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To date, a conclusive detection of quantum speedup remains elusive. Recently, a team by Google
Inc. [arXiv:1512.02206] proposed a weak-strong cluster model tailored to have tall and narrow energy
barriers separating local minima, with the aim to highlight the value of finite-range tunneling.
More precisely, results from quantum Monte Carlo simulations, as well as the D-Wave 2X quantum
annealer scale considerably better than state-of-the-art simulated annealing simulations. Moreover,
the D-Wave 2X quantum annealer is ∼ 108 times faster than simulated annealing on conventional
computer hardware for problems with approximately 103 variables. Here, an overview of different
sequential, nontailored, as well as specialized tailored algorithms on the Google instances is given. We
show that the quantum speedup is limited to sequential approaches and study the typical complexity
of the benchmark problems using insights from the study of spin glasses.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 03.67.Lx

I. INTRODUCTION

Adiabatic quantum optimization (QA) [1–14], the quan-
tum version of classical simulated annealing (SA) [15],
has caused considerable controversy and interest since the
introduction of the D-Wave Inc. [16] quantum annealing
machines [17]. Although there is increasing evidence that
quantum effects do play a role in the optimization pro-
cess of these machines, there is still no consensus as to if
the machine is able to outperform classical optimization
heuristics on Silicon-based computer hardware. Multiple
teams [18–38] have scrutinized this first commercially-
available programmable analog quantum optimizer (the
current version being the D-Wave 2X (DW2X) with up
to 1152 quantum bits wired on a Chimera topology [39])
and tried to understand its advantages and disadvantages
over classical technologies, as well as improve its perfor-
mance via, e.g., quantum error correction [34, 37, 40] (at
the price of having too few logical qubits for a scaling
analysis) or fine-tuning of the device [41, 42].

In an effort to determine the thermodynamic (large
number of qubits n) scaling advantage of a quantum an-
nealer over conventional algorithms, it is of importance to
use the largest-possible number of qubits on any device.
As such, embedded problems (that might require an over-
head due to the embedding) are sub-optimal for scaling
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analyses. Native problems, such as spin-glass-like systems
[43, 44] that use all qubits of the system, are thus opti-
mal to tickle out any putative quantum advantage from
quantum annealing machines. Unfortunately, results have
been inconclusive so far [23] and there is strong evidence
that random spin-glass problems are not well suited for
benchmarking purposes [24, 32]. Thus, efforts have shifted
to tailored problems, such as carefully-crafted spin-glass
instances [32, 38] that are robust to the intrinsic noise
of analog machines. In particular, Ref. [32] suggested
a slight quantum advantage over classical simulated an-
nealing [45, 46] using the 512-qubit D-Wave 2 quantum
annealer [47]. However, no scaling analysis was performed
because systems of approximately n ∼ 500 qubits are just
at the brink of the scaling regime.

Despite all these efforts, a “killer” application or prob-
lem domain has yet to be found, where quantum annealing
outperforms notably classical simulational approaches. In
particular, given that many well-known optimization prob-
lems from the traveling salesman problem to constraint-
satisfaction and vertex cover problems can be mapped
onto Ising spin-glass-like Hamiltonians [48], there is great
interest from both science and industry to find efficient
optimization approaches to tackle spin-glass-like Hamil-
tonians – the main forte of the DW2X device. Most
recently, however, a team by Google Inc. [49] showed
for carefully-crafted problems that quantum annealing
on the DW2X can outperform classical simulated anneal-
ing by approximately eight orders of magnitude. Fur-
thermore, the scaling of quantum approaches (both on
the DW2X and using quantum Monte Carlo [50]) is con-
siderably better than for classical simulated annealing.
We believe this is the first notable “success story” for
quantum annealing. However, numerical comparisons
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were performed against one of the commonly-known least-
efficient optimization methods, namely simulated anneal-
ing. While this seems to be a fair comparison because
both QA and SA are sequential optimization methods
where a control parameter (quantum fluctuations in the
former and thermal fluctuations in the latter) is decreased
monotonically until reaching a target value, it is unclear
if this favorable scaling will persist for state-of-the art
optimization methods (see, for example, Refs. [51–54] for
some examples). We do emphasize, however, that the
Google Inc. studies [49, 55, 56] shed, for the first time,
some light on the structure of problems where quantum
annealing might excel. In particular, by carefully crafting
weak-strong cluster problems (see Section III for details),
they can show that there is a sign of finite-range quantum
tunneling, at least within the basic building blocks of the
DW2X device, known as a K4,4 cell [49].

In this work we complement the study of Ref. [49]: first,
we expand the notion of “limited quantum speedup” [23]
to take into account different classes of algorithms (see
Section II) and thus attempt to present a fair assessment
of any sequential quantum annealer. In particular, we in-
troduce the notion of “limited sequential quantum speedup”
which refers to speedup with respect to any algorithm
that optimizes sequentially such as, for example, simu-
lated annealing. Furthermore, we distinguish two types
of state-of-the-art optimization methods: “tailored” and
“nontailored” algorithms. Tailored algorithms exploit the
structure of the studied optimization problem; we thus
feel this might pose an unfair advantage. Nontailored al-
gorithms are generic, and thus present the state-of-the-art
when studying a wide variety of optimization problems.
Our results show that sequential quantum approaches
(DW2X quantum annealer and quantum Monte Carlo)
clearly outperform any other currently-available sequen-
tial methods, but fall short of outperforming nontailored
(as well as tailored) algorithms. We thus herewith raise
the bar for any quantum optimization approach. Second,
we illustrate with a simple two-energy level model with
noise, how a suboptimal annealing time for small problem
sizes can lead to a change in slope of the scaling analysis,
as observed in Ref. [49] for the DW2X machine. Finally,
we study the energy landscape of the instances and show
that the spin-glass backbone of the weak-strong cluster
network dominates and thus might negatively impact the
scaling of this class of problem for future larger chips
and/or system sizes.

