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Anonymous voting is a voting method of hiding the link between a vote and a voter, the context
of which ranges from governmental elections to decision making in small groups like councils or
companies. In this paper, we propose a quantum anonymous voting protocol assisted by two kinds
of entangled quantum states. Particularly, we provide a mechanism of opening and permuting the
ordered votes of all the voters in an anonymous manner; any party, who is interested in the voting
results, can acquire a permutation copy, and then obtains the voting result through simple calcula-
tion. Unlike all previous quantum works on anonymous voting, our quantum anonymous protocol
firstly possesses the properties of privacy, self-tallying, non-reusability, verifiability and fairness at
the same time. Besides, we demonstrate that the entanglement of the novel quantum states used
in our protocol makes the attack from outside eavesdropper and inside dishonest voters impossible.
We also generalize our protocol to execute the task of anonymous multi-party computation, such as
anonymous broadcast and anonymous ranking.

PACS numbers: 03.67.Dd, 03.65.Ud

I. INTRODUCTION

Science of cryptography studies how to prevent valu-
able information from being leaked to unauthorized par-
ties. In practice, most cryptographic protocols are de-
signed to protect message from being eavesdropped by
an adversary when they are sent from one party to an-
other. However, in some situations, to keep the iden-
tity of message senders private is just as important as
to keep the message secret. One example is anonymous
voting, in which each voter votes for one of candidates
anonymously. Therefore, no one but himself or herself
could know which candidate he or she votes. The context
of voting ranges from governmental elections to decision
making in rather small groups like councils or companies.
To be reliable and useful in practice, voting protocols
should have some desirable properties (see [1] for more
details) like privacy, non-reusability, verifiability, fairness
and eligibility as follows.
(1) Privacy. Only the individual voter knows how he

or she votes.
(2) Non-reusability. Each voter can vote only once and

cannot change the vote of someone else.
(3) Verifiability. Each voter can verify whether his or

her vote has been counted properly, but cannot prove to
anyone else how he or she is voting.
(4) Fairness. Nobody can obtain a partial vote tally

before the end of the protocol.
(5) Eligibility. Only eligible voters can vote.
In the past decades, a number of voting protocols pur-

suing the above properties have been proposed. The first
voting protocol to guarantee voting privacy was proposed
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by Chaum in 1981 [2]. Since then various voting pro-
tocols based on some cryptographic primitives, such as
homomorphic encryption and blind signature, were pro-
posed. Most of these voting protocols adopt public-key
cryptographic primitives like large integer factorization
and discrete logarithm. However, with the advent of
quantum algorithm, they are no longer security anymore
[4, 5]. To battle with the power of quantum computer,
quantum cryptography was born to encrypt information
based upon principle of quantum mechanics. Surprisedly,
some of these fundamental principles like no-cloning the-
orem and the observer effect could guarantee uncondi-
tional security. Since the first quantum key distribution
protocol was proposed in 1984 by Bennett and Brassard
[6], a variety of quantum cryptographic protocols have
been proposed, including those for key distribution [7],
secret sharing [8, 9], coin flipping [10, 11], private query
[12–15], and so on.

In recent years, researchers have investigated how to
use quantum mechanics to preserve the anonymity of
senders and receivers in communication tasks. The first
quantum protocol to anonymously broadcast classical
bits and qubits was proposed by Christandl and Wehner
[16]. Subsequently, much attention has been paid to per-
form anonymous voting by using quantum principle. In
2007, Vaccaro et al presented a quantum anonymous vot-
ing protocol [3]. Subsequently, several quantum anony-
mous voting protocols [17–19] based on entangled states
were put forward. Afterwards, Horoshko and Kilin [20]
gave a quantum anonymous voting protocol which sim-
ply utilized single-particle qubit states to vote and Bell
states to check the anonymity. More recently, a series of
quantum anonymous voting protocols based on contin-
uous variables have been proposed[21]. However, these
protocols are function-limited from two aspects: (1) most
of them only consider two candidates; (2) most of them
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are designed to achieve only the property of privacy and
the other properties are rarely pursed. In special, the
property of self-tallying proposed in classical voting pro-
tocol by Kiayias and Yung [22] makes anyone who is in-
terested in the voting result can tally votes by himself or
herself. The functionality of self-tallying avoids the intro-
ducing a third party thus reducing the potential risk of
security. As far as we know all previous quantum anony-
mous voting protocols do not have this property, which
needs at least one third party to tally votes, and most of
them neglect the cheating of third party, e.g., the third
party tampers with the voting results.

Is there a quantum voting protocol which not only
overcome the above limitations but also satisfy all these
favorable properties. We address this question in this
paper. We propose the first quantum anonymous voting
protocol for any number of candidates meeting privacy,
non-reusability, verifiability, fairness and self-tallying at
the same time. With slightly generalization, we show
that our protocol can be used for any anonymous multi-
party computation (AMC) task. This paper is structured
as follows. In Sect. II, we introduce two kinds of en-
tangled quantum states which will be the key resources
in our protocol. We present our self-tallying quantum
anonymous voting (SQAV) protocol in Sect.III. Then we
analyze the security of our protocol in Sect.IV. In Sect.V,
we generalize our protocol to AMC and briefly discuss
two possible applications. Finally we discuss the proper-
ties of self-tallying, non-reusability, verifiability and fair-
ness our protocol satisfied in the Discussion and draw a
conclusion in the last section.

II. QUANTUM RESOURCES OF THE

PROTOCOL

The security of our SQAV protocol relies on the
fact that we use two classes of quantum multiparticle
entangled states to distribute the ballot boxes and index
numbers to each voter. In this section we introduce
these states and some properties of them, which are
quite useful in our protocol.

Consider a system in m levels with computational
basis {|j〉C , j = 0, 1, · · · ,m − 1}. The fourier basis
{|j′〉F , j = 0, 1, · · · ,m − 1}, which can be obtained by
applying fourier operation on computational basis, is de-
fined as

|j′〉F = F|j〉C =
1√
m

m−1∑

k=0

exp(
2πijk

m
)|k〉C . (1)

Now we give the first quantum entangled state in our
protocol, which has been dexterously applied to imple-
ment the tasks of anonymous voting [18] and anonymous
ranking [23].

