
two steps: in the first step, we study the planar problem,
and then we consider how the energy levels for a planar
surface are further modified by curvature effects. As we
shall see below, this procedure has the advantage that it
allows us to use the theory of CP energy shifts for non
degenerate quantum states, presented in Sec. II.

A. A planar surface

For a planar surface (and more generally for any ax-

isymmetric surface) the Green’s function Ḡ
(S)
ij (d) is in-

variant under rotations around the ẑ-axis, and therefore
the azimuthal label m remains a good quantum number
in the presence of the surface. The CP interaction does
not mix states with different values of m, and therefore
we can straightforwardly use the results in Sec. II to com-
pute the shifts ∆Fl,m. Using the relations:

〈l,m|µ̂2
x|l,m〉 = 〈l,m|µ̂2

y|l,m〉

= µ2 l(l + 1) +m2 − 1

4l(l + 1)− 3
, (25)

and

〈l,m|µ̂2
z|l,m〉 = µ2 2l(l + 1)− 2m2 − 1

4l(l + 1)− 3
, (26)

we find

∆F
(plane)
l,m = −E 3l(l + 1)−m2 − 2

4l(l + 1)− 3
, (27)

where

E =
µ2

32πε0 d3
εst − 1

εst + 1
. (28)

According to Eq. (27), the CP interaction of the molecule
with a plane splits the (2l + 1)-fold degenerate level El
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into l distinct levels of energies E
(plane)
l,|m| = El+∆F

(plane)
l,m ,

labelled by the absolute value of the azymuthal quantum
number |m|. Of these levels, only m = 0 is non degen-
erate, while those with m 6= 0 form degenerate doublets
(see Fig. 2).

B. Curvature corrections

Having determined the structure of the energy levels

E
(plane)
l,|m| of a diatomic molecule near a planar surface, we

now study how the levels E
(plane)
l,|m| are affected by the sur-

face curvature. As we pointed out above, we consider
that for d/R � 1 curvature corrections are small, com-
pared to the CP energy shift for a planar surface. This
suggests that we take the (possibly) doubly-degenerate

levels E
(plane)
l,|m| determined in the previous step as our un-

perturbed states, and compute curvature corrections to
their energies using again Eq. (11). The following remark
is crucial: to the order d/R that we consider, the Green’s

function Ḡ
(S)
ij (d) in Eqs. (18–19) is no longer invariant un-

der rotations around the z axis. However Ḡ
(S)
ij (d) is still

invariant under reflections of the x and y coordinates.
In order to take advantage of this reflection symmetry,

within each doublet E
(plane)
l,|m| , m 6= 0 we replace the two

states |l,±m〉 by the new states |l, |m|, s〉, with s = ±1,
given by

|l, |m|,±〉 =
1√
2

(|l,m〉±(−1)|m| |l,−m〉) , m = 1, . . . , l

(29)
which possess definite parity under independent reflec-
tions of the coordinates x and y. For the m = 0 singlets,
we just set

|l, 0,+〉 ≡ |l, 0〉 . (30)

Since

R̂x|l,m〉 = |l,−m〉 , (31)

R̂y|l,m〉 = (−1)m|l,−m〉 , (32)

it is easy to verify that the states |l, |m|,±〉 indeed have
definite parity under reflections of x and y:

R̂x|l, |m|,±〉 = ± (−1)|m| |l, |m|,±〉, m = 0, . . . , l (33)

R̂y|l, |m|,±〉 = ±|l, |m|,±〉, m = 0, . . . , l . (34)

Since to order d/R the Green’s function is reflection-
invariant, the CP interaction does not mix rotational
states of different parity, and therefore in the basis
|l, |m|, s〉 we are allowed to use the non-degenerate the-
ory underlying Eq. (11) to compute the leading curvature
correction to the energy levels E

(plane)
l,|m| . The matrix ele-

ments of µ̂2
i in the new basis are

〈l, |m|, s|µ̂2
x|l, |m|, s〉 = 〈l, |m|, s|µ̂2

y|l, |m|, s〉

= µ2 l(l + 1) +m2 − 1

4l(l + 1)− 3
, |m| 6= 1 ,

(35)