The paper is structured as follows. In Section II we
introduce a new classification for the concept of “quan-
tum speedup”, in order to better assess the comparison
between classical and quantum devices. In Section III we
briefly describe the weak-strong cluster model, followed
by a summary of our results in Section IV. Concluding
remarks are summarized in Section V. All the algorithms
used in this study are outlined in the Appendix.

II. LIMITED QUANTUM SPEEDUP
REDEFINED

Given the intrinsic differences between classical and
quantum heuristics, it is impossible to define a simple
recipe to quantify “quantum speedup”. In Ref. [57],
the authors discuss in detail the meaning of quantum
speedup, defining different “classes” of speedup to better
quantify any putative speedup of a quantum device [58].
More precisely, they classify quantum heuristics in four
different classes, ranging from the class with the strongest
proof of quantum enhancement to the class with the
weakest proof, namely:

Provable quantum speedup – It is rigorously proven that
no classical algorithm can scale better than a given
quantum algorithm. For example, the Grover algorithm
(assuming an oracle) [59] belongs to this class.

Strong quantum speedup – Originally defined in Ref. [60],
strong quantum speedup refers to a comparison with the
best classical algorithm, regardless if the algorithm exists
or not. Note, however, that the “best classical algorithm”
might not be known or there might be no consensus as
to what the best classical algorithm is. For example, the
well-known Shor quantum algorithm for the factorization
of prime numbers [61] belongs to this class.

Potential quantum speedup – Refers to speedup when
comparing to a specific classical algorithm or a set
of classical algorithms. In this case, any potential
quantum speedup might be short-lived if a better classical
algorithm is developed. An example is the simulation
of the time-evolution of a quantum system, where the
propagation of the wave function on a quantum computer
would be exponentially faster than the direct integration
of the Schrödinger equation.

Limited quantum speedup – Speedup obtained by
comparing the algorithmic approach used in a quantum
computer to the closer classical counterpart. Usually,
quantum Monte Carlo (QMC) is used for the comparison
with adiabatic quantum optimization [8, 29, 57].

The introduction of the aforementioned categories
has helped enormously in ensuring that there are no
misunderstandings when referring to quantum speedup.
Indeed, these general categories have the advantage
that they cover a broad class of quantum computing
paradigms. However, given that, at the moment,
analog quantum annealing machines dominate this field
of research, it might be of importance to introduce
new definitions for quantum speedup tailored towards
these machines. Therefore, to be able to perform
a fair assessment of speedup for quantum anneal-
ing machines, we introduce the following definitions
that complement the notion of “limited quantum speedup:”
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Limited sequential quantum speedup – Speedup obtained
by comparing a quantum annealing algorithm or machine
to any sequential algorithm [e.g., simulated annealing
(SA) [15], or population annealing (PA) Monte Carlo
[62–65]] where a control parameter is monotonously
tuned until a certain threshold is reached (e.g., the
temperature in SA or the transverse field in QA). While
sequential methods might not necessarily be the best
classical optimization algorithm, they are the classical
counterpart to quantum annealing.

Limited nontailored quantum speedup – Speedup obtained
by comparing a quantum annealing algorithm or
machine to the best-known generic classical optimization
algorithm that is not tailored to a particular problem and
does not exploit particular knowledge of the problem to
be optimized [e.g., isoenergetic cluster optimizers (ICM)
[54], or the groups method [66]].

Limited tailored quantum speedup – Speedup obtained by
comparing a quantum annealing algorithm or machine to
the best-known tailored classical optimization algorithm
that explicitly exploits the structure of the problem to be
optimized and will perform in a sub-optimal fashion (if
work at all) on any other type of optimization problem
[examples are hybrid cluster moves (HCM) [36] or the
Hamze-de Freitas-Selby (HFS) algorithm [67, 68]].

Given the sequential nature of transverse-field quantum
annealing, limited sequential quantum speedup is naturally
the fairest comparison to classical counterparts. However,
this might not be of much use if classical sequential algo-
rithms are slow compared to other classical optimization
methods. A comparison to tailored algorithms is slightly
unfair, because the structure of the problem is being ex-
ploited, i.e., the developer of the algorithm knows a priori
how to design the algorithm to outperform quantum an-
nealing. We do emphasize that it might be misleading to
compare limited tailored quantum speedup to potential
quantum speedup because the classical algorithm is specif-
ically designed to outperform the quantum counterpart.
However, comparing to nontailored classical algorithms
is similar to potential quantum speedup. The classical
approach is generic and widely applicable and makes no
assumptions about the studied problem. In addition, it
should be the currently fastest optimizer available [69].

Finally quantum annealing with a transverse field is the
simplest possible quantum-enhanced algorithm. Going
beyond more complex driving Hamiltonians (e.g., non-
stoquastic [70], different initial states [71], the insertion
of Hamiltonians during the annealing [72], or schedule
randomization [73]), one could easily imagine implement-
ing far more complex quantum algorithms that exploit
the current advantages of classical methods. For example,
quantum cluster updates can be implemented by suitably
coupling two systems with the same target Hamiltonian
together, or quantum population annealing by running
multiple quantum chips in parallel and culling the least

fit copies of the target Hamiltonian. Once the field of
quantum optimization has reached this stage of develop-
ment, the aforementioned defined categories will require
adjustments to take into account these advances.