The m level n-particle state |Xn〉 is defined as

|Xn〉 ≡
1

m
n−1
2

∑

n−1∑

k=0

jk mod m=0

|j0〉C |j1〉C · · · |jn−1〉C ,(2)

where |jk〉 is the state of jth particle in the computational
state and jk ∈ Zm := {0, 1, · · · ,m− 1}.
|Xn〉 has an interesting property that it has the form

of GHZ state in the fourier basis,

|Xn〉 =
1√
m

m−1∑

j=0

|j′〉F |j′〉F · · · |j′〉F . (3)

Therefore |Xn〉 has two nice properties. (1) When
the state is measured in the computational basis, the
summation of the outcomes of all particles modulo m
is equal to zero. (2) When the state is measured in the
fourier basis, the outcomes of all particles are always the
same. To take advantage of the above two properties
to protect the voting process being eavesdropped or
attacked, we need to use the following result [23].

Theorem 1 A n-particle m-level quantum state is
in the form of |Xn〉 if and only if both of the following
two conditions are true: (1) when each particle is
measured in the computational basis, the sum over all
the n measurement outcomes modulo m is equal to zero;
(2) when each particle is measured in the fourier basis,
the measurement outcomes are all the same.

The other quantum entangled states we will use in the
voting protocol is defined as follows.
A n-level n-particle singlet state |Sn〉 is defined as

|Sn〉 ≡
1√
n!

∑

S∈Pn
n

(−1)τ(S)|s0〉|s1〉 · · · |sn−1〉. (4)

Here Pn
n is the set of all permutations of Zn :=

{0, 1, · · · , n− 1}, S is a permutation (or sequence) in the
form S = s0s1 · · · sn−1. τ(S), named inverse number, is
defined as the number of transpositions of pairs of ele-
ments of S that must be composed to place the elements
in canonical order, 012 · · ·n− 1.
|Sn〉 is n-lateral rotationally invariant, which means

the measurements of all particles are all different in any
basis [24]. In the Appendix. A, we give a proof of this
property. Specifically,

|Sn〉C = eiφ|Sn〉F , (5)

where φ is a phase factor. This property will be exploited
to ensure the security of our voting protocol based on
theorem 2.

Theorem 2 A n-particle n-level quantum state is
in the form of |Sn〉, if and only if the following condition
is satisfied: whenever the state is measured in the
computational basis or the fourier basis, the permutation
of the outcomes of n particles {s0, s1, · · · , sn−1} is a
random element of the set Pn

n .
We give a proof of theorem 2 in Appendix. B.
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III. QUANTUM ANONYMOUS VOTING

PROTOCOL

We first briefly outline our quantum anonymous vot-
ing protocol before delving into details. Assume there
are n voters labeled as V0, V1, · · · , Vn−1. Each voter can
vote for m candidates labeled by integer 0, 1, · · · ,m− 1.
Our protocol consists of three steps. First, a number of
n-particle entangled states |Xn〉 are distributed to n vot-
ers, with each voter holding one particle for each state.
After security test for checking eavesdropping, each voter
obtains n random numbers, called ballot numbers, from
n secret “ballot boxes” by measuring left n states |Xn〉.
Second, a number of n-particle entangled states |Sn〉 are
distributed to n voters, and each voter also holds one par-
ticle for each state. After security test, each voter gets a
random number, called index number, through measur-
ing left one state |Sn〉, which decides which ballot box
each voter will use for voting. Finally, each voter casts
a vote to his or her indicated ballot box anonymously
and all voters open all ballot boxes at the same time. By
this method, a random permutation of all votes appears
and any party, who is interested in the voting result, can
obtain a copy of permutation thus disclosing the voting
result. The details of our protocol are presented as fol-
lows and the communications in our protocol are shown
in Fig. 1.
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FIG. 1. Communications in our protocol. For simplicity, com-
munications in the eavesdropping checks are not considered.
The dashed lines represent quantum channels and the solid
lines represent classical simultaneous broadcast channels.

A. Procedure of the protocol

Step 1. Distributing secret ballot boxes.

(1.1) Prepare quantum states.
One of n voters is chosen randomly to prepare n + nδ0
copies of quantum state |Xn〉, where δ0 is the security
strength. Without loss of the generality, we assume

V0 is appointed as the distributor. The jth copy of
state |Xn〉 lives in the Hilbert space of n particles,
pj,0, pj,1, · · · , pj,n−1. Therefore we have a particle
matrix, pj,k with 0 ≤ j ≤ n+ nδ0 − 1, 0 ≤ k ≤ n− 1.

(1.2) Distribute to each voter
The distributor V0 sends each column of the particle
matrix, Sk = {p0,k, p1,k, · · · , pn+nδ0−1,k}, to each voter
Vk (V0 keeps S0).

(1.3) Security test
After each voter has received his or her particle sequence,
each voter as the checker performs the security check
processes to ensure the state distributed is intact. Start
from voter V0 (the order does not matter), then he or
she randomly picks out δ0 particles as the test particles,

~p0test = pi0,0pi1,0...piδ0−1,0 . (6)

V0 also needs to choose randomly from computational
basis or fourier basis with uniform distribution for each
test state, in which he or she will measure his or her test
particles with chosen basis. Then he or she publishes the
row index of his or her test particles and the measurement
basis he or she chosen to do the measurement. After
receiving this information, all other voters are required
to measure their particles with the same row index,

~pktest = pi0,kpi1,k...piδ0−1,k, k = 1, 2, · · · , n− 1 , (7)

in the basis picked by the checker V0. In other words,
the i0th, i1th, · · · , iδ0−1th copies of |Xn〉 are samples
and measured in either the computational basis or
fourier basis. Then all voters send their measurement
outcomes to the checker V0 in the order designed by
V0. Let’s label the result of measuring each test particle
as rij ,k. If V0 chooses the computational basis, he or

she then needs to check if
n−1∑
j=0

rij ,k mod m = 0. If

V0 chooses the fourier basis, he or she needs to verify
whether rij ,0, rij ,1, · · · , rij ,n−1 are all same. If the
test is failed, V0 informs the other voters to abort the
protocol. If the test is passed, the same test proce-
dure is performed by the next checker. Repeat the
same procedure until the test performed by each voter
is passed or abort the protocol in some intermediate step.

(1.4) Generate ballot numbers
If the security test passes, each voter now has n particles
left after discarding all test particles. Each voter then
measures his or her left n particles in the computational
basis. This will generate n ballot numbers for each
voter. Ballot numbers of all voters form a ballot matrix,
rj,k ∈ {0, 1, · · · ,m − 1}. The kth column contains n
private ballot numbers for Vk. Since the security is
passed, each left copy of |Xn〉 is intact, according to
theorem 1, ballot numbers must satisfy the condition

n−1∑

k=0

rj,k mod m = 0 . (8)
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for j = 0, 1, · · · , n− 1.

