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We study a variant of the quantum approximate optimization algorithm [ E. Farhi, J. Goldstone,
and S. Gutmann, arXiv:1411.4028] with slightly different parametrization and different objective:
rather than looking for a state which approximately solves an optimization problem, our goal is to
find a quantum algorithm that, given an instance of MAX-2-SAT, will produce a state with high
overlap with the optimal state. Using a machine learning approach, we chose a “training set” of
instances and optimized the parameters to produce large overlap for the training set. We then
tested these optimized parameters on a larger instance set. As a training set, we used a subset of
the hard instances studied by E. Crosson, E. Farhi, C. Yen-Yu Lin, H.-H. Lin, and P. Shor (CFLLS)
[arXiv:1401.7320]. When tested on the full set, the parameters that we find produce significantly
larger overlap than the optimized annealing times of CFLLS. Testing on other random instances
from 20 to 28 bits continues to show improvement over annealing, with the improvement being
most notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed
improvement on the hardest instances. This algorithm may be a possible application for near-term
quantum computers with limited coherence times.

PACS numbers:

I. INTRODUCTION

The quantum approximation optimization algorithm
(QAOA)[1, 2] is a recently proposed quantum optimiza-
tion algorithm, which itself is inspired by the quantum
adiabatic algorithm (QAA)[3]. Consider a classical opti-
mization problem. Typically, the optimization problem
will optimize some objective over bit strings of length
N . One encodes the objective function into a quantum
Hamiltonian HZ which is diagonal in the computational
basis, using N qubits to encode possible bit strings in
the obvious way, with the optimal value of the objective
function corresponding to the smallest value of HZ . Now
define an additional Hamiltonian HX , which is typically
selected to be a transverse magnetic field on each qubit
(the subscripts X,Z on H indicate whether the corre-
sponding Hamiltonian is diagonal in the Z basis or in
the X basis)

The QAA consists of first preparing the system in the
ground state of Hamiltonian HX (which can be done eas-
ily since HX does not couple the different qubits) and
then adiabatically evolving from HX to HZ . The sim-
plest adiabatic path chosen is Hs = (1−s)HX +sHZ , for
s ∈ [0, 1], although other paths have been considered[4].
If the evolution time T is sufficiently long compared to
the smallest inverse spectral gap along the path (we de-
note the minimum gap as ∆min), then with probability
close to 1 the final state will be the ground state of HZ

and hence will solve the given instance.

Unfortunately, there are theoretical arguments that
∆min can be super-exponentially small[6] (scaling as
N−cN for some constant c > 0) for some instances, and
so for these instances the time required for this adia-
batic condition to hold is even longer than the time 2N

required by an algorithm that iterates over spin configu-

rations (other numerics suggests that the gap may not be
quite as small as this for random instances[7]). Some im-
provements have instead been found by looking at faster
evolution times for which the adiabatic condition does
not hold[8] and we review this in more detail below.

The QAOA is based on the observation that to im-
plement the evolution under a time-dependent Hamilto-
nian on a quantum computer, the simplest method is
to Trotterize: first, decompose the evolution for a to-
tal time T into many small increments dt, small enough
that the Hamiltonian Hs is roughly constant on time dT .
Then, again for small enough dt, one may decompose
exp(iHsdt) ≈ exp(i(1−s)HXdt) exp(isHZdt). Thus, the
total evolution is decomposed into a product of rotations
by HX , HZ with certain angles, and the final state at the
end of the evolution has the form

ΨF = exp(iθXp HX) exp(iθZp HZ) . . . (1)

exp(iθX2 HX) exp(iθZ2 HZ) exp(iθX1 HX) exp(iθZ1 HZ)ΨI ,

where θXj , θ
Z
j are some parameters determined by the

evolution path, where the “number of steps” p = T/dt,
and ΨI is the ground state of HX (for all j, θXj , θ

Z
j are

small, of order dt, but for small j, θXj is larger than θZj
but for larger j the reverse is true). The QAOA then
instead restricts to a much smaller value of p (indeed,
Refs. 1, 2 study p = 1) but allows the angles θaj to be
chosen arbitrarily as variational parameters. The param-
eters may then be adjusted to optimize some objective
function; in Refs. 1, 2, this objective function was chosen
to be the expectation value 〈ΨF |HZ |ΨF 〉.

In Ref. 5, a similar ansatz was used for purposes of ap-
proximating ground states of interacting quantum Hamil-
tonians, such as the Hubbard model. For example, in this
case one might select HX to be a free fermion hopping
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term (or other term whose ground state can be easily pre-
pared) and HZ to contain the interactions. Some modifi-
cations to the ansatz of Eq. (1) were made, as described
in detail below. A larger value of p was chosen and a
numerical search over parameter values was performed.

In this paper, we again use the modified ansatz of
Ref. 5, but we apply it to the classical optimization prob-
lem of MAX-2-SAT. Instead of adjusting parameters to
minimize 〈ΨF |HZ |ΨF 〉, our objective function was the
overlap between ΨF and the true ground state of the
given instance. We refer to this as “targetting” the over-
lap. Our general approach is inspired by machine learn-
ing techniques; this differs from the worst-case analysis of
Refs. 1, 2. We consider p > 1 and we choose a “training
set” consisting of a small number of example instances.
This training set is chosen from the remarkable paper
[8] which searches for instances which are hard for the
QAA and then investigates whether a fast anneal or other
modifications outperforms the original algorithm. After
“learning” a set of parameter values which optimize the
average overlap on this training set, we consider various
test sets including many instances not in the training set.
We refer to a given sequence of parameters as a “sched-
ule”. An “annealing schedule” is a particular choice of
parameters which approximates a linear anneal, so that
the θXj decrease linearly in j while the θZj increase linearly
in j, while a “learned schedule” is a particular schedule
obtained by optimizing parameters on a training set.

What we find is that the schedules we have learned
give results on various random test sets which outperform
annealing schedules, including both slow and fast anneals
(a sufficiently slow anneal will always find the ground
state but for many of the test cases, the time required for
such an anneal would be enormous, and if one restricts
to anneals of modest time then a fast anneal outperforms
a slow one).

