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Abstract

We present an experimental technique which allows us to determine the zero field intervals

between high ℓ states of Rb in a magneto-optical trap (MOT), in spite of the fact that we can only

control the stray electric field in one direction. The technique is based on measuring a property

of the atom which depends on the field, as opposed to its square. This approach allows the

determination of the zero field intervals and the magnitude of the stray field in the uncontrolled

perpendicular direction. We use this technique to observe the microwave transitions of rubidium

from the (n+ 1)d5/2 states to the ng and nh states of 27 ≤ n ≤ 30. From the observed microwave

transitions, we determine the quantum defects of the ng and nh states. Using the quantum defects

of the ng and nh states and the adiabatic core polarization theory, we determine the Rb+ ionic

dipole and quadrupole polarizabilities to be αd = 9.12(2) a30 and αq = 14(3) a50, respectively.
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I. INTRODUCTION

Precise values for the quantum defects of the high angular momentum states are im-

portant in the calculations of the Stark effect, which are particularly important for Förster

resonant dipole-dipole energy transfer involving Rydberg atoms [1–3]. Moreover, the ionic

dipole and quadrupole polarizabilities of atoms can be determined from the same quantum

defects since they arise from polarization of the core [4]. The dipole polarizabilities of alka-

line earth ions are of interest for clock applications, and the dipole polarizabilities of alkali

atoms are of interest as benchmarks for atomic structure calculations relevant to parity vi-

olation measurements and atom interferometry [5–10]. While most of the polarizability of

the ground state of an alkali atom is due to the valence electron, the contribution of the

ionic core is not insignificant. For example, the Rb+ dipole polarizability represents 3% of

the Rb 5s ground state polarizability [11]. For this reason, it is important to measure the

dipole polarizabilities of alkali ions.

Previous experimental values for the Rb+ dipole and quadrupole polarizabilities were

determined from the Rb nf and ng quantum defects in spite of the inverted fine structure

of the nf states [12, 13], the typical signature of the highest ℓ core penetrating state [15].

Here ℓ is the orbital angular momentum of the Rydberg electron. A third measurement used

only the nf series, and it is difficult to extract the polarizabilities from one ℓ series [14].

In all cases, the residual core penetration of the nf series leads to a large uncertainty in

the Rb+ dipole and quadrupole polarizabilities in previous work [12–14]. To obtain better

values for the core polarizabilities it would be desirable to measure the quantum defects of

non penetrating ℓ > 3 states. However, as ℓ is increased the intervals between the ℓ states

decrease, and the Stark shifts due to small stray fields become a significant problem. To

observe the intervals in zero field the field must be nulled in all directions. However, it is

often the case that in an existing apparatus the field can only be nulled in one direction,

leaving an unknown field in the plane perpendicular to that direction, and an unknown

frequency shift.

Here we report the use of an experimental technique to determine zero field intervals in

spite of the fact that we can only null the field in one direction. Specifically, we measure a

low field parameter which depends on the static field ES, not its square E2
S. This approach

enables us to determine the remaining perpendicular field and extrapolate the observed

2



frequencies to zero field. We have used this approach to measure the Rb zero field (n +

1)d5/2 → ng and nh intervals. We are not able to resolve the ng and nh fine structure

intervals. Based on the ℓ dependence of the fine structure intervals in other alkali atoms,

we expect them to be close to the hydrogenic 28g and 28h states which are 0.40 MHz and

0.27 MHz for hydrogen [16–19]. Combining these intervals with the known Rb nd quantum

defects we derive the quantum defects of the Rb ng and nh states of 27 ≤ n ≤ 30. From

these quantum defects we extract substantially improved values for the Rb+ ionic dipole

and quadrupole polarizabilities. In the sections which follow we describe the principle of the

approach, the experimental method, our observations, and the core polarization analysis.