III. WEAK-STRONG CLUSTER MODEL

The weak-strong cluster network is a tailored model
designed to exploit quantum tunneling in quantum op-
timizers and therefore, to demonstrate how finite-range
tunneling can provide a computational advantage over
classical heuristics [49]. The model is composed by highly-
connected and ferromagnetically-coupled clusters (J = 1)
(corresponding to the unit cells of the Chimera graph
[39]) that interact with each other (see Figure 1). These
clusters can be divided in two classes: “strong” clusters,
which form the spin-glass bulk of the model, and “weak”
clusters, which are ferromagnetically coupled to strong
clusters. To complete the model, an external field is
applied to all the spins of the system: a “strong” neg-
ative external field h1 = −1 to those spins belonging
to strong clusters and a “weak” positive external field
h2 = −λh1 = 0.44 < 1/2 to those spins belonging to
weak clusters. The ground state of the system is therefore
the configuration with all spins of both weak and strong
clusters pointing along the direction of the strong local
field. Individual weak-strong clusters are coupled by a
spin-glass backbone where the interactions between the
clusters can take values {±1}. Note that the interactions
between weak-strong clusters only occur between sites in
the strong cluster. See Figure 3 of Ref. [49] for the actual
graphs simulated on the DW2X quantum annealer. The
peculiarity of the weak-strong cluster model is that there
exists a bifurcation point during both the classical and
quantum annealing where the system is forced to follow
a “wrong” path leading to a local minimum, namely the
configuration with spins in weak clusters pointing toward
the weak external field. However, quantum annealers, un-
like classical annealers, can tunnel earlier to the “correct”
path and, eventually, reach the true ground state of the
system.

The Hamiltonian describing the weak-strong cluster
model is composed of four main terms: the Hamiltonian
describing the strong (weak) clusters H1 (H2) and the
Hamiltonians describing either the interaction between
strong clusters H1,1 or the interaction between strong and
weak clusters H1,2 (see Ref. [49] for details). Each pair
of weak-strong cluster can be seen as a single functional
cluster [i.e. a single gray box in Figure 1(b)], labeled
by a two-dimensional spatial position x̄. Strong clusters
belonging to two different functional cluster are then
linked with random couplings (Jx̄x̄′ = ±1) following a pre-
determined backbone B. Note that the weak clusters only
couple to the strong cluster within a given weak-strong
cluster. More precisely, for ` = {1, 2} the aforementioned
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Figure 1: Sketch of the weak-strong clusters and networks.
(a) Structure of a weak-strong cluster. Two K4,4 cells of the
Chimera lattice are connected ferromagnetically (blue lines,
J = 1), as well as all spins within each K4,4 cell. Black
dots correspond to qubits in the strong cluster with a biasing
magnetic field h1 = −1. The white dots represent the weak
cluster, where each site is coupled to a weaker field h2 = −λh1

with λ = 0.44 < 0.5 in the opposite direction. The white
lines represent the connections from the strong cluster to
neighboring strong clusters of a weak-strong pair. (b) Weak-
strong cluster network: each rectangle represents a weak-strong
cluster. The different weak-strong clusters are connected via
a spin-glass backbone where the interactions can take values
Jx̄x̄′ = ±1. Here, red lines represent J = −1. Note that the
connections between clusters only occur between the strong
clusters.

Hamiltonians have the form

Hx̄` = −J
∑
i,j∈Vx̄

σz`,iσ
z
`,j −

∑
i∈Vx̄

h`σ
z
`,i (1)

and

Hx̄,x̄
′

1,1 = −
∑

j∈Vx̄,x̄′

Jx̄,x̄′σz1,jσ
z
1,j , (2a)

Hx̄1,2 = −J
∑
j∈Ṽx̄

σz1,jσ
z
2,j , (2b)

where Vx̄ represents the 8 vertices in one K4,4 unit cell
of the Chimera graph for the functional cluster in the
position x̄. The set Vx̄,x̄′ represents the vertices on the
left-hand-side which couple two adjacent strong clusters
while the set Ṽx̄ represents the vertices of the right-hand-
side of the strong and weak clusters that are linked by
a ferromagnetic interaction J = 1. Putting together the
Equations (1) and (2), the final problem Hamiltonian for
the weak-strong cluster model assumes the form:

H =
∑
x̄∈B

[
Hx̄1 +Hx̄2 +Hx̄1,2

]
+

∑
(x̄,x̄′)∈B

Hx̄,x̄
′

1,1 , (3)

with (x̄, x̄′) indicating two functional clusters which are ad-
jacent in the given backbone B. Because of imperfections

in the DW2X device, the embedding of the weak-strong
cluster network in the Chimera topology is nontrivial.
However, systems of up to n = 945 qubits have been
studied.