Choosing a test set much larger than the training set is
an essential step in showing the possible usefulness of this
algorithm. Learning a schedule is very costly as it is done
by a numerical search which itself consists of many steps
and in each step we must evaluate the objective function,
while testing the schedule requires a single evaluation of
the objective function on each instance.

Further, we trained on sizes N = 20 but tested on
sizes up to N = 28 where they continued to perform well
and we also tested on some MAX-3-SAT instances. All
the simulations in this paper were performed on classical
computers, taking a time exponential in N and limiting
the possible values ofN . However, if in the future a quan-
tum computer becomes available, the algorithm could be
run with larger values of N . By training on a small size
and testing on larger sizes, we raise the possibility that
one might do training runs on a classical computer at
smaller values of N and then testing runs on a quan-
tum computer at larger values of N (one could also train
on the quantum computer, of course, but time on the
quantum computer may be more expensive than time on
the classical computer; also, one might use the schedule

found on the classical computer at small values of N as
a starting point for further optimization of the schedule
at larger values of N on the quantum computer).

II. PROBLEM DEFINITION AND ANSATZ

The MAX-2-SAT problem is defined as follows. One
has N different Boolean variables, denoted xi. Clauses
are made up from the Boolean OR of two terms, each
term being a variable or its negation. Thus, possible
clauses are all of one of the four forms

xi ∨ xj , xi ∨ xj , xi ∨ xj , xi ∨ xj ,

where xi denotes the negation of a variable. The problem
is to find a choice of variables xi that maximizes the
number of satisfied clauses.

This problem can be cast into the form of an Ising
model as follows. Consider a system of N qubits. Let
σz
i denote the Pauli Z operator on spin i. Let σz

i = +1
correspond to xi being true and σz

i = −1 correspond to xi
being false. Then, a clause xi∨xj is true if 1

4 (1−σz
i )(1−

σz
j ) is equal to 0 and is false if 1

4 (1 − σz
i )(1 − σz

j ) = 1.
Indeed, each of the four possible types of clauses above
can be encoded into a term

1

4
(1± σz

i )(1± σz
j )

which is 0 if the clause is true and 1 if the clause is
false, with the sign ± being chosen based on whether
the clause contains a variable or its negation. Following
CFLLS [8] which did an annealing study of the MAX-
2-SAT problem, we define HZ to be the sum of these
terms 1

4 (1± σz
i )(1± σz

j ) over all clauses in the instance.
Similarly following the notation of CFLLS, we define

HX =
∑
i

1

2
(1− σx

i ), (2)

where σx
i is the Pauli X operator on spin i.

With these choices of HX , HZ , the ground state energy
of HX is equal to 0 and the ground state energy of HZ

is equal to the number of violated clauses. Both HX and
HZ have integer eigenvalues.

As mentioned, Ref. 5 used a modification of the ansatz
(1). This “modified ansatz” is

ΨF = exp[i(θXp HX + θZp HZ)] . . . (3)

exp[i(θX2 HX + θZ2 HZ)] exp[i(θX1 HX + θZ1 HZ)]ΨI .

The difference is that each exponential contains a sum of
two non-commuting terms, both HX and HZ . We note
that in the case of the ansatz of Eq. (1), the quantities θaj
indeed are angles in that ΨF is periodic in these quanti-
ties mod 2π if HX , HZ have integer eigenvalues, but for
the modified ansatz of Eq. (3) the quantities θaj are gener-
ally not periodic mod 2π. The modified ansatz was cho-
sen because we found that choosing the modified ansatz



3

lead to a significantly easier numerical optimization in
practice. In the gate model of quantum computation,
the simplest way to implement the modified ansatz is
to approximate each exponential exp[i(θXj HX + θZj HZ)]
using a Trotterization, which thus corresponds to a par-
ticular choice of parameters in the “original ansatz” of
Eq. (1), albeit with a larger p. In this paper we continue
to use this ansatz.

III. TRAINING AND COMPARISON TO CFLLS

A. Problem Instances

Our training sets are taken from examples in CFLLS
[8]. We briefly review the construction of the instances
there. These are randomly constructed instances with
N = 20 variables and 60 clauses. For each clause,
the variables i, j are chosen uniformly at random, and
also each variable is equally likely to be negated or not
negated, subject to the constraints that i 6= j and that no
clause appears twice, though the same pair of variables
may appear in more than one clause. Thus, it is permit-
ted to have clauses xi ∨ xj and xi ∨ xj but it is not per-
mitted to have xi ∨xj appear twice in the list of clauses.
From these random instances, further one retains only
those instances that have a unique ground state. In this
way, 202, 078 instances were generated. From these in-
stances, a subset of hard instances are determined. These
are instances for which an implementation of the QAA
using a linear annealing path Hs = (1 − s)HX + sHZ

and an evolution time T = 100 has a small success prob-
ability of less than 10−4 of finding the ground state. In
that paper, the Schrödinger equation was numerically in-
tegrated in continuous time. This left a total of 137 hard
instances. In the rest of the section, we simply call these
“instances”, without specifying that they are the hard
instances.

For each instance, CFLLS then determined whether
a faster anneal would lead to a higher probability of
overlap with the ground state than the slow anneal of
time 100 (other strategies were considered as well in that
paper, which we do not discuss here; we also remark
that other authors have also considered the possibility of
faster paths[9, 10]). The annealing time was optimized
individually for each instance (keeping the annealing time
smaller than 100), to maximize the squared overlap with
the ground state [11]. Below, when comparing learned
schedules to annealing, we are comparing the ratio of the
squared overlap for a learned schedule with that from this
optimized anneal. Our main result is that we are able to
learn schedules for which this ratio is significantly larger
than 1. If one instead made a comparison to a QAA
with a fixed annealing time for all instances of CFLLS,
this would lead to a further slight improvement in the
ratio.

B. Training Methods

Rather than training on the full set of 137 instances,
we chose training sets consisting of 13 randomly chosen
instances from this set. This was done partly to speed
up the simulation, as then evaluating the average success
probability could be done more rapidly on the smaller
set, but it was primarily done so that then testing on the
set of all instances would give a test set much larger than
the training set; this is needed to determine whether the
learned parameters generalize to other instances beyond
the training set.