Step 2. Distributing secret indexes.

(2.1) Prepare quantum states.
Similarly to step (1.1), one of n voters is chosen
randomly to prepare 1 + nδ1 copies of quantum state
|Sn〉, where δ1 is the security strength. The jth copy
of state |Sn〉 lives in the Hilbert space of n particles,
tj,0, tj,1, · · · , tj,n−1. Therefore we have a particle matrix,
tj,k with 0 ≤ j ≤ nδ1, 0 ≤ k ≤ n− 1.

(2.2) Distribute to each voter
The distributor sends each column of the particle matrix,
Tk = {t0,k, t1,k, · · · , tnδ1,k}, to the voter Vk .

(2.3) Security test
After each voter has received his or her particle se-
quence, each voter performs the security check processes
to ensure the state distributed is intact. Start from voter
V0 (the order does not matter), then he or she randomly
picks out δ1 particles as the test particles,

~t0test = ti0,0, ti1,0, · · · , tiδ1−1,0 . (9)

V0 also needs to choose randomly from computational
basis or fourier basis with uniform distribution for each
test particle, in which he or she will measure his or her
test particle with chosen basis. Then he or she publishes
the row index of his or her test particles and the corre-
sponding measurement basis he or she chosen to do the
measurement. After receiving this information, all other
voters are required to measure their particles with the
same row index,

~tktest = ti0,k, ti1,k, · · · , tiδ1−1,k , (10)

for k = 0, 1, 2, · · · , n − 1 in the basis picked by the
checker V0 and send their measurement outcomes to
the checker V0 in the order appointed by V0. That is,
the i0th, i1th, · · · , iδ1−1th copies of |Sn〉 are measured
in either the computational basis or the fourier basis.
Label the result of measuring each test particle as
dij ,k. No matter V0 chooses the computational basis
or the fourier basis, he or she then needs to check if
{dij ,0, dij ,1, · · · , dij ,n−1} ∈ Pn

n according to theorem 2.
If the test passes, the same test procedure is performed
by the next checker. If the test fails, V0 informs the other
voters to abort the protocol. The same procedure is re-
peated until the test performed by each voter is passed or
the protocol is aborted in some certain intermediate step.

(2.4) Generate index numbers
If the security test passes and then discards all test
particles, each voter now has only one particle left. Each
voter then measures his or her particle in the compu-
tational basis. This will generate an index number for
each voter. Index numbers of all voters form an index
array, dk ∈ {0, 1, · · · ,m− 1}. dk indicates anonymously
that dkth ballot box is the box for Vk to cast vote. Since

the security has tested, the only left copy of |Sn〉 is in-
tact according to theorem 2. Here d0, d1, · · · , dn−1 ∈ Pn

n .

Step 3. Vote casting.

(3.1) Vote casting
After steps 1 and 2, each voter Vk has n ballot numbers,
r0,k, r1,k, · · · , rn−1,k, and one index number, dk. Now
voter Vk votes to the candidate vk ∈ {0, 1, · · · ,m − 1},
by adding vk to rdk,k. He or she then renews ballot
numbers r′jk = (r′0,k, r

′
1,k, · · · , r′n−1,k), in which

r′j,k =

{
rj,k + vk mod m if j = dk ,

rj,k if j 6= dk .
(11)

All voters publish all the updated ballot numbers
through simulation broadcast channels [25, 27]. At last
we have a vote matrix, r′j,k, which is available for every
party at the same time.

(3.2) Self-tallying
With the vote matrix, each party, who is interested in
the voting result, can count the votes for each candidate.
They take the summation of each row,

Rj =

n−1∑

k=0

r
′

j,k mod m , (12)

=
n−1∑

k=0

rj,k + vk0 mod m . (13)

Here dk0 = j. Therefore {R0, R1, · · · , Rn−1} is a per-
mutation of the votes {v0, v1, · · · , vn−1}. The number of
votes candidate Vi got is given by

Ni =
∑

Rj=i

1 , (14)

for i = 0, 1, · · · ,m− 1.

(3.3) Security check
Each voter Vk needs to verify that Rdk

= vk. If the
answer is yes, it indicates that his or her vote is counted
correctly; otherwise the protocol is aborted since the
voting step is compromised.

B. Example

To illustrate the protocol, we give a simple example
(see Table. I) with n = 4 voters and m = 3 candidates.
For simplicity, we assume there is no eavesdrop or attack
happened. Thus we ignore the security tests (steps (1.3),
(2.3) and (3.3)). After executing step 1, suppose ballot
matrix held by 4 voters are

rj,k =




0 1 2 0
2 2 1 1
1 0 2 0
0 1 1 1


 . (15)
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After step 2, assume the index numbers are

(d0, d1, d2, d3) = (1, 0, 3, 2) . (16)

Then in step 3, assume the four voters V0, V1, V2 and V3

cast votes

(v0, v1, v2, v3) = (1, 2, 1, 0). (17)

The voting and self-tallying processes are described in
Table. I. The final published results are

(R0, R1, R2, R3) = (2, 1, 0, 1) (18)

which is indeed a permutation of the votes vk as we ex-
pected.

Example of SQAV

V0 V1 V2 V3 Rj

r
′

0,k 0 1+2 2 0 2
r
′

1,k 2+1 2 1 1 1
r
′

2,k 1 0 2 0+0 0
r
′

3,k 0 1 1+1 1 1

TABLE I. A simple example of SQAV with n = 4 and m = 3.
Each voter adds his or her votes to the ballot assigned by
his or her index number. The tallying results are calculated
according to Eq. (12).

IV. PRIVACY ANALYSIS

Privacy is the primary property of a SQAV protocol.
In this section, we focus on discussing the privacy of our
SQAV and other properties will be given in section VI.
Generally, the top priority is to protect the privacy of
each voter. That is, no outsider or voters should know
which vote is cast by whom, except the one by himself or
herself. In our SQAV, the attacker could be an outside
eavesdropper, one dishonest voter [28, 29] or an adversary
which includes some dishonest voters. If an attacker suc-
cessfully eavesdrops the ballot random numbers or index
number of the voter Vk without being detected, he or she
can easily know which candidate Vk votes for. Therefore,
preserving privacy in our SQAV requires to prevent ballot
numbers and index numbers from being eavesdropped.
The security tests in steps (1.3) and (2.3) are designed
to protect the ballot matrix, index array and the voting
process from being compromised.