The main result of Ref. [49] is to show, either experimen-
tally (by using the DW2X quantum optimizer) or numer-
ically (by using quantum Monte Carlo simulations), that
quantum co-tunneling effects play a fundamental role in
adiabatic optimization. Note that quantum Monte Carlo
is the closest classical algorithm to quantum annealing on
the DW2X. The results of Ref. [49] on the DW2X chip are
approximately 108 times faster than simulated annealing
[15] and considerably faster than quantum Monte Carlo
despite both the DW2X quantum annealer and quantum
Monte Carlo having a similar scaling (similar slope of
the curves in Figure 4 of Ref. [49] for quantum Monte
Carlo and the DW2X). While this, indeed, represents the
first solid evidence that the DW2X machine might have
capabilities that classical optimization approaches do not
possess, it is important to perform a comprehensive com-
parison to a wide variety of state-of-the-art optimization
methods. Within the categories defined in Section II,
the results of Ref. [49] for the DW2X clearly outperform
any sequential optimization methods, however fall short
of outperforming tailored and nontailored optimization
methods. We feel, however, that knowingly exploiting the
structure of a problem does not amount to a fair compar-
ison. However, our results shown below clearly suggest
that generic optimization methods still outperform the
DW2X. One might thus question the importance of the
results of Ref. [49]. We emphasize that this is the first
study that undoubtedly shows that the DW2X machine
has finite-range tunneling and gives clear hints towards
the class of problems where analog quantum annealing
machines might excel.

In addition to showing here that a variety of either
“tailored” to the weak-strong cluster structure or more
“generic” classical heuristics can achieve similar perfor-
mances of the DW2X chip, we also study the energy
landscape of the weak-strong cluster networks. The lat-
ter provides valuable insights about the limitations of
finite-range tunneling for this class of problems. Our
analysis suggest that the scaling advantage of finite-range
cotunneling over sequential algorithms could be lost for
instances with problem sizes beyond the ones considered
in Ref. [49].

In the next paragraph we further discuss the perfor-
mance of DW2X compared to tailored and nontailored
classical heuristics in detail.

IV. RESULTS

In this Section, we present our main results. In the first
part, we compare the performance of the DW2X device
against general (nontailored) and tailored classical algo-
rithms. The description of the used algorithms is in the
Appendix. In the second part, we analyze in depth the
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scaling behavior of the DW2X device by varying the num-
ber of used qubits. The aim is to better understand the
role of a non-optimal annealing times for a noisy analog
device to the asymptotic scaling of the computational
time. Finally, we study the energy landscape, as proposed
in Ref. [32], and show that for increasing problem size the
spin-glass backbone of the weak-strong cluster network
dominates and the advantages of finite-range tunneling
diminish for increasing system sizes.

A. Analysis of the computational scaling

In order to compare heuristics which are fundamentally
different from each other, it is necessary to define a met-
ric which is not only fair, but that gives a quantitative
measure of the speedup. In this work, and to compare
on equal footing with the results in Ref. [49], we follow
the time-to-solution metric introduced in Refs. [29, 57].
This metric is defined as the time to find the ground state
with 99% of confidence after a given number of repeated
runs, namely

Ttts = Tann ·R = Tann
log(1− 0.99)

log[1− psucc(Tann)]
, (4)

where Tann is the annealing [running] time of the quantum
[classical] heuristic and R is the number of repetitions
needed to reach a confidence s. For the current generation
of the DW2X, the total annealing time Tann cannot be ar-
bitrarily small. For the experiments described here, Tann

was set to the minimum time allowed in the device (20µs).
In the next Section, we better describe the consequences
imposed by this limitation to correctly extrapolate the
asymptotic limit of the computational time.

In general, we are interested in the asymptotic limit of
the computational time Ttts to understand what would
be the true scaling for large systems. For the weak-
strong cluster network, it is expected that Ttts grows
exponentially with the system size (up to a polynomial
correction) as:

Ttts ≈ poly(n) 10a+b
√
n = 10a+b

√
n+c log10(

√
n), (5)

with nc/2 the dominant term of the polynomial prefactor
poly(n). Observe that, for the scaling in Equation (5),
we choose

√
n rather than n. This choice has been made

for two main reasons. On one hand, it is well known
that optimization problems on Chimera Hamiltonians
have a computational scaling that it is well approximated
by a stretched exponential [23, 74]. On the other hand,
the graph underlying the Chimera Hamiltonian is almost
planar with a treewidth equal to

√
n (as a two-dimensional

lattice) rather than n (as a fully-connected graph) [68].
Hence, it is expected that typical collective excitations
involve a number of qubits of the order of

√
n. Among

all the parameters in Equation (5), the most important
parameter is b because it represents the dominant term
in the limit of large systems. In order to determine the

values of parameters a, b, and c in Equation (5), it is
possible to either use a linear fit of the form

f(x) = a+ b
√
n, (6)

i.e. it is assumed that the term c is negligible, or a
log-corrected fit of the form

f(x) = a+ b
√
n+ c log10

(√
n
)
. (7)

The advantage of a linear fit is that less parameters have
to be determined. However, it is more affected by finite-
size effects. The log-corrected regression, on the contrary,
takes into account eventual finite-size effects but the re-
gression could display a “non-physical” scaling behavior
for small system sizes where the fit increased for n→ 0
(see, for instance, the top-left panel of Figure 7).

In Figure 2 we report the computational scaling of the
various classical/quantum heuristics considered in this
paper (top panel), as well as the asymptotic parameter b
(bottom panel). The results show that sequential quantum
approaches (DW2X and QMC) clearly outperforms clas-
sical sequential algorithms [simulated annealing (SA) and
population annealing(PA)], having a smaller asymptotic
scaling exponent b. Nevertheless, both tailored [hybrid
cluster method (HCM), Hamze-de-Freitas-Selby (HFS)
and the super-spin approximation (SS)] and nontailored
classical algorithms [isoenergetic cluster moves (ICM)
combined with either parallel tempering (PT+ICM) or
replica Monte Carlo (RMC+ICM)] have a better perfor-
mance.