II. PRINCIPLE

To illustrate the principle of the approach, as an example we describe extracting the zero

field (n+1)d5/2 → ng intervals. The Stark shifts of the levels and the frequency shift of the

(n+1)d5/2 → ng transition are proportional to E2
S the squared magnitude of the static field

ES. It is convenient to write E2
S as

E2
S = E2

z + E2
⊥, (1)

where the field ~E⊥ lies in the plane perpendicular to the z direction. The frequency νd5/2→g

of the (n+ 1)d5/2 → ng transition is given by

νd5/2→g = ν0,d5/2→g + PE2
S, (2)

where P is half the difference in the polarizabilities of the d and g states, and ν0,d5/2→g is the

zero field interval. The direction of ~ES is unimportant. By applying the bias voltage Vb we

are able to control the static field in the z direction (Ez), and if we measure the resonance

frequency as a function of bias voltage Vb, or bias field Eb, we observe a parabola, with the

maximum frequency ν0,d5/2→g + PE2
⊥. This procedure leaves us with an unknown frequency

shift of PE2
⊥ because we cannot extrapolate E2

S to zero if only Ez is altered, as shown by

Eq. (1).

In contrast, if we measure a property X which is simply related to ES, given explicitly

by

ES =
√

E2
z + E2

⊥, (3)
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we can extrapolate to ES = 0 and determine E2
⊥. As an example, we consider the case

in which X is proportional to ES. The procedure is to measure the resonance frequency

νd5/2→g and X as functions of Vb, or Eb, and plot νd5/2→g vs X2. The observed frequencies

should fall on a straight line, as shown by Eq. (2), and the X2 = 0 intercept is the zero field

(n+ 1)d5/2 → ng interval.

The challenge is to identify the appropriate property X , and we have explored two differ-

ent ones. In the first approach, X is the separation between Stark states. We take advantage

of the fact that, for the high ℓ states, the quantum defects are very small. Therefore, the

zero field ℓ states are converted to Stark k states, which exhibit linear Stark shifts, even in

very small electric fields. A Stark state is assigned the label k, equal to the ℓ of the zero field

state to which it is adiabatically connected. The separation between adjacent Stark states,

∆νS = 3nES, is linear in the field ES [20]. We observe the microwave transitions from the

(n+1)d states to the nk Stark states and implicitly determine ES from ∆νS, the separation

between adjacent Stark states. For each bias voltage we obtain the value of ∆νS from the

Stark spectrum, and we measure the (n + 1)d5/2 → ng resonance frequency νd5/2→g. Plot-

ting the measured frequency νd5/2→g vs ∆ν2
S allows extrapolation to the zero field interval,

as shown by Eq. (2). An attractive feature of this approach is that only frequencies are

measured.

In the second approach, X is the amplitude of the resonance signal. This method is based

on the electric resonance method, first used in molecular beams to observe electric dipole

transitions between states of the same parity [21]. It has also been used to measure Rydberg

fine structure intervals using radio frequency electric fields [22]. The essential idea is that

the (on resonance) Rabi frequency Ω for the transition is proportional to the static field ES;

i. e. Ω ∝ ES. In the presence of the static field ES a single microwave photon can be used

to drive the (n+ 1)d5/2 → ng transition, and the Rabi frequency is given by

Ω =
〈(n+ 1)d|µEmw|nf〉〈nf |µES|ng〉

Wng −Wnf
, (4)

from which it is evident that if Emw is fixed, Ω ∝ ES. We ignore the small variations due

to the relative orientations of ~ES and ~Emw.

If the microwave field is present for a time T , and ΩT ≪ π, then the transition probability,

and the magnitude of the (n + 1)d5/2 → ng resonance signal S, is proportional to (ΩT )2,

which is proportional to E2
S, so in this case X ∝ E2

S. In sum,
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S ∝ E2
S. (5)

A plot of the resonance frequency νd5/2→g vs S should be a straight line, the intercept of

which is the zero field (n+1)d5/2 → ng interval. As we shall see, this method, which requires

lower fields and thus smaller extrapolations, is the preferred approach.

III. EXPERIMENTAL APPROACH

In the experiment, 85Rb atoms in a vapor-loaded magneto-optical trap (MOT) are held at

the center of four vertical rods as shown in Fig. 1 [23]. The rods pass through the corners of

a horizontal square 18 mm on a side. The two rods opposite the microchannel plate (MCP)

detector are connected together (inside the vacuum chamber) and are used primarily to

apply a field ionization pulse, although a DC bias voltage can also be applied. The two rods

closest to the MCP are also connected together and can be grounded or biased to provide a

static field.

The direction of the applied field is horizontal and parallel to the axis of the MCP. For

simplicity, throughout this paper, we define the horizontal axis along the static electric field

as the z direction as shown in Fig. 1. With this rod configuration, which is functionally

equivalent to a pair of plates, we can only null the stray field in the z direction.