Given a training set, our objective function is the aver-
age, over the training set, of the squared overlap between
the state ΨF and the ground state ofHZ . To compute the
objective function, we compute the state ΨF ; we do this
by approximating the exponentials exp[i(θXj HX+θZj HZ)]
by a Trotter-Suzuki formula, as

exp[i(θXj HX + θZj HZ)]

≈
(

exp(i
θZj
2n
HZ) exp(i

θXj
n
HX) exp(i

θZj
2n
HZ)

)n
,

where we chose n = 4. This value of n was chosen as
the smallest value of n that gives results for an annealing
schedule on the CFLLS data set which are consistent
with the continuous time limit; larger values of n will
likely lead to slight changes in the optimal parameters of
the learned schedule.

We treat this objective function as a black box, and
optimize the parameters in the schedule using the same
algorithm as in Ref. 5, except for modification of how we
choose the starting point for the search (also, we do not
use the annealed variational method of Ref. 5 to do the
search). Briefly, the optimization algorithm is: given an
“initial schedule” (i.e., a schedule chosen as the starting
point for the optiization), we use a greedy noisy search,
slightly perturbing the values of each θaj at random, ac-
cepting the perturbation if it improves the objective func-
tion for a total of 150 evaluations of the objective func-
tion. The step size for the greedy search is determined
in a simple way: every fifty trials, we count the num-
ber of acceptances. If the number is large, the step size
is increased and if the number is small the step size is
reduced[12]. After the noisy search, we then use Powell’s
conjugate direction[13] method until it converges. We
alternate Powell’s method and the noisy search until no
further improvement is obtained.

We did this numerical optimization for 5 different ran-
domly chosen training sets of 13 instances (10% of the
data for each). For each training set, we did 5 different
runs of the optimization for a variety of initial sched-
ules, thus giving 25 runs for each initial schedule. While
different choices of initial schedule led to very different
performances of the final schedule found at the end of the
optimization, for any given choice of initial schedule the
results were roughly consistent across different choices of
the training set and different optimization runs. Cer-
tain training sets tended to do slightly better (schedules
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FIG. 1: Dashed curves show θX and solid curves show θZ .
Four different learned schedules are shown; the format such
as X621 3.64 indicates that this curve is θX , for a schedule
started using initial schedule 6; the 21 indicate the particu-
lar training set and run (these numbers are not important,
as they are just keys to a random number generator but they
differentiate the three different curves that use initial schedule
3); the 3.64 indicates the average improvement for that sched-
ule. The Xavg, Zavg curves show the parameters averaged
over those four schedules.

trained on them tended to perform better when tested
on the full set as described in the next section) but in
general for an appropriate choice of initial schedules we
found that all choices of training sets and all runs of the
optimization with that initial schedule and training set
led to good performance on the full set.

C. Results

The learned schedules that performed well had a form
quite different from an annealing schedule. Instead, the
form of many of the good schedules was similar to that
in Fig. 1. The schedule begins with θX large and fairly
flat but θZ oscillating near zero. Then, at the end of the
schedule, the values are more reminiscent of an anneal,
with θZ increasing (albeit with some oscillations) and θX

decreasing fairly linearly.
To find the schedules shown in Fig. 1 required an ap-

propriate choice of initial schedule (described further be-
low). Instead, if we chose an initial schedule that was
an annealing schedule, the search over schedules would
become stuck in local optima that did not perform as
well.

After discovering this form after some experimenta-
tion, we studied a variety of schedules which had this
form. These schedules were labelled by a key ranging
from 2 to 14 (key values of 0, 1 corresponded to sched-
ules with a different form that did not perform well and
are not reported here). These schedules are shown in
Table I.

Key θX θZ

2 1111111111 0000000000
3 1111111110 0000000001
4 1111100000 0000011111
5 0000000000 1111111111
6 1111111111 Linear
7 1111100000 Linear
8 1111111110 000000001
9 1111111110 Linear
10 1111111110 Frozen
11 1111111150 0000000051
12 1111111150 Linear
13 1111111150 Frozen
14 Avg Avg

TABLE I: Initial schedules for θZj , θ
X
j . The 10 entries in a

line such as “1111111150” shows a sequences of θj for j =
1, ..., 10 in order. An entry 1 or 0 indicates a 1 or 0, while
5 indicates 0.5. “Linear” indicates a linear function, θZj =
0.05, 0.15, ..., 0.95 for j = 1, ..., 10. “Frozen” also indicates
a linear function, but with θZ held fixed during learning as
described in text. “Avg” indicates that the initial schedule is
the average schedule shown in Fig. 1.

The details of the schedules are not that important.
We simply report the variety of the schedules considered
for completeness and to show that all such choices led to
some improvement but that certain choices consistently
led to more improvement. Some of the schedules are
described as “Frozen”; in this case, the θZ variables were
not allowed to change during the learning process and
only the θX variables were allowed to change. Thus, the
final learned schedule had the same θZ variables as the
initial and this was chosen to be θZj changing linearly
as a function of j. These schedules may be simpler to
implement in hardware due to less need for complicated
control of θZ . They showed some improvement but not
quite as much as others.

The improvement is shown in Table II. The data in this
table includes all 137 instances, so it includes instances
which are in the training set; however, these instances
represent less than 10% of the test set. We report in
this table a “ratio of averages”. That is, we compute
the squared overlap of ΨF with the ground state for each
intance and average over instances. Then, we compute
the ratio of this average to the same average using the
optimized annealing times of CFLLS. The parameters
for certain schedules which performed well are shown in
Appendix A.