A. Outside eavesdropper

For outside eavesdropper, Eve could intercept Sk or
Tk during step (1.2) or (2.2). Let’s consider that Eve in-
tercepts arbitrary x particles she would like to in Sk. If
x < n, then there is a chance that all x particles are hap-
pen to be among the n particles which are not included

in the tests. Actually the probability of this happening
is

Pe =

(
n

x

)/(n+ nδ0
x

)

=
n!

(n− x)!

(n+ nδ0 − x)!

(n+ nδ0)!

=
n−x+1∏

k=n

k

k + nδ0
(19)

∼ O((
1

δ0
)x) , (20)

which is approaching to zero if we make the security
strength δ0 large enough. Actually the more particles Eve
intercepts, the faster the probability that she could pass
the security check goes to zero. Similarly we could argue
that the probability of Eve intercepting and modifying Tk

in Step 2 without being found is negligible. Therefore,
for large enough δ0, δ1, the disturbed particles cannot
escape from the security tests in steps (1.3) and (2.3).
Let’s consider another scenario. Assume Eve inter-

cepts and modifies pj0,k in Sk thus changing the j0th
copy of |Xn〉. Suppose that the new state due to Eve’s
disturbance is |φe〉. The probability of all security tests
in Step (2.3) are passed is

Pe = (
1

2
PC +

1

2
PF )

nδ0 , (21)

where

PC =
∑

∑
k jkmod m=0

|〈φe|j0, j1, · · · , jn−1〉C |2 , (22)

PF =
m−1∑

j=0

|〈φe|j, j, · · · , j〉F |2 . (23)

Since 〈φe|Xn〉 6= 1 according to theorem 1, PC +PF < 1.
Therefore, for large enough δ0,

Pe → 0 . (24)

The argument for Eve modifying the index number is
similar. Eve cannot pass the security tests if δ1 is large
enough based on theorem 2. In summary, as long as the
security strength δ0, δ1 are large enough, the attack from
outside eavesdropper can be prevented.

B. The dishonest voters cannot eavesdrop the

ballot numbers without being detected

In the step 1, to gain the information of ballot numbers
of honest voters, the dishonest voters could cooperate to
attack the particles during their transmission in step (1.2)
and announce the wrong results to avoid being detected
by the honest voters in step (1.3). Since V0 is the only
voter who prepares and distributes the quantum states, it
seems that V0 plays a different role from the other voters.
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To analyze the possible attacks from dishonest voters in
more detail, two cases: (1) V0 is honest and (2) V0 is
dishonest, are considered.
For the case (1), without loss of generality, we suppose

there are l dishonest voters, Vi0 , Vi1 , · · · , Vil−1
. The most

general attack by the dishonest voters is that they inter-
cept some particles during the transmission from V0 to
honest voters and then they perform an unitary opera-
tion (attack operation) on the intercepted particles and
an auxiliary system to yield a new state, denoted by |Φ〉,
of the composite system. To avoid being detected by
the honest voters in step (1.3) when they measure their
particles in their hands with the fourier basis and the
measurement outcomes are required to be the same, |Φ〉
should be in the form

|Φ〉 =

m−1∑
j=0

|j′〉0|j′〉j0 · · · |j′〉jn−l−2
|φj〉

√
m

, (25)

where |φj〉 are the states of the composite system of l
particles sent from V0 to the dishonest voters and the
auxiliary system (denoted by system E0), and the sub-
scripts 0, j0, j1, · · · , jn−l−2 represent the particles held by
honest voters V0, Vj0 , Vj1 , · · · , Vjn−l−2

. It can be rewrit-
ten in the computational basis as

|Φ〉 =
m−1∑

k0,kj0 ,··· ,kjn−l−2
=0

|k0〉|kj0〉 · · · |kjn−l−2
〉

m
n−l+1

2

⊗|ϕk0kj0 ···kjn−l−2
〉, (26)

where |ϕk0kj0 ···kjn−l−2
〉 =

m−1∑
j=0

exp (
2πij(k0+kj0+···+kjn−l−2

)

m )|φj〉 is the unnor-

malized state vector of system E0. The dishonest
voters could measure the system E0 and obtain some
|ϕk0kj0 ···kjn−l−2

〉 to infer the measurement outcomes

k0kj0 · · · kjn−l−2
of honest voters in step (1.4). From the

form of |ϕk0kj0 ···kjn−l−2
〉, it is easy to see that, for any two

different outcomes k0kj0 · · · kjn−l−2
and k′0k

′
j0 · · · k′jn−l−2

such that k0kj0 · · · kjn−l−2
= k′0k

′
j0 · · · k′jn−l−2

mod m

, |ϕk0kj0 ···kjn−l−2
〉 = |ϕk′

0k
′

j0
···k′

jn−l−2
〉. This means

that the dishonest voters can only at most know the
information about the sum k0kj0 · · · kjn−l−2

mod m by
measuring the system E0. However, this attack is trivial
in the sense that without any eavesdropping attack the
dishonest voter can cooperate to directly infer the sum
of measurement outcomes (ballot numbers) of honest
voters after executing the step (1.4).
For the case (2) that V0 is dishonest, we assume there

are other l dishonest voters Vi0 , Vi1 , · · · , Vil−1
. The most

general attack for them are similar to the case (1). The
only difference could be that the dishonest voters can di-
rectly prepare and distribute fake states to the honest
voters instead of intercepting the particles. To avoid be-
ing detected by honest voters, these states should be in
the form similar to Eq. (25) or (26). From the above

analysis for case (1), it is not hard to draw the same con-
clusion as case (1) that, in order to avoid being detected,
the dishonest voters can only perform a trivial attack to
obtain the sum of ballot numbers of the honest voters.

C. The dishonest voters cannot eavesdrop the

index numbers without being detected

In step 2, to eavesdrop the information of index num-
bers of honest voters, the dishonest voters could also at-
tack the particles during their transmissions in step (2.2)
and announce the wrong results to avoid being detected
by the honest voters in step (2.3). Just as analyzing
eavesdropping the ballot numbers in the last subsection,
we also consider two cases: (1) V0 is honest and (2) V0 is
dishonest.