The 780 nm trap lasers are on continuously, and Rb 5p3/2 atoms in the MOT are excited

to the Rydberg (n + 1)d5/2 states by the a 10 µJ 480 nm laser pulse at a 20-Hz repetition

rate. The laser pulse is 10 ns long with bandwidth of 150 MHz. The trap magnetic fields are

switched off ∼ 4 ms before the laser pulse is fired. The trap fields in the MOT have fallen to

less than 50 mG by the time the pulsed laser fires. After the laser is fired, atoms are exposed

to the 500-ns microwave pulse to drive the (n+1)d5/2 → ng and nh transitions, as shown in

Fig. 2. The continuous microwaves are generated by an Agilent E824C PSG CW synthesized

signal generator which produces frequencies up to 20 GHz. The microwaves are then formed

into a 500-ns pulse by a General Microwave DM862B switch. The microwave frequency

is doubled by a Narda 2640X220 active doubler and then tripled by Pacific Millimeter

W3WO passive tripler to reach frequencies in the range of 75-110 GHz. The microwave pulse

propagates through WR10 waveguide and is launched from outside the vacuum chamber into

the MOT volume by the WR10 horn. The polarization of the microwave field is nominally in
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the z direction, although, due to scattering from the rods the polarization is not well known

when the microwaves reach the atoms in the MOT. During the experiment the applied static

electric field is always present. We ionize the Rydberg atoms and detect ions by applying a

3-µs rise time positive high voltage pulse to the rods ∼ 50 ns after the end of the microwave

pulse. The resulting ions are driven to the MCP detector. The signal from the MCP is

recorded with a gated integrator and stored in a computer for analysis.

IV. EXPERIMENTAL OBSERVATIONS AND DISCUSSION

A. Comparison of methods for determining the zero field (n+1)d5/2 −ng intervals

In this subsection we use the 29d5/2 → 28g transition as a concrete example of differ-

ent approaches to finding the zero field intervals. Since the MOT configuration allows us

to control the static field in only one direction ( ~Ez), we first observe the frequency of the

29d5/2 → 28g transition as a function of bias voltage applied to the rods, changing the

field in the z direction from positive to negative. Although d5/2 → g transitions are more

commonly driven as two microwave photon transitions [17], we drive them using one mi-

crowave photon and a static field, which we can vary by changing the bias voltage Vb. The

observed frequencies of the resonances show the expected quadratic dependance on the bias

voltage, as shown in Fig. 3. Fitting the observed frequencies to a quadratic dependence on

the bias voltage gives 104 371.08(40) MHz as the maximum frequency at a bias voltage of

Vb = V0 = 0.24 V and 104367.74(40) MHz as the frequency when there is no bias voltage

(Vb = 0). At Vb = V0 = 0.24 V the stray field in the z direction is nulled. For our rod

geometry the conversion between bias voltage and bias field, the correction to Ez, at the

MOT is Eb(V/cm) = 0.406Vb(V). Accordingly, the original stray field in the z direction is

97 mV/cm, which leads to frequency shift of 3.34 MHz. The frequency 104371.08 MHz is

only a lower limit to the 29d5/2 − 28g frequency since the stray field in the x− y plane, E⊥,

is unknown. One might reasonably assume that the original stray field had approximately

equal components in all three directions, in which case the uncompensated stray field would

be 137 mV/cm, leading to an additional frequency shift of 6.68 MHz. Correcting for this

assumed uncompensated shift gives a zero field 29d5/2 − 28g interval of 104377.76 MHz.

Assigning an uncertainty presents a problem, but an uncertainty equal to correction for E⊥,
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6.7 MHz does not seem unreasonable, yielding 104377.8(67) MHz as the final result for the

zero field interval.