Another option to reporting the “ratio of averages” is
to report an “average of ratios”. This means comput-
ing, for each instance, the ratio of the squared overlap
of ΨF with the ground state for a given learned sched-
ule to the same overlap for an optimized anneal. Then,
averaging this ratio over instances. The result would be
different and would lead to a larger improvement because
the learned schedules do better on the harder instances
as shown in Fig. 2.
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Initial 0 1 2 3 4 Avg

2 1.4 2.0 1.7 1.9 2.2 1.8

3 4.2 3.6 3.5 3.3 3.8 3.7

4 2.5 2.4 2.4 2.3 2.4 2.4

5 2.4 2.3 2.4 2.4 2.4 2.4

6 2.9 3.0 3.1 3.3 2.6 3.0

7 2.4 2.0 2.3 2.2 2.1 2.2

8 3.5 3.5 3.4 3.5 3.7 3.5

9 2.7 3.2 2.8 3.1 3.4 3.0

10 2.5 2.2 2.1 2.4 2.1 2.3

11 4.4 4.2 4.2 4.1 4.1 4.2

12 3.1 2.9 3.3 3.5 3.1 3.2

13 2.0 2.4 2.3 2.0 2.0 2.1

14 4.5 4.5 4.3 4.5 4.4 4.4

Avg 3.0 2.9 2.9 2.9 3.0 2.9

TABLE II: Improvement compared to optimized annealing
times. The entries report the ratio of averages (see text).
First column “Initial” labels the initial schedule from table
I. Columns 0, 1, 2, 3, 4 label different training sets. Column
“Avg” is average of that row over training sets. Row “Avg”
is average of that training set over choices of Initial. One
can see that there is some variance from one training set to
another, but the performance is roughly consistent. The best
rows are 14, 11 and 8.
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FIG. 2: x-axis labels different instances. y-axis shows overlap.
Dashed curve is from learned schedule while solid curve is
for optimized anneal. Instance numbers differ from CFLLS
because instances are sorted by overlap for optimized anneal.

IV. TESTING ON RANDOM INSTANCES
WITH N = 20, 24 AND 28

In addition to testing against the instances of CFLLS,
to determine whether the learned schedules generalize to
larger sizes and other ensembles, we constructed further
problem instances for N = 20, 24 and 28. We repeated
the case N = 20, since the ensemble that we constructed
differs from that in CFLLS as we explain.

We took 60, 72 and 84 clauses, respectively, so that
the clause-to-variable ratio was maintained. We used the
same ensemble as in CFLLS, so that clauses are chosen
at random subject to the constraint that no clause ap-
pears twice and that the instance has a unique ground
state. However, rather than finding hard instances based
on a continuous time anneal at time T = 100, we used
a slightly different method . This was partly done to

speed up our search for hard instances; in CFLLS, fewer
than 1/1000 of the instances were hard by that standard.
However, it was primarily done to test the learned sched-
ules in a more general setting and to consider a range
of hardnesses to demonstrate that the learned schedules
perform relatively better on the harder instances.

In testing hardness, we used annealing schedules. Since
we will compare to a variety of annealing schedules,
we introduce some notation. Let L(p, x, z) denote the
schedule with p steps and θZj = zj/(p + 1) and θXj =
x(p+ 1− j)/(p+ 1).

We used L(10, 1, 1) to determine hardness, construct-
ing 3346 random instances and sampling from 6.8% of
the instances which had the smallest squared overlap
with L(10, 1, 1), yielding 170 instances (for N = 28, we
generated a smaller number of instances so that only 72
were retained). The reason for choosing 6.8% is that the
resulting ensemble had a difficulty for L(10, 1, 1) which
was roughly comparable to that of the CFLLS instances
(however, the actual distribution of instance difficulty is
different from CFLLS and so the value 6.8% is fairly arbi-
trary). On these instances, a comparison of various algo-
rithms is shown in Tables III and IV. We also include in
these tables results for the instances of CFLLS, as now
the tables compare the performance of various learned
schedules to L(10, 1, 1) rather than to an optimized an-
neal. For the instances described in this section, we only
compared to schedules of the form L(p, x, z) which give
a discrete approximation to an anneal, rather than com-
paring to anneal. This was done to simplify the numerics.
The results for the instances of CFLLS is that such sched-
ules give performance similar to that of a continuous time
QAA.

In these tables, the learned schedules are identified by
a pair such as 31(9). In this case, the number 31 is an ar-
bitrary key labelling the schedule. The number in paren-
thesis, 9 in this case, indicates that schedule 31 was ob-
tained by starting from initial schedule 9 in Table I. We
only give the keys here because we also later refer to cer-
tain schedules by key; in particular, number 154 which is
one of the best performing by several measures.

Note that while the learned schedules, in particular
154, improve over L(10, 1, 1), we find that slower an-
neals such as L(80, 1, 1) outperform the learned sched-
ules on the N = 20, 24 and 28 instances. However, on
instances from CFLLS, the slower annealing schedules
do significantly worse, with L(80, 1, 1) much worse than
L(10, 1, 1).

The reason for this can be seen by further dividing
the instances based on their hardness for L(80, 1, 1). We
binned the instances into 8 different groups depending
upon the squared overlap for L(80, 1, 1). Fig. 3 shows the
performance compared to L(10, 1, 1) of various schedules
for each bin. We find that learned schedule 154 (cho-
sen simply as it was the best example, we expect similar
performance from other learned schedules) outperform
L(10, 1, 1) everywhere, while the performance compared
to L(80, 1, 1) varies: it outperforms L(80, 1, 1) on the in-
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Overlap Ratio

Sched CFLLS N=20 N=24 N=28 CFLLS N=20 N=24 N=28

8 (8) 0.111 0.068 0.040 0.025 11.9 4.4 6.7 8.2

31 (9) 0.108 0.048 0.028 0.017 8.1 2.9 4.0 5.0

49 (9) 0.108 0.026 0.013 0.007 6.6 1.6 1.7 2.0

84 (11) 0.120 0.065 0.037 0.023 10.4 4.1 5.9 7.1

113 (12) 0.111 0.024 0.011 0.006 6.8 1.5 1.6 1.8

122 (12) 0.107 0.029 0.014 0.008 7.0 1.7 1.9 2.3

154 (14) 0.117 0.085 0.050 0.034 10.5 5.2 7.7 10.5

157 (14) 0.116 0.079 0.047 0.032 10.6 4.9 7.4 9.8

L(10,1,1) 0.025 0.019 0.009 0.004 1.0 1.0 1.0 1.0

L(10,2,2) 0.024 0.075 0.039 0.021 1.0 4.0 5.1 5.3

L(10,3,3) 0.011 0.105 0.058 0.032 0.5 5.8 8.3 8.3

L(10,4,4) 0.006 0.118 0.056 0.038 0.3 6.5 13.5 9.7

L(20,1,1) 0.028 0.073 0.028 0.022 1.3 3.9 6.4 5.4

L(40,1,1) 0.008 0.159 0.077 0.054 0.4 8.8 18.8 14.1

L(80,1,1) 0.0003 0.288 0.164 0.132 0.0 16.3 43.5 34.1

TABLE III: First column labels schedule. Next four columns
gives the average overlap for various test sets for each sched-
ule; N = 20, 24 and 28 refers to random instances con-
structed following procedure described in this section. Last
four columns give average (over instances) of ratio (of square
overlap) comparing to L(10, 1, 1). Note that the entry in the
last four columns is 1 for the schedule L(10, 1, 1) because there
it is being compare to itself.