〈l, 1,+|µ̂2
x|l, 1,+〉 = 〈l, 1,−|µ̂2

y|l, 1,−〉

= 3µ2 l(l + 1)

8l(l + 1)− 6
, (36)

〈l, 1,−|µ̂2
x|l, 1,−〉 = 〈l, 1,+|µ̂2

y|l, 1,+〉

= µ2 l(l + 1)

8l(l + 1)− 6
, (37)

and

〈l, |m|, s|µ̂2
z|l, |m|, s〉 = µ2 2l(l + 1)− 2m2 − 1

4l(l + 1)− 3
. (38)

Using the above relations, the leading curvature correc-

tion ∆F
(curv)
l,|m|,s to the rotational energy levels is found to

be

∆F
(curv)
l,|m|,s = E

(
d

R1
+

d

R2

)
l(l + 1)(11 + 5εst) +m2(εst − 1)− 4(2 + εst)

4(εst + 1)[4l(l + 1)− 3]
, |m| 6= 1 , (39)

∆F
(curv)
l,1,± = E

{(
d

R1
+

d

R2

)
l(l + 1)(11 + 5εst)− 3(3 + εst)

4(εst + 1)[4l(l + 1)− 3]
±
(
d

R1
− d

R2

)
l(l + 1)(1 + 3εst)

16(εst + 1)[4l(l + 1)− 3]

}
. (40)

We see that for |m| > 1 surface curvature just deter-
mines an extra overall shift in the energy of the doublets

E
(plane)
l,|m| , without lifting their two-fold degeneracy. By

contrast, the |m| = 1 doublets split into two distinct
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free space plane curved surf.

l=0

l=1

l=2

m=0

m=± 1

m=0

m=± 1
m=± 2

ν2

ν1
(+) ν1

(-)

ν2

ν1

νr

FIG. 2: Qualitative structure of the energy levels of a diatomic
polar molecule in free space (left), near a planar surface (mid-
dle) and near a curved surface with different radii of curvature
(right).

levels, whose spacing is proportional to (d/R1 − d/R2)
(see Fig. 2). The splitting of the |m| = 1 rotational lev-
els constitutes the characteristic signature of curvature
effects on the CP interaction of the molecule with the
surface.

VI. STRUCTURE OF THE ROTATIONAL
SPECTRUM

In a polar molecule, rotational transitions between ad-
jacent rotational levels (∆l = ±1) are electric-dipole al-
lowed [14]. Let us consider as an example the emission
lines corresponding to transitions from l = 1 states to the
rotational ground state l = 0, i.e. l = 1 → 0. When the
molecule is far from the surface, these transitions corre-
spond to a single spectral line of frequency νr = ωr/(2π)
(see Table I). As the molecule approaches the surface,
this line splits into several components. The precise num-
ber of lines depends on whether the surface is planar or
curved. Let us consider first the case of a planar surface.

According to Eq. (27), the free-space line 1→ 0 splits in
two components corresponding to the transitions

ν1 : |1,±1〉 → |0, 0〉 , and ν2 : |1, 0〉 → |0, 0〉 .

Suppose that we observe the molecule from a point
along the z-axis, i.e. in a direction perpendicular to the
planar surface. Since the x and y components of the
dipole-moment operator µ̂x and µ̂y do not couple two
m = 0 states, it follows that in the dipole approximation
the line ν2 cannot be seen from this observation direction,
and only the line ν1 is detected. When the observation
line is instead in the plane of the surface, both lines are
visibile, and is it easy to verify that the line ν1 is polarized
in the plane of the surface, while the line ν2 is polarized
along the normal direction to the surface. According to
Eq. (27), the difference ∆ν12 = ν1 − ν2 between the two
lines is

∆ν12 = ν1 − ν2 =
E

5h
, (41)

with E as defined in Eq. (28).
For a curved surface, Eqs. (39–40) indicate that the

line ν1 of the planar surface splits into two components

ν
(±)
1 corresponding to the transitions (see Fig. 2)

ν
(+)
1 : |1, 1,+〉 → |0, 0,+〉 ,

ν
(−)
1 : |1, 1,−〉 → |0, 0,+〉 . (42)

According to Eq. (40) the difference ∆ν± between the

frequencies ν
(+)
1 and ν

(−)
1 of these two lines is propor-

tional to the difference in radii of curvature, as

∆ν± = ν
(+)
1 − ν(−)1 =

E
h

(
d

R1
− d

R2

)
1

20

3 εst + 1

εst + 1
.