To take into account the fields in all directions we use the approaches described in Section

II. In the first approach we implicitly determine ES from ∆νS, the separation of adjacent

Stark states. For each bias voltage we observe a Stark spectrum, as shown in Fig. 4(a), and

the d5/2 → g transition with a lower microwave power in Fig. 4(b). The d5/2 → g transition

also appears in Fig. 4(a), but it is power broadened when the high k states are visible. The

frequency separation ∆νS between adjacent Stark states is proportional to ES. For each

bias voltage we obtain values of the d5/2 → g frequency νd5/2→g and ∆νS, taken from the

high k states indicated in Fig. 4(a). From these pairs of points we construct the parametric

plot of the d5/2 → g frequency vs ∆ν2
S . As shown in Fig. 5, the result is a straight line, as

expected from Eq. (2), and its intercept is the zero field d5/2 → g interval. From Fig. 5, we

obtain the zero field 29d5/2 → 28g transition frequency to be 104 378.9(62) MHz.

This approach has the attraction that we are measuring frequencies, but it has the obvious

problem that the fields must be large enough to obtain good values for the separation between

the Stark states. The relatively large fields require a long extrapolation, 40 MHz, to zero

field, and they introduce the possibility that the Stark shift of the transition frequency may

not be adequately represented by Eq. (2). A variant of this technique is to conduct the

Stark spectroscopy at higher n, where the separations are larger, allowing the use of smaller

fields. This approach has been used by Stevens and Lundeen to monitor static fields [24].

To conduct measurements in lower static fields we use the second approach described in

Section II. Specifically, we measure the signal amplitude S of the (n+1)d5/2 → ng transition

at different bias voltages. Since we are driving the transition with one microwave photon

and a static field, for a fixed microwave amplitude the Rabi frequency is proportional to

the static field, as shown by Eq. (4). The experiment is conducted in the low transition

probability regime in which S is proportional to E2
S. The procedure is similar to that used for

the Stark spectroscopy approach. For each bias voltage we observe the d5/2 → g resonance,

as shown in Fig. 6(a) for bias voltages between 0.34 and 0.61 V. As shown by Fig. 6(a), the

signal amplitude S increases and the resonance frequency νd5/2→g shifts with increasing bias

voltage. Since S ∝ E2
S, a parametric plot of νd5/2→g vs S yields a straight line, the intercept

of which is the zero field d5/2 → g frequency as shown in Fig. 6(b). From Fig. 6(b), the

zero field 29d5/2 → 28g frequency is 104 372.70(28) MHz. The extrapolation in this method
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is ∼4 MHz which is much less than the aforementioned approach, which results in a smaller

uncertainty in determining the the zero field 29d5/2 → 28g frequency.

In Fig. 6 we have not explicitly used the bias voltages, but from them we can extract

the values of the perpendicular stray field. When the observed frequencies are plotted vs

the bias voltages Vb we obtain a parabola similar to Fig. 3, with the maximum frequency of

104369.87(44) MHz occurring at Vb = V0 = 0.875 V. Since S is proportional to E2
S, we write

S = aE2
S = a(E2

z + E2
⊥), (6)

where a is a constant. In Fig. 7 we plot S vs (Vb −V0)
2, which is in effect a plot of S vs E2

z ,

as shown by the horizontal scale at the top of the figure. At the S intercept of the graph

Ez = 0 and E2
S = E2

⊥. The slope a = dS/dE2
S, combining these two values from Fig. 7,

we obtain E⊥ = 91 mV/cm. We can check this value for E⊥ using a different approach.

With Vb = 0 the observed frequency is 104326.05 MHz. With Vb = V0 = 0.875 V, so that

Ez = 0 mV/cm, results in a shift of 43.82 MHz. To reach the zero field value requires a

further shift of 2.83 MHz, which implies that E⊥ = 90 mV/cm, in good agreement with

the value given above. It is instructive to apply the same method of analysis to the data

of Fig. 3, which leads to E⊥ = 68 mV/cm. The data shown in Fig. 3 and Fig. 6 were

taken with opposite polarity field ionization pulses, which result in different bias fields in

the z direction. Nonetheless the values for E⊥ are similar. In addition the values for E⊥

are smaller than the bias field in the z direction due to the fact that the bias field in the z

direction is determined by an external circuit.