For the case (1), we also assume there are l dishonest
voters, Vi0 , Vi1 , · · · , Vil−1

. The most general attack for
them is that, they first intercept some transmitted parti-
cles in step (2.2), entangle them with an auxiliary system
prepared in advance and then return the operated parti-
cles to honest voters. The state of the whole composite
system is denoted by |Ψ〉. To elude detection in step
(2.3), it is required that all the measurement outcomes
should be distinct when measuring each particle held by
honest voter in the fourier basis, and thus |Ψ〉 should be
of the form

|Ψ〉 =
∑

S∈Pn−l
n

(−1)τ(S)F⊗(n−l)|S〉√
|Pn−l

n |
⊗ |uS〉, (27)

where S = s0sj0 · · · sjn−l−2
. |uS〉 is the state of com-

posite system (denoted by E1) of l particles sent to
the dishonest voters and auxiliary system. Pn−l

n =
{x0x1 · · ·xn−l−1|x0, x1, · · · , xn−l−1 ∈ Zn, ∀j 6= k, xj 6=
xk} is the set of all the (n − l)-permutations of Zn

and |Pn−l
n | = n!

l! is its size. Pn−l
n can be divided into(

n
n−l

)
= n!

(n−l)!l! subsets, each of which corresponds to the

set of all the (n−l)! permutations of a (n−l)-combination
of Zn. In addition, any two states |uS0〉 and |uS1〉 such
that S0 ∈ Pn−l,w0

n , S1 ∈ Pn−l,w1
n and w0 6= w1 should

be orthogonal to each other, i.e., 〈uS0 |uS1〉 = 0. If not,
the dishonest voters cannot deterministically know sub-
set Pn−l,w

n in which the honest voters’ measurement out-
comes are, and thus they cannot announce the correct
measurement outcomes to avoid being detected. Rewrite
|Ψ〉 in the computational basis, we have

|Ψ〉 = n−n−l
2

√
|Pn−l

n |

∑

T∈Rn−l
n

|T 〉 ⊗ |vT 〉, (28)

where T = t0tj0 · · · tjn−l−2
. Rn−l

n =
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{x0x1 · · ·xn−l−1|x0, x1, · · · , xn−l−1 ∈ Zn} and

|vT 〉 =
∑

S∈Pn−l
n

(−1)τ(S) exp(
2πi(s0t0 +

∑n−l−2
k=0 sjk tjk)

n
)|uS〉

=
∑

w

∑

S∈Pn−l,w
n

(−1)τ(S) exp(
2πi(s0t0 +

∑n−l−2
k=0 sjk tjk)

n
)|uS〉.

{|vT 〉} are the unnormalized state vectors of system E1.
To avoid being detected by the honest voters who mea-
sure their particles in the computational basis in the step
(2.3) and the measurement outcomes are required to be
distinct, two conditions should be satisfied: (a) in Eq.
(28) there is no terms |vT 〉 for T /∈ Pn−l

n , or equiva-
lently, T ∈ Qn−l

n = {x0x1 · · ·xn−l−1|x0, x1, · · · , xn−l−1 ∈
Zn, ∃j 6= k, xj = xk}; (b) any two states |vT0〉 and
|vT1〉 for T0 ∈ Pn−l,w0

n , T1 ∈ Pn−l,w1
n and w0 6= w1

should be orthogonal to each other, i.e., 〈vT0 |vT1〉 =
0. Here we focus on analyzing what |Ψ〉 (in Eq.
(28)) should be to satisfy the condition (a). Since
〈uS0 |uS1〉 = 0 for S0 ∈ Pn−l,w0

n , S1 ∈ Pn−l,w1
n and

w0 6= w1, the condition (a) is equivalent to the one that
∑

S∈Pn−l,w
n

(−1)τ(S) exp(
2πi(s0t0+

∑n−l−2
k=0 sjk tjk )

n )|uS〉 = 0

for arbitrary w and arbitrary T ∈ Qn−l
n . To satisfy

this condition, for arbitrary w, all the |uS〉 such that
S ∈ Pn−l,w

n should be equal (denoted by |uw〉), which is
implied by the the corollary 1 of Appendix. Thus |vT 〉
can be rewritten as

|vT 〉 =
∑

w

∑

S∈Pn−l,w
n

(−1)τ(S)

exp(
2πi(s0t0 +

∑n−l−2
k=0 sjk tjk)

n
)|uw〉. (29)

Once the dishonest voters successfully elude the eaves-
dropping check process in step (2.3), they could measure
the system E1 and get some |vT 〉 to infer the index num-
bers T = t0tj0 , · · · , tjn−l−2

of honest voters in step (2.4).
However, from the form of |vT 〉 in Eq. (29), it is easy to
verify that for any two sequences T0, T1 which are in the
same subset Pn−l,w

n , |vT0〉 = |vT1 〉. Therefore, the dis-
honest voters can at most know the information about
which subset (i.e., w) the honest voters’ index numbers
are in. However, this general entangle-measure attack is
trivial in the sense that the dishonest can cooperate to
obtain this information without any attack.

For the case (2) that V0 is dishonest, the general at-
tack performed by them would be the same as the case (1)
except that the dishonest voters would prepare and dis-
tribute the fake states in the form similar to the Eq. (27)
to the honest voters instead of intercepting the particles
in step (2.2). According to the analysis in case (1), we
can conclude that the dishonest voters cannot obtain the
index numbers of honest voters without being detected.

V. GENERALIZE TO ANONYMOUS

MULTI-PARTY COMPUTATION

One important feature of SQAV is to make each vote
open without any relation with any voter. Actually it
provides a mechanism to implement a class of multi-
party tasks. That is, our protocol can be as useful as for
voting as long as a multi-party activity which requires
to broadcast the data of each party anonymously.
Therefore we define a more general class of problem,
anonymous multi-party computation (AMC) as follows.

Definition Anonymous multi-party computation
is a task to compute a function of the form

f(y00 , · · · , yi0−1
0 , y01, · · · , yi1−1

1 , y0n−1, · · · , y
in−1−1
n−1 ) by

n parties. The function f is invariant under the per-
mutation of integer inputs {yik}. Each party, Pk, feeds

y0k, · · · , yik−1
k in the function anonymously and obtains

the result without the other person assisted. All the
inputs are bounded by 0 ≤ yk < m.