We emphasize that these results are specific to the
DW2X quantum annealer and its underlying Chimera
topology. Certain nontailored algorithms might not per-
form as well on different topologies or other problem
classes. For example, the general classical ICM algorithm
in its native implementation [54] would not be as efficient
for highly-connected graphs. Therefore, future quantum
annealing machines with denser connectivities might again
outperform the current classical state of the art, at which
point, hopefully, more efficient classical methods will be
developed.

B. Non-optimal annealing time and “double
scaling”

In the previous Section, we analyzed the performance
of the various classical and quantum heuristics by looking
at the computational scaling. More precisely, we are inter-
ested in the asymptotic behavior of the time to solution
[see Equation (4)] that it is expected to be exponential in
the limit of large systems:

Ttts ≈ e−b
√
n, (8)

where b is the asymptotic scaling exponent. However,
how large should the system be in order to extrapolate
the asymptotic scaling b? Many factors such as the an-
nealing schedule [7, 76], as well as the intrinsic noise of
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Figure 2: Top panel: computational scaling (for 99% success)
for different classical algorithms compared with the experi-
mental results using the DW2X chip [49]. As one can see,
both general classical algorithms [isoenergetic cluster moves
(ICM) either using parallel tempering (PT) or replica Monte
Carlo (RMC)] and tailored classical algorithms for the weak-
strong cluster model [hybrid cluster moves (HCM), super-spin
approximation (SS), Hamze-de-Freitas-Selby (HFS)] have a
comparable scaling with the quantum inspired classical algo-
rithm [quantum Monte Carlo (QMC)] and the DW2X device.
[75]. Moreover, for the classical tailored algorithms, the overall
scaling prefactor is also comparable with the DW2X device.
For HCM, random instances with no broken qubits have been
used. Bottom panel: Analysis of the scaling factors by us-
ing either linear regression, or a log-corrected regression for
log10 Tann. In the figure, bars represent the confidence inter-
vals. For the scaling analysis, we used a stretched exponential
that fits better the numerical data (see Appendix A). Interest-
ingly, the general-purposes classical algorithm ICM, together
with the chimera-optimized classical algorithm (HFS) and the
cluster optimized algorithms (HCM and SS) have the best
scaling. (QMC and SA data taken from Ref. [49]). All the
simulations (excluding HCM) have been run on the same
instances used in [49].

the system [76–79], can affect the scaling behavior of the
computational time. To address the above question, we
show in this Section that the use of a non-optimal anneal-
ing schedule can lead to a “double scaling” effect where
the true asymptotic scaling is hidden by a fictitious (but
more favorable) scaling.

It is well known that the computational scaling of a
quantum annealer represents only an upper-bound of the
true scaling if a non-optimal schedule is used [23, 35]. For
instance, consider the case of a fixed schedule but with a
very large annealing time. In this case, the computational
scaling would be a flat curve because the probability of
success would be one for almost all system sizes avail-
able for examination. Therefore, very large systems are
required to extrapolate to the correct asymptotic scaling.

The DW2X quantum annealer has a fixed schedule and,
as previously mentioned, a minimum annealing time of
20µs. Furthermore, the DW2X chip is affected by an
unavoidable intrinsic noise [32, 36, 38, 41] that can alter
the computational scaling.

To better understand the scaling behavior of the
DW2X for the weak-strong cluster model, we compare its
scaling with the scaling behavior of a noisy two-energy
level model with a fixed (linear) schedule and a non-
optimal annealing time. More precisely, we use the fol-
lowing Hamiltonian [7]

H2LV(t) = −(1− t/Tann) |ψ〉〈ψ| − t/Tann |ω〉〈ω| , (9)

where Tann is the total annealing time, and |ψ〉 and |ω〉
are the equal superposition of all the states and the target
states one wants to find, respectively. The system in
Equation (9) can be reduced to an effective 2× 2 matrix
and then, it can be exactly solved [7, 76]. To simulate
the presence of local noise, we assume that each spin has
a probability q to be oriented in the wrong direction after
the annealing of the system [76]. Therefore, the effective
noisy Hamiltonian has a probability equal to (1−q)n that
its ground state ω′ is effectively the desired target state ω.
Assuming that the level of noise is small enough compared
to the probability of success psucc(n, Tann) of the perfect
annealer (namely, when Tann is much larger than the
optimal annealing time), the probability of success of the
noisy two-energy level Hamiltonian can be written as:

p′succ(n, Tann, q) = (1− q)npsucc(n, Tann). (10)

Figure 3 shows the comparison between the computational
scaling Ttts for the DW2X chip [49] and the two-energy
level model described above (for the numerical details,
see Section G). For the latter, the computational scaling
is expressed in arbitrary units in order to ease the com-
parison. As expected, the ideal two-energy level model
without noise (2LV, q = 0) has a plateau for small systems
and, only for large systems, the computational time shows
the asymptotic scaling. When the noise is added to the
two-energy level model (2LV, q = 0.1) a “double scaling”
phenomenon appears: for small systems, the scaling is
dominated by the noise while, for large systems, the scal-
ing is dominated by the asymptotic scaling. Interestingly,
the same phenomenon can be clearly observed for the
DW2X scaling, indicating that the total annealing time
of 20µs is non-optimal for systems up to

√
400 spins.
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Figure 3: Double scaling effect produced by the combination
of a noisy system and a non-optimal annealing time. We
display data for the DW2X device (as in [49]) compared to
the annealing of a noisy two-energy level model (2LV) with
a non-optimal (linear) annealing schedule and a fixed total
annealing time (Tann = 500). The numerical study shows that,
for small systems, the scaling is mainly dominated by the noise
while, for large systems, the scaling is mainly dominated by
the asymptotic behavior.