Ratio

Sched CFLLS N=20 N=24 N=28

8 4.4 3.5 4.7 5.6

31 4.2 2.5 3.2 3.7

49 4.2 1.4 1.5 1.6

84 4.7 3.4 4.3 5.3

113 4.4 1.3 1.3 1.4

122 4.2 1.5 1.7 1.8

154 4.6 4.4 5.9 7.6

157 4.6 4.1 5.5 7.1

L(10,1,1) 1.0 1.0 1.0 1.0

L(10,2,2) 0.9 3.9 4.5 4.8

L(10,3,3) 0.4 5.5 6.8 7.2

L(10,4,4) 0.2 6.2 6.5 8.5

L(20,1,1) 1.1 3.8 3.3 4.9

L(40,1,1) 0.3 8.3 9.0 12.3

L(80,1,1) 0.01 15.0 19.2 29.8

TABLE IV: First column labels schedule. Next four columns
give ratio of average comparing to L(10, 1, 1) for various test
sets. Note that the entry in the last four columns is 1 for
the schedule L(10, 1, 1) because there it is being compared to
itself.

stances where L(80, 1, 1) does worst. On the instances
where L(80, 1, 1) does worst, even L(10, 1, 1) outperforms
L(80, 1, 1). This fits with the observed performance of
the learned schedule on the instances of CFLLS as those
instances were chosen to be difficult for a slow anneal.

Importantly, the data shows that as N increases the
ratio between the learned schedules and L(10, 1, 1) is in-
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FIG. 3: Ratio of averages for 8 different subsets of the
MAX-2-SAT instances with N = 20, chosen by bin-
ning by hardness for L(80, 1, 1). We compare various
schedules to L(10, 1, 1). Different colors label different
schedules. On hardest instances (those on the left side
of the graph), 154 has highest ratio (i.e., 154 is up-
permost of curves on left side of graph), followed by
L(20, 1, 1), L(30, 1, 1), L(10, 1, 1), L(40, 1, 1), L(80, 1, 1) in se-
quence.

creasing. This may partly be due to the fact that the
overlap for all schedules is decreasing with increasing N .

A. MAX-3-SAT

As a final example, we tested the performance of the
algorithm on MAX-3-SAT. Clauses were of the form
xi ∨ xj ∨ xk (or similar, with some variables negated).
Each variable in the clause was chosen independently
and uniformly and was equally likely to be negated or
not negated (so in this case it is possible to have a clause
such as xi ∨ xi ∨ xj which is just a 2-SAT clause or a
clause such as xi∨xi∨xj which is always true). We took
N = 20 variables and 120 clauses (clauses were chosen
independently and we allowed the same clause to occur
more than once). The clause to variable ratio was taken
6 to ensure that we are above the satisfiability phase
transition[17]. We then selected for instances which had
unique ground states. Finally we chose the hardest 6.8%
of instances based on overlap for L(10, 1, 1). The results
are shown in Fig. 4. We emphasize that we use the sched-
ules trained on MAX-2-SAT instances from CFLLS here,
even though this is a different problem.

V. TOY MODEL AND THEORETICAL
ANALYSIS

A. Toy Model

To better understand why the learned schedules per-
form well, we have constructed a toy model. We write
the model directly as an Ising model (it does not exactly
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FIG. 4: Ratio of averages for 8 different subsets of the
MAX-3-SAT instances with N = 20, chosen by bin-
ning by hardness for L(80, 1, 1). We compare various
schedules to L(10, 1, 1). 154 and 157 are both learned
schedules. Different colors label different schedules. On
hardest instances, 157 has highest ratio, followed by
154, L(20, 1, 1), L(10, 1, 1), L(40, 1, 1), L(80, 1, 1) in sequence.

correspond to a MAX-2-SAT instance since some of the
terms involve only a single variable). The model is re-
lated to a model studied in Refs. 14, 15 but with one
crucial modification; in those papers, a model was stud-
ied which has a large number of classical ground states.
All but one of those ground states form a cluster of solu-
tions which are connected by single spin flips, while the
remaining ground state is isolated from the others and
can only be reached by flipping a large number of spins.
It was shown that a quantum annealer will be very likely
to end at one of the ground states in the cluster, while
a classical annealer in contrast will have a much higher
probability of ending at the isolated ground state. We
modify this model so that it has only a single unique
ground state (the isolated state of the original model),
moving the others to higher energy. In this way, it be-
comes very difficult for a quantum annealer to locate the
ground state.

This is a model with N = 2K spins. As shown in Fig.
5, K of the spins form what is called the “inner ring”,
and are arranged in a ring with ferromagnetic couplings
of strength 1/4. The 1/4 is chosen to correspond to the
factor of 1/4 that arises when translating from a MAX-2-
SAT model to an Ising model; we chose to keep the mag-
nitudes of terms similar to the magnitudes of the terms
on the training set. Each of the other spins form what is
called the “outer ring”. The outer ring spins are not cou-
pled to each other; instead, each outer ring spin is coupled
to one inner ring spin (every outer ring spin is coupled
to a different inner ring spin), again with ferromagnetic
couplings of strength 1/4. Finally, on every outer ring
spin there is a magnetic field in the Z direction with
strength −1/4 while on all but one of the the inner ring
spins, there is a Z direction magnetic field with strength
+1/4. Thus, labelling the spins by i = 0, . . . , N − 1 with

- -

--

--

+ +

+

++

0

FIG. 5: Graph of the toy model considered for the case of
K = 6 with N = 12 spins. The edges indicate ferromagnetic
couplings between spins. All but one spin of the inner ring has
positive magnetic fields (indicated by + symbols), while all
the outer spins have negative fields (indicated by −) symbols
applied in the z-direction.