The protocol for AMC is very similar to the SQAV.
Step 1. P0 prepares n̄+nδ2 copies of m level n-particle

state |Xn〉, where n̄ =
∑n−1

k=0 ik. Then P0 keeps the col-
umn S0 to himself and then distribute Sk to Pk. Here
the particle columns Sk are defined as in the step(1.2) of
our previous quantum anonymous voting protocol. Af-
ter distribution, each party Pk executes the security test
procedure in step (1.3). If all n tests are passed, each
party Pk measures his or her n̄ particles so again there is
a ballot column

rj,k =




r0,k
r1,k
...

rn̄−1,k


 . (30)

Step 2. P0 prepares 1 + nδ3 copies of |Sn̄〉 and dis-
tributes particle columns T∑k−1

t=0 it
, · · · , T∑

k
t=0 it−1 to Pk

(k ≥ 1), while keeping the particle columns T0, · · · , Ti0−1

. Here the particle columns Tk are defined as in the
step(2.2) of our previous quantum anonymous voting pro-
tocol. In order to protect from attack, each party is
required to choose δ3 copies of |Sn̄〉 to exam if |Sn̄〉 is
intact. If all tests are passed, each party Pk measures
the remaining particles with computation basis and then
there are index arrays d∑k−1

t=0 it,k
, · · · , d∑k

t=0 it−1,k, where

di,k ∈ {0, 1, · · · , n̄− 1}.
Step 3. Finally each party addes each of his or her

data to the ballot number decided by the corresponding
index number. And we have a data matrix r′j,k. Finally
every party could calculate

Rj =

n∑

k=0

r′j,k mod m , (31)

{Rj} is a permutation of all the data
⋃
yij . Therefore all

the data are broadcasted anonymously.
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Step 4. With holding all data, each party can obtain
the result of

f(y00 , ..., y
i0−1
0 , y01 , ..., y

i1−1
1 , y0n−1, · · · , yin−1−1

n−1 )

through simple calculation by himself or herself.
Actually, AMC is a subclass of secure multi-party com-

putation (SMC) problem, in which a number of parties
also jointly compute a function over their inputs while the
inputs are kept private. SMC focuses on function result
without publication of all inputs. To illustrate it, we give
a simple example in which three parties want to jointly
compute the function f(y0, y1, y2) = y0+y1+y2 over their
inputs y0, y1 and y2. Suppose y0 = 2, y1 = 3, y2 = 6,
by SMC, they have the result f(y0, y1, y2) = 11. How-
ever, each party can only know the sum of the inputs
of the other two parties. By AMC, in addition to ob-
tain the result f(y0, y1, y2) = 11, every party also gets
a permutation of the original inputs of others. For ex-
ample, (3, 6, 2) and the index of his or her own input is
only known to himself or herself. As a result, P0 knows
(y1, y2) = (3, 6) or (6, 3), P1 knows (y0, y2) = (2, 6) or
(6, 3) and P2 knows (y0, y1) = (2, 3) or (3, 2). In fact, for
some particular tasks, the function result leads to open
all inputs. In this sense, there is no difference between
AMC and SMC. In the following, we give two examples
to explain this.

A. Anonymous broadcast

The simplest application of AMC is to implement
anonymous broadcast (AB). AB channels are primitives
of many anonymous communication protocols.
An anonymous n-party broadcast task [16] is to pub-

lish the datum yk ∈ {0, 1, · · · ,m− 2} held by sender Pk

anonymously and all parties obtain yk at the same time.
In this scenario, the protocol is basic same as SQAV with
m candidate and n voters. If a sender would like to
broadcast message y, he or she just needs to ‘vote’ for
the ‘candidate’ y following the protocol in Sec. III. How-
ever, if a party does not want to send any message, he or
she just needs to ‘vote’ for the ‘candidate’ ¯m− 1. Finally
each Rk ∈ {0, 1, · · · ,m− 2} will be the message sent by
one of the senders. Therefore, each sender broadcasts the
intended message anonymously.

B. Anonymous ranking

Anonymous ranking (AR) [23] is an important problem
in AMC and has significant practical applications [23].
An AR task generally involves two steps. 1) each party

needs to broadcast his or her data yk = {y0k, y1k, ..., yik−1
k }

to the community anonymously. 2) Each one could rank
the published data by himself or herself and obtain the
rank of his (her) data anonymously. Obviously the first
step could be done safely by using our AMC protocol.

Finally, similar to the self-tallying in SQAV, self-ranking
is obtained.

VI. DISCUSSION

We discuss in detail how our SQVA ensures privacy in
Sec. IV. However, except being able to keep privacy for
each voter, our protocol has several other nice properties
which are not fulfilled by other existing protocols [3, 17–
21] at the same time.
1) Self-tallying. In our protocol, any voter or other

third party, who is interested in voting results, can tally
the votes by himself or herself by counting the votes in
{Rj} in step (3.2). Through simple calculation, they can
obtain the voting result.
2) Non-reusability. In our voting protocol, each voter

cannot cast more than one vote. More specifically, a voter
cannot vote one candidate more than once or vote more
than one candidate. Suppose voter Vk wants to vote twice
vk and ve in step (3.1). To do so, he or she first casts
vk to the ballot box decided by his or her index number,
dk as usual. Then he or she casts ve to another ballot
box labeled by de. However since the index array {dk}
is a permutation of Zn, de must be the index number
of another voter Vj . Therefore Vj will find that Rdj

=
vj+ve 6= vj mod m and knows that someone cheats thus
aborting the voting protocol. Our protocol ensures that
each voter only has one vote and he or she can only use
it once.
3) Verifiability. In the step (3.3) of our protocol, each

voter can verify if his or her vote has been modified by
attackers. As long as Vk finds out Rdk

6= vk, he or she
knows that his or her vote has not been counted correctly.
4) Fairness. If a voter could know some useful infor-

mation about other votes beforehand, he or she might
change his or her mind thus voting for another candidate
to his or her benefit. In our protocol, the voters vote
only in the step (3) and the vote tally is obtained by do-
ing statistics on Rk which is the sum over the numbers
r′j,k. However, the numbers r′j,k are announced via simul-

taneous broad channels in the step (3.1), which means
that each voter cannot acquire the other voters’ informa-
tion on r′j,k and thus cannot obtain a partial vote tally
beforehand. Therefore, fairness can be maintained.