At this point it is useful to compare the three approaches we have described. The first

method, measuring transition frequency as a function of bias voltage, allows the determi-

nation of the 29d5/2 → 28g frequency with high precision, but the observed frequency is

the zero field 29d5/2− 28g interval altered by an unknown Stark shift due to the uncanceled

stray field E⊥. Estimating the Stark shift due to E⊥ by assuming that the magnitudes of the

stray field |Ex|, |Ey| and |Ez| are the same, we arrived at a zero field 29d5/2−28g interval of

104377.8(67) MHz. The second method, measuring transition frequency as a function of sep-

aration of adjacent Stark states, yields a 29d5/2 → 28g frequency transition of 104 378.9(62)

MHz. This method has the distinct advantage of actually measuring |E⊥|, but it has the

disadvantage of requiring a long extrapolation to zero field, which results in an uncertainty

of 6.2 MHz, not really much better than the estimated uncertainty of the first method. The
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third method, measuring transition frequency as a function of the signal amplitude, yields

a 29d5/2 → 28g frequency transition of 104 372.70(28) MHz. The shorter extrapolation

results in a smaller uncertainty, 0.28 MHz, of the the zero field 29d5/2 → 28g frequency

and using this method we estimate E⊥ to be 91 mV/cm, slightly less than our estimate of

137 mV/cm made on the basis of simply measuring the frequency vs the bias voltage Vb.

Comparing the three methods shows that the third method, unlike the first method, has a

known uncertainty and it is a factor of twenty smaller than the uncertainty of the second

method. Consequently, we use the third method to determine the zero field intervals in the

sections that follow. Finally, we note that, although the stray field varies from day to day,

the zero field intervals extracted remain constant, within their uncertainties.

B. The (n+ 1)d5/2 − ng intervals and ng quantum defects

While measuring signal strengths is less appealing than measuring frequencies, as in the

separation between the Stark states, the much lower static fields make the signal amplitude

method more attractive, and we have used it to measure the (n + 1)d5/2 → ng transition

frequencies for 27 ≤ n ≤ 30, as shown in Table I. To find the quantum defects of the

ng states, we add the known quantum defects of the nd states from Ref. [25] and the

(n+1)d5/2 → ng transition frequencies. The values of the quantum defects of the ng states

of 27 ≤ n ≤ 30 are shown in Table I. Ref [12, 13, 26] measured quantum defects of the

ng states to be 0.00400(9), 0.00405(6) and 0.00402(8), respectively. Ref [12, 13] did not

consider n dependence and Ref. [26] measured only the 30g quantum defect. As seen from

Table I, our values of the quantum defect have improved upon the previous measurements

by an order of magnitude.

Our quantum defects show a slight n dependence, and we fit them to a Ritz formula,

δg = δ0 +
δ1

(n− δ0)2
, (7)

which yields the values δ0 = 0.00400(2) and δ1 = −0.018(15).

C. The (n+ 1)d5/2 − nh intervals and nh quantum defects

We obtain the zero field (n+1)d5/2 → nh intervals in much the same way as we obtained

the (n + 1)d5/2 → ng intervals. We drive the d5/2 → h transitions using one microwave
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TABLE I. The (n + 1)d5/2 → ng microwave transition frequencies in zero stray electric field and

the extracted quantum defects of ng.

n Transition frequency (MHz) Quantum defect

27 116 464.54(35) 0.0039737(11)

28 104 372.70(28) 0.0039701(10)

29 93 895.75(34) 0.0039746(13)

30 84 775.26(65) 0.0039778(27)

photon and a static field. The Rabi frequency Ω is given by

Ω =
〈d|µEmw|f〉〈f |µEs|g〉〈g|µEs|h〉

(Wng −Wnf)(Wnh −Wng)
. (8)

In this case Ω ∝ E2
S, and in the small transition probability regime S ∝ E4

S. The experiment

is conducted in much the same way as the d5/2 → g measurements; for different bias voltages

the signal amplitude S and resonance frequency νd5/2→h are measured while keeping the

microwave field amplitude fixed. Fig. 8 shows the 29d5/2 → 28h transition as an example.

A parametric plot of νd5/2→h vs
√
S should give a straight line, the intercept of which is

the the zero field d5/2 − h interval, and in Fig. 9 we present this plot for the 29d5/2 → 28h

transition. As shown, the plot matches our expectation and yields the zero field interval of

105 140.87(77) MHz. Following the same procedure we have measured the (n+1)d5/2 → nh

intervals for 28 ≤ n ≤ 30, with the results shown in Table II. In Table II we also give the nh

quantum defects, obtained in a manner analogous to that used to obtain the ng quantum

defects.