C. Analysis of the energy landscape

An important ingredient in assessing the value of weak-
strong cluster problems to detect quantum speedup is to
study in detail the dominant characteristics of the energy
landscape. In Refs. [32, 80] it was shown that the structure
of the overlap distribution of spin glasses [43, 44] mirrors
salient features in the energy landscape. Because there
is no spatial order in spin glasses, “order” is measured
by comparing two copies of the system with the same
disorder (i.e., the same set of interactions between the
qubits and the same magnetic fields), but simulated with
independent Markov chains (i.e., each copy starts from a
different random initial condition). The spin overlap is
defined as

q =
1

n

n∑
j=1

σz,αj σz,βj , (11)

where the sum is over all sites n on the network and α
and β represent the two copies of the system. For a given
set of disorder Jx̄x̄′ , the overlap distribution P (q) will
have a unique structure at low, but finite temperatures
T � J , T > 0. Generally speaking, the number of peaks
roughly mirrors the number of dominant valleys in the
(free-) energy landscape [44]. The distance between peaks,
as well as their width, can be associated with the Ham-
ming distance between dominant valleys and their width,
respectively. As shown in Ref. [80], the more structure
the distribution has, the larger the typical computational
complexity is. Furthermore, as shown in Ref. [81], when
the distribution only has one dominant peak, there is ei-
ther one dominant valley in the energy landscape or a set
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Figure 4: Three representative overlap distributions P (q) for
different problem sizes n. The y-axes are in arbitrary units
and rescaled such that

∫ 1

0
P (q) = 1. While some instances

have either one dominant narrow valley or valleys with thin
barriers that allow for finite-range tunneling (top), others have
multiple structures (middle and bottom) suggesting that the
valleys are separated by barriers that might be too wide for any
finite-range tunneling to be beneficial during the optimization.

of strongly-overlapping valleys separated by thin but tall
barriers. In the latter case, the barriers are so thin that
the features in P (q) overlap strongly, i.e., the distribu-
tion cannot differentiate the different valleys. However, if
there are multiple well-defined features, dominant valleys
in the energy landscape are separated by thick barriers.

Using parallel tempering Monte Carlo at low temper-
atures [32], we have computed the overlap distribution
for the different weak-strong cluster networks. Because
of the added fields, there is no spin-reversal symmetry
and the distributions only show peaks for q > 0. We find
two characteristic shapes shown in Figure 4: either the
problems have a single dominant narrow peak (compared
to random spin-glass problems [32]), or multiple well-
separated peaks. While the latter have energy barriers
that are too thick for any finite-range quantum tunneling
to be effective, the former potentially have thin enough
barriers to allow for finite-range tunneling in the DW2X.
Therefore, only problems that have single narrow peaks
might benefit from any finite-range tunneling. With bet-
ter statistics, it would be instructive to study the scaling
of both problem classes separately with QMC and SA for
systems considerably larger than the DW2X.

Figure 5 shows the fraction of problems with multiple
peaks against problems with single peaks. The fraction of
multi-peak instances (problems with wide barriers in the
energy landscape) grows considerably with the problem
size n, i.e., for large systems the spin-glass backbone
dominates and thus, asymptotically, finite-range tunneling
becomes inefficient on the DW2X. Loosely extrapolating
the data in Figure 5 we estimate that this class of problem
might show a change in scaling already for the next D-
Wave chip generation of approximately 2000 qubits.
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Figure 5: Ratio of single peak to multi-peak overlap distribu-
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system size, multi-peak instances with barriers too wide for
finite-range tunneling increase due to the influence of the spin-
glass backbone. Note that already for the largest system size
studied, multi-valley instances dominate.

V. CONCLUSIONS

In this work we study in detail and complement re-
cent results by Google Inc. [49] on the DW2X quantum
annealer. Their results show for the first time that a
quantum annealing machine can outperform conventional
computing technologies for a particular class of prob-
lems. However, to enable a more detailed comparison,
we first expand the notion of “limited quantum speedup”
introduced in Ref. [23]. In particular, to perform a fair
assessment of the results of Ref. [49] we introduce the no-
tion of “limited sequential quantum speedup” which refers
to a speedup over the best-known sequential algorithms,
as well as“tailored and nontailored quantum speedup”.
The latter categories encompass numerical approaches
that are not sequential and either exploit the (known)
structure of the optimization problem to be solved or are
generic. A strong yet fair indication for limited quantum
speedup would be to outperform the best-known generic
algorithm. In the case of the DW2X when optimizing the
weak-strong cluster networks, our results show that while
the DW2X (as well as quantum Monte Carlo) has a bet-
ter scaling compared to sequential methods, tailored (as
well as nontailored) algorithms show a better asymptotic
scaling.

Furthermore, as part of the study, we show that the role
of the noise is not marginal in the extrapolation of the
asymptotic computational scaling for large system sizes.
More precisely, we explain the sudden change of scaling
of the computational time of the DW2X device (and the
consequent effect of a “double scaling”) by comparing the
quantum annealer with a noisy two-energy level model
with a non-optimal annealing schedule. In both cases, the
true asymptotic scaling is hidden by an initial (and more
favorable) scaling, that later turns to the true asymptotic
scaling.

Finally, we study the dominant features in the energy
landscape of the weak-strong cluster network problems.
Our results suggest that the spin-glass backbone might
dominate the scaling already for systems with twice as
many qubits as the current-generation DW2X machine.
As such, the favorable speedup currently found both
on quantum Monte Carlo simulations as well as the
DW2X device might asymptotically approach towards
the scaling of the other sequential methods.