0 ≤ i < K corresponding to the inner ring, we have

HZ = −1

4

K−1∑
i=0

σz
i σ

z
i+1modK −

1

4

K−1∑
i=0

σz
i σ

z
i+K (4)

−1

4

2K−1∑
i=K

σz
i +

1

4

K−2∑
i=0

σz
i .

To better understand this model, suppose that instead
we added the Z direction magnetic field with strength
+1/4 to all spins on the inner ring, so that the last term

of HZ became 1
4

∑K−1
i=0 σz

i . This model, which is the

model studied in Refs. 14, 15, has 2K + 1 degenerate
ground states. The isolated ground state is the state with
σz
i = +1 for all i. The cluster of 2K ground states has
σz = −1 for all spins on the inner ring while the spins on
the outer ring are arbitrary. By removing the Z direction
field from one of the spins on the inner ring, the model
(4) has a unique unique ground state with σz

i = +1 for
all i while the cluster of states with σz = −1 on the inner
ring is now an excited state with energy 1/2 above the
ground state.

Now consider the effect of a small transverse magnetic
field as occurs near the end of an annealing path. The
energy of the unique ground state does not change to
linear order in the transverse field strength. However,
the energy of the cluster of states does change to lin-
ear order, by an amount proportional to the number of
spins. Thus, such a low order perturbation analysis sug-
gests a level crossing occuring at a transverse magnetic
field strength proportional to 1/N , i.e., a level crossing
in Hs for (1− s) ∼ 1/N . Of course, since Hs always has
a unique ground state, this level crossing must become
an avoided crossing. However, K ∼ N spins must flip to
move from the cluster to the isolated state, so one may
expect that the gap will be small, proportional to the
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K 154 L(10,1,1) L(80,1,1)

2 0.409 0.379 0.811

3 0.237 0.208 0.212

4 0.157 0.104 0.0182

5 0.1 0.0493 0.000683

6 0.0582 0.0233 1.25×10−5

7 0.0313 0.011 9.37×10−6

8 0.0169 0.00524 1.34×10−5

9 0.0095 0.00248 4.×10−6

10 0.00543 .00118 5.42×10−7

TABLE V: Absolute squared overlap for various values of
K, for learned schedule 154 and for annealing schedules
L(10, 1, 1) and L(80, 1, 1).

transverse magnetic field strength raised to a power pro-
portional to K. Thus, the gap will be of order N−const×N

for some positive constant (we give a more detailed anal-
ysis of this effect below, computing the gap to leading or-
der in perturbation theory). This argument for the small
gap above is closely related to the argument of Ref. 6,
and so this toy model may provide an interesting exam-
ple. It would be interesting if a super-exponentially small
gap could be proven in this particular case.

The performance of various schedules in this model is
shown in table V. For K = 2, the slow annealing schedule
L(80, 1, 1) outperforms the others, but already its success
probability is noticeably less than 1. For K = 3, the
slow anneal L(80, 1, 1) and the fast anneal L(10, 1, 1) have
comparable performance, and for increasing values of K,
the slow anneal becomes dramatically worse. This is due
to the spectrum of the model which has a single avoided
crossing with very small gap. Comparing L(10, 1, 1) to
154, we find that 154 is consistently better and becomes
relatively better as K increases. Both L(10, 1, 1) and 154
show a roughly exponential decay of the squared overlap
with increasing K, but the decay is slightly faster for
L(10, 1, 1).

Above, we removed the Z field from one of the inner
spins to break the ground state degeneracy. Another way
to do this is to vary the field strengths, keeping the same
field on all inner spins but making it slightly weaker. The
results are shown in Table VI, where we took the inner
field strength to be (1/4)(N − 1)/N on all spins (so that
the total field is the same as above). It is interesting
that this does not hurt the performance of the learned
schedule (see discussion of weighted MAX-2-SAT later).

A more quantitative calculation of the gap in this
model is given in Appendix B.

We also studied another toy model. This model has
N states (not N qubits, but rather an N dimensional
Hilbert space), divided into 3 subspaces of dimensions
N1, N2, 1 respectively, with N = N1+N2+1. The Hamil-
tonian HX was chosen to be a sum of two terms; the first
term was proportional to the projector onto the uniform
superposition of all states, while the second term was

K 154 L(10,1,1) L(80,1,1)

2 .422 .386 0.8

3 .265 .228 .191

4 .186 .122 .0124

5 .121 .0594 .000353

6 0.0704 0.0283 .000214

7 0.0379 .0135 .000113

8 .0204 .00647 3.98×10−5

9 .0115 .00309 6.79×10−6

10 .0066 .00147 2.15×10−7

TABLE VI: Absolute squared overlap for various values of
K, for learned schedule 154 and for annealing schedules
L(10, 1, 1) and L(80, 1, 1). All inner fields have same strength
but are reduced compared to outer fields. Total strength of
inner fields is same as in Table V.

proportional to the uniform projector onto the superpo-
sition of states in the second subspace (the subspace with
dimension N2). The Hamiltonian HZ was proportional
to the identity in each eigenspace, with the ground state
being the third subspace (of dimension 1) and the sub-
space of first excited states being the subspace of dimen-
sion N2. If we take N2 = 0, then this model is simply
an instance of database search (and Grover’s algorithm is
optimal[16]); likely there are algorithms similar to Grover
which are equally optimal for this model. However, our
goal was instead to test various schedules. We found that
if the second term in HX was chosen sufficiently strong,
then this would create a small gap: at intermediate val-
ues of s the ground state was concentrated on the second
subspace while at s = 1 the ground state was the third
subspace. It was in this case that the learned schedules
outperformed the annealing schedules.