VII. CONCLUSION

We have presented a quantum protocol for implement-
ing the task of anonymous voting with the help of two
entangled quantum states, |Xn〉 and |Sn〉. Through our
protocol, any individual party can acquire a permutation
of all the votes, which makes anyone can tally the votes by
himself or herself without resorting to a third-party tally
man. The protocol has been demonstrated to possess the
properties of privacy, self-tallying, non-reusability, verifi-
ability and fairness. We also generalize our SQAV to the
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more general AMC task. Our generalized protocol could
let each party broadcast his or her data anonymously and
safely to be further fed into AMC function.

An interesting open question is whether our protocol
can be used to implement more tasks on AMC or SMC.
This deserves further investigations in the future.
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Appendix A: Proof |Sn〉 is n-lateral rotationally

invariant

Property 1 A n dimensional quantum state on Hilbert
space Hn is the superposition of computational basis
{|i〉C | i = 0, 1, · · · , n− 1}. Consider state |Sn〉 of n such
particles on H⊗n

n in the following form

|Sn〉 =
∑

S∈Pn
n

(−)τ(S)|S〉 (A1)

≡
∑

S∈Pn
n

(−)τ(S)|s0s1, · · · , sn−1〉. (A2)

Consider another basis {|i′〉} connected with the compu-
tational basis by a unitary transformation U , where

|i〉 =
∑

j

Uji|j′〉 . (A3)

Then in this new basis the state |Sn〉 takes the same form
up to a global phase factor φ. That is,

|Sn〉 = eiφ
∑

M∈Pn
n

(−)τ(M)|M ′〉 (A4)

≡ eiφ
∑

M∈Pn
n

(−)τ(M)|m′
0m

′
1 · · ·m′

n−1〉 . (A5)

Here Pn
n = {x0x1 · · ·xn−1|x0, x1, · · · , xn−1 ∈ Zn, ∀j 6=

k, xj 6= xk} and the phase factor is given by

eiφ = det(U) . (A6)

Proof : Expand Eq.(A2) in the new basis by using the

unitary transformation Eq.(A3), we have

|Sn〉 =
∑

S∈Pn
n

(−)τ(S)
n−1∑

m0=0

Um0,s0 |m′
0〉 ⊗ · · · ⊗

n−1∑

mn−1=0

Umn−1,sn−1 |m′
n−1〉 (A7)

= (
∑

M∈Pn
n

+
∑

M/∈Pn
n

)
[ ∑

S∈Pn
n

(−)τ(S)Um0,s0Um1,s1 · · ·

Umn−1,sn−1

]
|M〉 (A8)

= (
∑

M∈Pn
n

+
∑

M/∈Pn
n

) det(Umj ,si)|M〉 (A9)

if M /∈ Pn
n , ∃s 6= t such that ms = mt, then there are

two same columns for matrix Umj,si . It means Ums,si =
Umt,si . Therefore detUmj ,si = 0 and we have

|Sn〉 =
∑

M∈Pn
n

det(Umj ,si)|M〉

=
∑

M∈Pn
n

(−)τ(M) det(Uj,si)|M〉

=
∑

M∈Pn
n

(−)τ(M) det(U)|M〉

= eiφ
∑

M∈Pn
n

(−)τ(M)|M〉 (A10)

�

Appendix B: Proof of Theorem 2

To prove the theorem 2, we first give two lemmas and
one corollary.

Lemma 1 Let q be an arbitrary element of
{1, 2, · · · , n − 1}, and s0, s1, · · · , sq−1 ∈ Zn be dis-

tinct. If
∑q−1

j=0 exp(
2πisj t

n )αj = 0 always holds for any
t ∈ Zn, we have α0 = α1 = · · · = αq−1 = 0.

Proof : If
∑q

j=0 exp(
2πisj t

n )αj = 0 always holds for any
t ∈ Zn, we have linear equations

A




α0

α1

...
αq−1


 =




0
0
...
0


 , (B1)

where A is a n × q matrix with elements

Ajk = exp(2πi(j−1)sk
n ) = (exp(2πiskn ))j−1. Taking

the first q rows of A as a new square matrix A with
size q × q , it is easy to see that A is a Vandermonde
matrix [30]. Since s0, s1, · · · , sq−1 are distinct, the

determinant of A is non-zero and thus the rank of A is q.
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Consequently, the above Eq. (B1) has the only solution
α0 = α1 = · · · = αq−1 = 0.

Lemma 2 Letm be an arbitrary element of {2, 3, · · · , n},
Rm

n = {x0x1 · · ·xm−1|x0, x1, · · · , xm−1 ∈ Zn}, Pm
n =

{x0x1 · · ·xm−1|x0, x1, · · · , xm−1 ∈ Zn, ∀j 6= k, xj 6= xk}
and Qm

n = {x0x1 · · ·xm−1|x0, x1, · · · , xm−1 ∈ Zn, ∃j 6=
k, xj = xk}. Apparently, Pm

n ∩ Qm
n = ∅ and Rm

n =

Pm
n ∪Qm

n . Divide Pm
n into

(
n
m

)
= n!

(n−m)!m! subsets, each

of which corresponds to the set of all the m! permuta-
tions of a m-combination of Zn, denoted by Pn,w

n (w =
0, 1, · · · ,

(
n
m

)
− 1). For an arbitrary subset Pm,w

n , if the
equation

∑

S∈Pm,w
n

(−1)τ(S)
m−1∏

j=0

exp(
2πisjtj

n
)βS = 0 (B2)

holds for any t0t1 · · · tm−1 ∈ Qm
n , we have that all the

βS for S ∈ Pm,w
n are equal.

Proof : We use the method of induction to prove this
lemma.
For m = 2, suppose P2,w

n = {ŝ0ŝ1, ŝ1ŝ0} with ŝ0 <
ŝ1, Q2

n = {t0t1|t0 = t1 = t ∈ Zn} and the equa-

tion
∑

s0s1∈P2,w
n

(−1)τ(s0s1) exp(2πi(s0t0+s1t1)
n )βs0s1 = 0

holds for any t0t1 ∈ Q2
n. Since t0 = t1 = t, the

equation can also be written as exp(2πi(ŝ0+ŝ1)t
n )βŝ0 ŝ1 −

exp(2πi(ŝ0+ŝ1)t
n )βŝ1 ŝ0 = 0. Obviously, βŝ0ŝ1 = βŝ1 ŝ0 is

obtained.
We assume that, for m = k and an arbitrary subset

Pk,w
n , if the Eq. (B2) always holds for any t0t1 · · · tk−1 ∈

Qk
n, all the βs0s1···sk−1

for s0s1 · · · sk−1 ∈ Pk,w
n are equal.