While one might see the results of Ref. [49] post a
detailed analysis presented in this paper as discouraging,
we emphasize that this is the first time that a careful study
has shown strong results in favor of quantum annealing
approaches both on analog quantum annealing machines,
as well as quantum simulations. Although there is a
clear evidence that random problems (e.g., spin glasses
[23]) might not be well-suited for quantum annealing to
excel, tailored problems [32] are of clear importance in the
quest of quantum speedup. Determining the application
domain where quantum annealing machines will surpass
the capabilities of current silicon-based technologies is of
paramount importance across disciplines, and the work by
the Google Inc. team has given the first strong indications
in which directions to search.
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Appendix A: Analysis of the computational scaling

In the main text we define the computational time Ttts

for a given classical or quantum heuristic as the time to
find a solution with 99% probability [29, 57] as:

Ttts = Tann ·
log(1− s)

log[1− psucc(Tann)]
, (A1)

where s = 0.99, Tann is annealing/running time and
psucc(Tann) is the probability of success at a given Tann.
For the weak-strong cluster model, it is expected that Ttts

will scale exponentially with the system size n as

Ttts ≈ poly(n) 10a+b
√
n = 10a+b

√
n+c log10(

√
n), (A2)

with nc/2 is the dominant term of the polynomial prefactor
poly(n). To determine the values of parameters a, b, and
c in Equation (A1) we either use a linear fit f(x) =
a+ b

√
n, i.e., it is assumed that the term c is negligible,

or a log-corrected fit f(x) = a + b
√
n + c log10 (

√
n).

In Figure 2 of the main text we report the dominant
asymptotic scaling exponent b of Ttts in Equation (4) for
the classical/quantum heuristics presented in this paper,
while in Figure 6 we report the values of the parameters
a and c. Figure 7 and Figure 8 show how well either the
linear regression or the log-corrected regression fit the
experimental/numerical data, respectively.

Appendix B: Hybrid Cluster Method (HCM)

The hybrid cluster method (HCM) is a Metropolis sam-
pling technique where “clusters” are update instead of
single spins. The outline of HCM is simple: given a set of
connected K spin-domains {Di}i=1, ..., K such that their
union is the whole system, clusters are created using the
Wolff rule [82] inside a randomly-chosen domain Di. Then
the cluster is flipped by following a Metropolis updated
by considering only couplings outside the selected domain
(see Ref. [36] for more details). HCM was initially devel-
oped to improve the thermalization of highly-structured
systems such as embedded systems because it preserves
the detailed balance [36] condition. Additionally, HCM
can be used as a random heuristics for finding ground
states efficiently.

In the weak-strong cluster model, domains Di are iden-
tified as unit cells of the Chimera graph. Because spins
inside unit cells are ferromagnetically coupled, they are
likely to act as a single cluster in the low-temperature
regime. The system is therefore started from an initial
high temperature 1/Tini = βini = 0.5 and then cooled
to the final temperature 1/Tend = βend = 3. For the
simulations, a linear schedule (in the inverse temperature
β) with M steps has been used, where M is optimized by
minimizing Equation (A1). At each step, a full update of
the system is made.

Table I lists the simulation parameters used to compute
the time-to-solution in Figure 2 of the main text.
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Figure 6: Values for the remaining fit parameters a and c
for either the log-corrected fit a + b
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n + c log10(
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linear fit a+ b
√
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Table I: Parameters of the simulation using the hybrid cluster
method (HCM) on the Chimera topology. M represents the
optimal number of inverse temperature steps for the thermal
annealing.

System size (n) βini βend M

192 0.5 3 5

300 0.5 3 6

520 0.5 3 8

720 0.5 3 11

992 0.5 3 14

Appendix C: Isoenergetic Cluster Algorithm (ICM)

The isoenergetic cluster method (ICM) is a rejection-
free cluster algorithm for spin glasses that greatly im-
proves thermalization [54]. The main idea of ICM con-
sists in restricting Houdayer cluster moves [83] to tem-
peratures where cluster percolation is hampered by the
interplay of frustration and temperature. As such, one
is able to extend the Houdayer cluster algorithm from
two-dimensional spin glasses (for which the Houdayer
algorithm was originally designed for) to any topology
and/or space dimension. More precisely, M copies of the
system are run at the same temperature. The q-space
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Figure 8: Scaling analysis of log10 Tann by using a linear fit of the form f(n) = a+ b
√
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panels show the values of the fit parameters and how well f(n) fits the data. For the fit, only the last three data points are used.

intersection between two random replicas α and β is then defined as qj = σz,αj σz,βj [54]. Within the overlap space
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(q-space) the system has two domains: sites with qj = 1
and the sites with qj = −1. In ICM, clusters are defined
as the connected parts of these domains. Once the clus-
ters are created, a random site with qj = −1 is chosen
and the corresponding cluster flipped. Because the total
energy of the two copies of the system is unchanged by
this transformation, the acceptance of the cluster move is
rejection free. One of the main advantages of ICM is that
it allows for a more extensive exploration of the energy
landscape by classically teleporting across energy barri-
ers. Note that the cluster updates obey detailed balance
and are only ergodic after being combined with Monte
Carlo lattice sweeps. The method is used to improve the
sampling of parallel tempering Monte Carlo (PT) [84–86]
which is the current state-of-the-art simulation method
for spin glasses.