B. Creating Excited States

These toy models suggest the following explanation for
the success of the learned schedules. Small gaps can cre-
ate difficulties for an annealing algorithm. These small
gaps can occur especially if one “basin of local minima”
has slightly higher energy than the true minimum of HZ

but is able to reduce its energy by more in the presence
of a transverse field. Suppose there is a single small gap
at some sc, with the gap very small that a very slow an-
neal will be required to stay in the ground state. In this
case, it might be desirable to be in an excited state at an
intermediate value of s (s < sc) and then to anneal more
rapidly so that a diabatic transition leaves the final state
close to the ground state for s > sc.

There are a variety of possible ways to produce this ex-
cited state. In Ref. 18, thermal excitation was suggested
as one possible mechanism. The optimized anneals of
CFLLS give another mechanism. Let us say that Tslow is
some characteristic timescale to stay in the ground state
for s near sc, while Tint is some intermediate timescale
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required to stay in the ground state for other values of
s. Thus, a fast anneal (faster than Tint) may lead to a
transition to an excited state at some small s, leaving
one in the appropriate excited state at s slightly smaller
than sc. In contrast a slower anneal (but still faster than
Tslow) such as L(80, 1, 1) will be slow enough to be close
to the ground state at an intermediate s < sc but will
be fast enough to have a diabatic transition at the small
gap and so will end at an excited state for s > sc (i.e.,
the time scale of the anneal is between Tint and Tslow).

Another strategy also tried in CFLLS was to deliber-
ately prepare the system in a randomly chosen first ex-
cited state at s = 0 and then run an anneal (the time
of this anneal might be longer than Tint but still faster
than Tslow) so that one is hopefully in the first excited
state at s slightly smaller than sc. Note that there are N
degenerate first excited states at s = 0 so the probability
of success of this method is at most 1/N . It was found[8]
that in fact the probability of success was close to 1/N .

However, the learned schedules in this paper give
a higher probability of success than this (significantly
higher than 1/N for most of the instances). Thus, we
conjecture that the success of the learned schedules is
that the behavior in the first steps (with an oscillating Z
term, and a large X) serve to drive the system into the
correct first excited state and then schedules conclude by
approximately following an anneal so that they end in
the ground state as a result of a diabatic transition when
the gap becomes small.

C. Modification to Schedules

The conjecture in the last subsection suggests a natu-
ral way to modify the schedules to further improve the
performance (at the cost of increasing the number of
steps). Suppose, as conjectured, that the initial steps of
the schedules serve to drive the system into the “correct”
first excited states while the final steps serve as an anneal.
This final anneal is fast enough that the system does a
diabatic transition back into the ground state. However,
since the gap minimum is super-exponentially small, even
a much slower final anneal would still do such a diabatic
transition (we have argued that the L(80, 1, 1) anneal suf-
fers from poor performance because even that anneal is
fast enough to do a diabatic transition from the ground
state to a first excited state). So, if more steps are avail-
able, it may be possible to slow down the final anneal and
improve performance: so long as the final anneal is fast
enough to do a diabatic transition (and, as we have ar-
gued, the relevant time scale is super-exponentially long),
a slower final anneal may improve performance by re-
ducing other diabatic transitions to even higher excited
states.

So, we took schedule 154 and modified the final steps;
we studied this on the toy model with all but one inner
ring spin having field strength 1/4 and the remaining
spin having no field. See the table in Appendix A for

K 154 Replace last two steps Replace last step

4 .157 .121 .183

6 0.0582 0.0699 .0818

8 .0169 .0163 .027

10 .0054 .0044 .0092

TABLE VII: Absolute squared overlap for various values of K,
for learned schedule 154 and for two modifications discussed
in text.

the particular parameters in schedule 154. Note that θZ

is monotonically increasing on the last 3 steps while θX

is monotonically decreasing. We tried then two different
modifications to the schedule: either remove the last 2
steps of schedule 154 and replace with them with 8 steps
in which θX decreased linearly from 0.8 to 0.1 and θZ

increased linearly from 1.3 to 2.0, or to remove the last
step and replace it with 6 steps in which θX decreased
linearly from 0.6 to 0.1 and θZ increased linearly from
1.6 to 2.1.

These particular number of steps and values of θX , θZ

were chosen for the following reasons. First, in our expe-
rience, having θ change by roughly 0.1 on a step is small
enough that the effect is similar to a continuous time an-
neal. Second, we chose the initial values of θX , θZ (the
values at the start of the added steps) to be similar to the
values in the learned schedule on the step immediately
previous.

We find that replacing the last 2 steps led to a slight
reduction in overlap in general on most sizes, but replac-
ing the last step led to a distinct increase in overlap. See
Table VII for details. We emphasize that no attempt was
made to optimize the parameters for the final steps; in-
deed, in general our experience with this problem is that
the results are fairly sensitive to the numbers chosen on
the early steps (certainly a change in a value on an early
step by 0.1 has a large effect on performance), so even the
fact that the performance only reduced slightly with this
replacement on the last 2 steps is some evidence that in-
deed the effect is similar to an anneal. More importantly,
replacing the last step shows that even further improve-
ment in performance is possible with longer schedules; it
would be interesting to test such a schedule on the MAX-
2-SAT problems and to try further improving this longer
schedule using training. Another possible schedule that
one might consider would be an annealing schedule with
a fast anneal at the start and a slow anneal at the end.

VI. DISCUSSION

We have applied a numerical search to find schedules
for a modification of the QAOA algorithm. These sched-
ules were trained on a small subset of instances with 20
bits, but were found to perform well on the full set of such
instances as well as related but slightly different ensem-
bles with 20, 24 and 28 bits. The performance of these
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schedules raises the hope that they may outperform an-
nealing on larger sizes and may be a useful application
for an early quantum computer.

As a caveat, we have only studied SAT problems. We
began a study of weighted SAT, where each clause comes
with some arbitrary energy cost for violating that clause.
As a first step to such a study, we simply tried giving
all clauses the same weight; this does not change the
ground state of HZ but simply scales HZ by some fac-
tor. However, the learned schedules did not perform well
even with this simple rescaling. By training the schedules
instead on a range of such weighted instances (for exam-
ple, training on a set of 10 random instances as well as
those instances rescaled by various factors) we were able
to slightly improve the ability to deal with this rescaling,
but the ratios were much worse than the results reported
here. It may be the case that other initial schedules or
training methods would better deal with this case.