TABLE II. The (n + 1)d5/2 → nh microwave transition frequencies in zero stray electric field and

the extracted quantum defects of nh.

n Transition frequency (MHZ) Quantum defect

28 105 140.9 (8) 0.0014078(27)

29 94 591.0 (22) 0.0013982(82)

30 85 400.3 (15) 0.0014137(62)
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D. The Rb+ ionic dipole and quadrupole polarizabilities

We use the values of quantum defects that we have determined and the adiabatic core

polarization model of Mayer and Mayer to extract the ionic dipole and quadrupole polariz-

abilities of Rb+ [4]. For the high ℓ states, where ℓ > 3, the energy levels of the Rb atoms

are depressed from the hydrogenic levels only by core polarization; core penetration is neg-

ligible. In Rb the Rydberg electron moves much more slowly than the electrons in the core,

and the Rb+ core is polarized by the slowly varying field from the Rydberg electron. The

polarization interaction between the Rydberg electron and the ion core depresses the energy

of the Rb nℓ Rydberg state below the energy of a hydrogenic nℓ state by

Wpol,nℓ = −αd

2
〈1/r4nℓ〉 −

αq

2
〈1/r6nℓ〉, (9)

where αd and αq are the ionic dipole and quadrupole polarizabilities. The expectation values

of 〈1/r4nℓ〉 and 〈1/r6nℓ〉 are the squares of the field and the field gradient of the Rydberg

electron in the nℓ state at the core. The resulting energy of the Rb nℓ state is given by

Wnℓ = −1/2n2 +Wpol,nℓ. (10)

The energy levels of the Rydberg nℓ state can also be expressed as

Wnℓ = −1/2(n− δnℓ)
2, (11)

where δnℓ is the quantum defect of the Rydberg nℓ state. Since n is much larger than δnℓ,

using a Taylor expansion we can express the polarization energy as

Wpol,nℓ = 1/2n2 +Wnℓ
∼= −δnℓ

n3
. (12)

From Eqs. (9) and (12), we get

δnℓ
n3

=
αd

2
〈1/r4nℓ〉+

αq

2
〈1/r6nℓ〉. (13)

We can rewrite Eq. (13) as

2
δnℓ

n3〈1/r4nℓ〉
= αd + αq

〈1/r6nℓ〉
〈1/r4nℓ〉

. (14)

Eq. (14) implies that a graph of 2δnℓ/(n
3〈r−4

nℓ 〉) vs 〈r−6
nℓ 〉/〈r−4

nℓ 〉 is linear, with αd as the

intercept and αq as the slope of the graph. Here the values of δnℓ are the experimentally
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TABLE III. The Rb+ dipole (αd) and quadrupole (αq) polarizabilities obtained from this work and

other theoretical (Th) and experimental (Exp) results.

αd (a30) αq (a50)

This work 9.12(2) 14(3)

Other works 8.9< αd <9.3 (Exp) [12] 0< αq <43 (Exp) [12]

8.5< αd <9.7 (Exp) [13] 0< αq <55 (Exp) [13]

8.98 (Exp) [14] 35.4 (Th) [11]

9.1 (Th) [11] 38.37 (Th) [30]

9.11 (Th) [31] 35.41 (Th) [29]

9.076 (Th) [29]

determined values given above for 27 ≤ n ≤ 30, l = 4 and 5. We use the known analytic

expressions for 〈r−4
nℓ 〉 and 〈r−6

nℓ 〉 for the nℓ states of hydrogen [27, 28]. In Fig. 10 we plot the

graph of 2δnℓ/(n
3〈r−4

nℓ 〉) vs 〈r−6
nℓ 〉/〈r−4

nℓ 〉, and we determine the ionic dipole and quadrupole

polarizabilities to be αd = 9.12(2) a30 and αq = 14(3) a50, respectively. In Table III, we

compare the Rb+ ionic dipole and quadrupole polarizabilities obtained from our work to

other theoretical and experimental work. Our ionic dipole polarizability agrees with the

earlier experimental determinations but has a much smaller uncertainty, and it agrees very

well with the theoretical predictions. Refs. [6, 11] contain excellent summaries of the theory

of ionic polarizabilities. The experimental values for the ionic dipole polarizability from

Refs. [12–14] are determined from the nf and ng energy levels using the core polarization

model. Although the nf states are core penetrating states which should not be treated using

the core polarization analysis alone, the values obtained for αd are consistent with ours.