(43)

In addition to the two lines ν
(±)
1 , we of course have a third

line, corresponding to the line ν2 of the planar surface:

ν2 : |1, 0,+〉 → |0, 0,+〉 ,

Thus, the single l = 1 → 0 line of free-space splits (in
general) into three lines, when the molecule is brought
near a curved surface.

Suppose again that we observe the molecule from a
point along the z-axis. Reasoning as before, we see that
in the dipole approximation the line ν2 cannot be de-
tected from this observation direction, and only the lines

ν
(+)
1 and ν

(−)
1 are visible. Using Eqs. (31) and (32) it is

easy to verify that ν
(+)
1 and ν

(−)
1 are linearly polarized

along the x and the y axis, respectively.
Similarly, it is possible to verify that when the obser-

vation direction is along the x-axis (y-axis), the visible

lines are ν
(−)
1 (ν

(+)
1 ) and ν2; the former linearly polarized

in the y-direction (x-direction), and the latter along the
z-axis. Up to small curvature corrections, the frequency

differences ∆ν
(±)
12 = ν

(±)
1 −ν2 coincide with the frequency
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difference ∆ν12 for the planar surface in Eq. (41). By
comparing Eq. (43) with Eq. (41) we thus see that the
curvature-induced splitting ∆ν±, is suppressed by factor

of order d/R, compared to the splittings ∆ν
(±)
12 . From

our perspective, though, the most interesting quantity
to observe is ∆ν± since it represents a pure curvature
effect. Using Eq. (28), we estimate the magnitude of
∆ν± for a polar molecule with an electric dipole moment
µ = 2× 10−29 Cm (see Table I), as

∆ν± '
3µ2

640π ε0 h d3

(
d

R1
− d

R2

)
= 100 kHz

(
100 nm

d

)3 (
d

R1
− d

R2

)
. (44)

Note that our derivation only assumes that d/|R1| � 1
and d/|R2| � 1. However it does not assume that |R1 −
R2|/|R1| � 1. In particular, in the case of a cylindrical
surface R1 →∞ and |R1−R2|/|R1| = 1. To determine if
the frequency difference ∆ν± is potentially measurable,
it is important to compare ∆ν± with the typical width
of rotational spectral lines. Their natural width ∆ν can
be estimated by the simple formula [14]

∆ν =
ν3|µ|2

3 ε0 ~ c3
. (45)

For the molecules listed in Table I, the natural line width
ranges from a maximum of 4×10−4 Hz for LiH to a mini-

mum of 1.2×10−10 Hz for NaRb, and is thus many orders
of magnitude smaller than ∆ν±, for reasonable values of
the separation d, and of d/R. Next we consider the ther-
mal Doppler broadening, which for a gas of molecules in
equilibrium at temperature T is given by [14]

∆ν =
2ν

c

√
2NAkBT log 2

M
= 7.15× 10−7 (T/Mr)

1/2 ν ,

(46)
where NA is Avogadro’s number, M and Mr are the mass
and the relative molecular mass of the molecule, respec-
tively. Using the above formula, we estimate that at room
temperature T = 300K, the Doppler broadening ranges
from a maximum of 2 MHz for LiH, to a minimum of 5
kHz for NaRb and NaCs. So, while for the light molecule
LiH the large thermal Doppler broadening prevents ob-
servation of the frequency shift ∆ν± even at cryogenic
temperatures, in the case of the heavier molecules listed
in Table I the thermal Doppler broadening is favorably
smaller than ∆ν± even at room temperature.
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