Although the aforementioned approach is designed to
quickly thermalize a frustrated system at finite tempera-
tures, the method can be adjusted to act as a heuristic
to find ground state configurations [87, 88] (PT+ICM).
To do this, the lowest temperature of the simulation is
chosen low enough such that the different copies of the
system at different temperatures occasionally dip into the
ground state. To verify whether the true ground state
has been reached, two criteria are adopted: first, the
same minimum-energy state has to be reached from four
replicas at the minimum temperature Tmin. Second, this
state has to be reached during the first 25% of the sweeps
in all four copies. These conditions are satisfied for the
parameters listed in Table II.

We have also combined ICM with the replica Monte
Carlo algorithm (RMC+ICM) [89]. The RMC algorithm
is based on three basic steps: first, R replicas of the
system are run at different temperatures {T1, T2, ..., TR}.
Second, a site is picked at random and the associated clus-
ter (which is defined through the overlap of the systems at
nearby temperatures) is created. Third, a Metropolis up-
date is performed to flip the cluster. Replica Monte Carlo
is extremely efficient in two-dimensional or quasi-two-
dimensional spin glasses, reducing the correlation time
enormously compared to single spin flips [89]. However,
in higher space dimensions, its performance is comparable
to parallel tempering Monte Carlo. The parameters for
the simulations are reported in Table II.

Table II: Parameters of the simulation using the isoenergetic
cluster method (ICM) on the Chimera topology. Tmin [Tmax]
is the lowest [highest] temperature simulated, and NT is the
total number of temperatures used in the parallel tempering
and replica Monte Carlo methods. Isoenergetic cluster moves
only occur for the lowest Nc temperatures simulated.

System size (n) Tmin Tmax NT Nc

180, 296, 489, 681, 945 0.2279 2.5000 21 5

Appendix D: Population Annealing Monte Carlo
(PA)

Population annealing (PA) Monte Carlo is a sequential
Monte Carlo algorithm to compute equilibrium states of
systems with rugged energy landscapes [62–65, 90]. PA is
closely related to simulated annealing in that the system
is prepared at a high temperature and then annealed to
a low target temperature. However, instead of simulat-
ing one system, in population annealing R copies of the
system are simulated in parallel. At each temperature
step the population of replicas is resampled such that
they represent (at any temperature) a faithful Boltzmann
distribution for that given temperature. Once the replicas
have been resampled, replicas are updated using Metropo-
lis sampling. In Ref. [64] it was shown that PA can be
used as an optimization heuristic that clearly outperforms
simulated annealing.

Table III: Simulation parameters for population annealing
Monte Carlo (PA): number of spins n, working population size
R, number of temperatures NT and number of independent
runs M . For all the simulations, temperatures are evenly
chosen in the interval β = [0, 1] and the number of sweeps
applied to each replica is fixed to NS = 10.

System size (n) R NT M

180 102 100 200

296 3 · 102 100 200

489 104 200 200

681 105 300 200

945 3 · 106 300 55

In the actual simulations we simulate each problem at
a working population of size R and measure the success
probability p to find the ground states via M independent
runs. The probability p is then used to calculate the
critical population size Rc for a 99% success probability
as Rc = R log(0.01)/ log(1 − p). This can be further
transformed to the amount of work in Monte Carlo lat-
tice sweeps, and thus a physical time. Here, we use NT
temperatures evenly distributed in β = 1/T ∈ [0, 1], and
at each temperature, NS = 10 Monte Carlo sweeps are
applied to each replica. Table III lists the parameters of
the simulation.

Appendix E: Super-spin heuristic (SS)

The weak-strong cluster model introduced in Ref. [49] is
a highly-structured problem. In particular, K4,4 unit cells
of the Chimera graph are ferromagnetically coupled and
biased by a strong external field. Hence, spins belonging
to the same unit cell are likely to be aligned in the ground
state. The super-spin (SS) approach takes advantage of
the structure of the weak-strong clusters by identifying a
single K4,4 cell as a “super-spin”. The resulting “logical”
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model is therefore a considerably smaller two-dimensional
spin-glass problems with external fields. Each of these
logical spins is then coupled to an external local field. For
the example shown in Figure 1, the original problem size
of n = 224 spins is reduced to a spin-glass problem of
only 224/8 = 28 spins that is trivial to optimize.

The time-to-solution of the SS approximation is then
computed by applying the ICM+PT heuristic introduced
in Section C. Because the SS approximation does not
take into account the detailed structure of the strong-
weak clusters, it is expected to be the fastest among the
different heuristics used. Indeed, as shown in Figure 2,
results using SS are not only the fastest, but also represent
the algorithm with the best computational scaling.

Appendix F: Other algorithms used (QMC, SA, and
HFS)

For details on the quantum Monte Carlo (QMC) and
simulated annealing (SA) results, simulation parameters
and algorithmic details we refer the reader to Ref. [49].
The Hamze-de Freitas-Selby (HFS) algorithm [67, 68] is
explained in detail in Ref. [91].

Appendix G: Two-energy level system

The calculation of the probability of success
psucc(n, Tann) for the two-energy level model in Equa-
tion (9) has been done by a numerical integration of the
Schrödinger equation using a a non-optimal (linear) sched-
ule with a total annealing time of Tann = 500. For the in-
tegration, we have discretized the time using δt = 0.01 for
all the system sizes n = 1, 2, . . . , 16. The time discretiza-
tion has been chosen so that there were no appreciable
changes in psucc(n, Tann) by decreasing δt. Table IV re-
ports the parameters used for the two-energy level model.

Table IV: Parameters used for the numerical integration of
the Schrödinger equation of the two-energy level model in
Equation (9).

System size (n) Schedule Tmax δt

1, 2, . . . , 16 linear 500 0.01
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