Our ionic quadrupole polarizability falls within the broad limits set in Refs. [12, 13] but

is about a factor of two lower than the theoretical prediction. In the latter connection it is

noteworthy that core polarization analyses of Rydberg quantum defects of other elements

have consistently yielded ionic quadrupole polarizabilities that are lower than theoretically

predicted [16, 32–35]. It is a worthy theoretical challenge to pinpoint the source of the

discrepancy between the theoretical and experimental values. We believe that the core

polarization model needs to be reexamined closely. We hope this will motivate theorists to

take a closer look at the core polarization model.
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V. CONCLUSION

We have presented an experimental technique to determine zero field transition frequen-

cies in spite of our inability to completely cancel the stray field. We use the technique to

measure the microwave transition frequencies from the Rydberg (n + 1)d5/2 states to the

Rydberg ng and nh states, 27 ≤ n ≤ 30. The ng and nh quantum defects of the measured

n states are determined from the observed microwave transition frequencies. We extract

the Rb+ ionic dipole and quadrupole polarizabilities from the values of quantum defects to

be αd = 9.12(2) a30 and αq = 14(3) a50, respectively. The Rb+ dipole polarizability agrees

well with recent theoretical values. However, the Rb+ αq is about a factor of 2 lower than

the theoretical prediction. The discrepancy between theoretical and experimental values is

consistent with the determined αq of other elements using the core polarization analysis. We

hope this work will motivate theoretical work to locate the source of discrepancy between

the experimental and theoretical values of αq in the core polarization analysis.
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FIG. 1. MOT configuration of this experiment.

FIG. 2. Schematic of the Rydberg energy levels of this experiment.
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FIG. 3. The frequency of the microwave 29d5/2 → 28g transition vs bias electric field in the z

direction. The maximum frequency is 104 371.08(40) MHz at a bias voltage of Vb = V0 = 0.24 V.

At this bias, Ez is nulled.
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FIG. 4. (a) The 29d5/2 → 28k Stark spectrum at bias voltage of Vb = −1.3 V at the relative

microwave power 1. The high k states are indicated in the graph. (b) The 29d5/2 → 28g transition

at the same bias field as (a) but a relative microwave power of 0.032.
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FIG. 5. The 29d5/2 → 28g transition frequency vs the square of the Stark splitting of the high

k states (∆ν2S) obtained from Stark spectroscopy. At ∆ν2S=0, the stray field is zero and the

29d5/2 → 28g transition frequency is 104 378.9(62) MHz.
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FIG. 6. (a) The observed the 29d5/2 → 28g resonance signals with different bias voltages. As shown

by the slanted line, the signal amplitude varies linearly with the observed resonance frequency. The

resonance frequency increases and the signal amplitude decreases as the bias voltage is reduced from

Vb = 0.61 V to 0.34 V, which reduces Ez from 150 mV/cm to 41 mV/cm. (b) The 29d5/2 → 28g

microwave transition frequency as a function of the relative 28g signal amplitude. From the graph,

the 29d5/2 → 28g transition frequency at zero stray field is 104 372.70(28) MHz.
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FIG. 7. The graph of the relative 28g signal amplitude (S) as a function of squared voltage

(Vb − V0)
2 and squared static field E2

z in the z direction of the system. Since S = a(E2
z + E2

⊥),

from the intercept and slope of the graph we determine E⊥ to be 91 mV/cm.

21



105.08 105.10 105.12 105.14

0.00

0.05

0.10

0.15

0.20

 

 

0.2 V
0.26 V

0.35 V

0.43 V
28

h 
Si

gn
al

 (a
rb

. u
ni

ts
)

Microwave Frequency (GHz)

FIG. 8. The observed amplitude as the 29d5/2 → 28h resonance changes in different bias voltages.
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√
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at zero stray field is 105 140.87(77) MHz.
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FIG. 10. A plot of the measured ng and nh quantum defects scaled by n3〈r−4
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using Eq. (14). There are 3 data points for the nh quantum defects, 28 ≤ n ≤ 30, and 4 data

points for the ng quantum defects, 27 ≤ n ≤ 30. A fit to the straight line yields the y-intercept

and slope, which are αd and αq, respectively. The resulting fit values are αd = 9.12(2) a30 and

αq = 14(3) a50.
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