Now we analyze the case for m = k+ 1. We suppose the
(k+1)-combination is Pk+1,w

n corresponding to the set

Ŝ = {ŝ0, ŝ1, · · · , ŝk} with ŝ0 < ŝ1 < · · · < ŝk. Namely,
Pk+1,w
n is the set of all the (k + 1)! permutations of the

Ŝ. In this case, observing that sp (p ∈ {0, 1, · · · , k}) can
take each value from Ŝ in the Eq. (B2), the equation can
be written as

k∑

l=0

(
∑

S∈Pk+1,w
n ,sp=ŝl

(−1)τ(S) exp(
2πiŝltp

n
)

k∏

j=0,j 6=p

exp(
2πisjtj

n
)βS

)
= 0. (B3)

Noting that (−1)τ(S) = (−1)l−p(−1)τ(s0···sp−1sp+1···sk),
the Eq. (B3) can also be written as

k∑

l=0

(−1)l−p exp(
2πiŝltp

n
)

(
∑

S∈Pk+1,w
n ,sp=ŝl

(−1)τ(s0···sp−1sp+1···sk)
k∏

j=0,j 6=p

exp(
2πisjtj

n
)βS

)
= 0.

(B4)

We now prove that, if the Eq. (B4) holds for any
t0t1 · · · tk ∈ Qk+1

n , all the βS for S ∈ Pk+1,w
n are equal.

Specially, when t0 · · · tp−1tp+1 · · · tk ∈ Qk
n is fixed and tp

takes every value from Zn, the Eq. (B4) always holds.
Hence, according to the lemma 1, we can derive that for
arbitrary l ∈ {0, 1, 2, · · · , k},

∑

S∈Pk+1,w
n ,sp=ŝl

(−1)τ(s0···sp−1sp+1···sk)

k∏

j=0,j 6=p

exp(
2πisjtj

n
)βs0s1···sk = 0. (B5)

Here the Eq. (B5) holds for arbitrary
t0 · · · tp−1tp+1 · · · tk ∈ Pk,w

n . Based on the previ-
ous assumption for the case m = k, all the βS for
S ∈ Pk+1,w

n and sp = ŝl are equal. If the equation (B2)
holds for any t0t1 · · · tk ∈ Qk+1

n when m = k + 1, l and
p can take arbitrary values from {0, 1, 2, · · · , k}, we can
draw the conclusion that all the βS for S ∈ Pk+1,w

n are
equal.
By mathematical induction above, we can derive

that for an arbitrary m ∈ {2, · · · , n}, if the Eq. (B2)

holds for any t0t1 · · · tm−1 ∈ Qm
n , all the βs0s1···sm−1 for

s0s1 · · · sm−1 ∈ Pm,w
n are equal.

Now we give a corollary of lemma 2 below.

Corollary 1 Let m, Rm
n , Pm

n , and Qm
n be defined in

lemma 2. For an arbitrary subset Pm,w
n , if the equation

∑

s0s1···sm−1∈Pm,w
n

(−1)τ(s0s1···sm−1)
m−1∏

j=0

exp(
2πisjtj

n
)~βs0s1···sm−1

= ~0 (B6)

holds for any t0t1 · · · tm−1 ∈ Qm
n , where ~βs0s1···sm−1

are vectors and ~0 is zero vector, all the ~βs0s1···sm−1 for
s0s1 · · · sm−1 ∈ Pm,w

n are equal.
The only difference between this corollary and

lemma 2 is that βs0s1···sm−1 is generalized to the vector
~βs0s1···sm−1 . Hence, the corollary can be directly proved.

Now we use lemma 2 to prove theorem 2.
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Proof : Restricting the measurement basis to computa-
tion basis or fourier basis, the necessity of our theorem
can be directly obtained from the property 1.
Now we prove the sufficiency. On one hand, to satisfy

the condition that all the measurement outcomes are dis-
tinct when measuring each particle of |Θ〉 in fourier basis,
|Θ〉 must be in the form

|Θ〉 =
∑

S∈Pn
n

(−1)τ(S)βS(F|s0〉)⊗ · · · ⊗ (F|sn−1〉)

=
∑

S∈Pn
n

(−1)τ(S)βS(
∑

t0

exp(2πis0t0n )√
n

|t0〉)⊗ · · · ⊗ (
∑

tn−1

exp(2πisn−1tn−1

n )√
n

|tn−1〉)

=
∑

t0,t1,··· ,tn−1

∑

S∈Pn
n

(
(−1)τ(S)

n
n
2

n−1∏

j=0

exp(
2πisjtj

n
)βS)|t0t1 · · · tn−1〉, (B7)

where S = s0s1 · · · sn−1. On the other hand, to meet
the condition that all the measurement outcomes are dis-
tinct when measuring each particle of |Θ〉 in computa-

tion basis, the terms
∑

S∈Pn
n
(βS

∏n−1
j=0 exp(

2πisj tj
n )) for

t0t1 · · · tn−1 ∈ Qn
n are required to be equal to zero. From

lemma 2 (when m = n), to satisfy this requirement, we
can see that all the βS for S ∈ Pn

n are equal. Moreover,
to keep normalization of |Θ〉, we have

βS =
1√
n!
. (B8)

For any t0t1 · · · tn−1 ∈ Qn
n, according to

the definition of square matrix determinant,∑
S∈Pn

n

(−1)τ(S)

n
n
2

∏n−1
j=0 exp(

2πisj tj
n ) is in fact the de-

terminant of the n × n matrix V with elements

V jk =
exp(

2πitjk

n
)√

n
. Namely,

∑

S∈Pn
n

(−1)τ(S)

n
n
2

n−1∏

j=0

exp(
2πisjtj

n
) = det(V ). (B9)

Transposing pairs of rows of V to generate a new n × n

matrix Ṽ with elements Ṽjk =
exp( 2πijk

n
)√

n
, we have

det(V ) = (−1)τ(t0t1···tn−1) det(Ṽ ). (B10)

Taking the Eqs. (B8), (B9) and (B10) to the Eq. (B7)
and discarding the terms for t0t1 · · · tn−1 ∈ Qn

n in the Eq.
(B7), we have

|Θ〉 =
∑

T∈Pn
n

(−1)τ(T )

√
n!

|T 〉, (B11)

up to the global factor det(Ṽ ), where T = t0t1 · · · tn−1.
Therefore, |Θ〉 has the same form as |Sn〉 and the theorem
2 is proved.
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