For hardware implementation, we have studied some
schedules where θZ simply does a linear ramp, which
may be easier to implement. Further, any schedule
where θZ has a fixed sign can be implemented by tak-
ing a time-varying θX and a time-constant θZ . That
is, suppose one has the abiility to time-evolve under
the Hamiltonian gXHX + gZHZ for arbitrary gX and

some given gZ ; then, to implement a unitary transfor-
mation exp[i(θXHX + θZHZ)] one should evolve under
the Hamiltonian gXHX + gZHZ for gX = gZθX/θZ and
do the evolution for time θZ/gZ .

We have found that it is very important to have an ap-
propriate initial schedule as otherwise the learning gets
trapped in local optima. Thus, while it may be the case
that one can learn a schedule on a classical computer us-
ing a modest number of qubits and then apply it on a
quantum computer with a larger number of qubits, the
learned schedule might also be a good starting point for
further optimization of schedules on the quantum com-
puter.
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Appendix A: Schedules

Here we give the parameters for certain learned schedules.

Schedule Initial θZ1 θZ2 θZ3 θZ4 θZ5 θZ6 θZ7 θZ8 θZ9 θZ10

8 8 -0.279307 0.313947 0.614148 -0.220295 0.256869 0.465194 -0.212299 0.312254 1.50651 2.011013

31 9 0.368606 0.359748 0.190667 0.392364 0.208514 0.021365 0.642995 1.143198 1.64574 1.814225

49 9 0.424251 0.771576 0.464935 0.435078 0.404496 0.187802 0.77197 1.300528 1.701031 1.745732

84 11 0.1629 -0.496857 0.450711 -0.791892 0.326329 -0.475372 0.433593 1.033271 1.659841 2.031027

113 12 0.37599 0.680923 0.997025 0.715514 0.271968 0.519316 1.068852 1.443309 1.433469 1.333607

122 12 0.489956 0.510331 0.740654 0.538733 0.245925 0.08665 0.761729 1.188631 1.418336 1.89151

154 14 0.748224 -0.080047 -0.117857 0.316126 0.096738 -0.307805 1.210155 1.183015 1.557269 1.745549

157 14 0.677717 -0.099922 -0.055678 0.294502 0.107643 -0.276445 1.070014 1.057304 1.479656 1.646192

TABLE VIII: θZ for certain learned schedules. First column gives key indicating particular learned schedule number (the
number itself is meaningless and serves only as a key. Second column gives initial schedule for training (see table I).

Schedule Initial θX1 θX2 θX3 θX4 θX5 θX6 θX7 θX8 θX9 θX10

8 8 0.985164 1.711707 1.308381 1.272364 0.71373 2.073916 1.340572 1.037615 1.217506 0.730447

31 9 1.168114 1.375238 1.350988 1.356165 1.337642 1.091975 1.426565 1.162721 0.885662 0.431466

49 9 1.510793 1.665954 1.205267 1.062189 1.59617 1.481757 1.6141 1.285973 0.903954 0.396039

84 11 1.945308 1.142874 0.875239 0.914909 1.373274 1.191093 2.016909 1.142808 1.104454 0.585

113 12 1.609044 1.459435 1.971842 1.625206 1.537716 1.515011 1.398038 0.983823 0.5701 0.273691

122 12 1.683547 0.979162 1.878078 1.631202 1.16941 1.055429 1.635904 1.172053 0.795996 0.519226

154 14 1.35801 0.955197 1.397257 1.219015 1.396977 1.420552 1.283791 0.889047 0.671747 0.339493

157 14 1.359167 1.060199 1.293059 1.248988 1.328482 1.431533 1.237331 0.854213 0.688784 0.382808

TABLE IX: θX for certain learned schedules. First column gives key indicating particular learned schedule number (the number
itself is meaningless and serves only as a key. Second column gives initial schedule for training (see table I).

Appendix B: Effective Dynamics

In this Appendix, we give a more quantitative derivation of the minimum gap in the toy model. Let us derive an
effective dynamics for the inner spins in the first toy model. Consider a pair of spins, one on the inner and one on the
outer ring, connected by a bond, and let 1− s << 1. Consider a pair in which the inner spin has a field. Ignoring the
coupling between this pair and the rest of the system, we find that the two lowest energy states are split in energy by
an amount equal to (1/4)(1− s) +O(s2): the lowest energy state has the inner spin with σz = −1 and the outer spin
aligned along the transverse field, while the next energy state has the inner spin with σz = +1 and the outer spin
with 〈σz〉 = 1−O((1− s)2). Thus, the inner spin feels an effective parallel magnetic field (1/4)(1− s) +O((1− s)2).
The remaining inner spin (the one without a field in the bare Hamiltonian) feels an effective parallel magnetic field

−(1/4) + O((1 − s)). Finally, the effective transverse field on the inner spins is (1/4)(1 − s)/
√

2 where the 1/
√

2
factor arises due to overlap of different states on the outer spin. Studying the effective Hamiltonian, if we ignore
the tranverse field, there is a ground state degeneracy at 1 − s ∝ 1/N . Tunneling between these states due to a
transverse field strength proportional to 1/N splits this. To understand this splitting, and justify the claim that it is
super-exponentially small, we use perturbation theory and compare to numerics.

We do this comparison in the second model, where all inner spins have the same magnetic field strength, using a
perturbation theory. At s = 1, the transverse field strength vanishes, and ground state is the state with all spins
having σz = +1. There are 2N first excited states with all inner spins having σz = −1 and all outer spins arbitrary.
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The energy gap between the ground and first excited states is equal to 1/2 (one may verify that this factor of 1/2
arises from the factor of 1/4 that we have chosen in the toy model to make the energy scale match that of the MAX-
2-SAT instances, and then this factor of 1/4 is doubled when computing the gap since the ground state has its energy
reduced by 1/4 while the first excited state has its energy increased by that). Let us next consider the Hamiltonian
projected onto the subspace containing these 2N + 1 states; we will study its energy gap in this subspace for arbitrary
s. The state with all spins having σz = +1 does not couple to the other states after this projection. The spectrum
of the other 2N states can be understood simply: up to a constant energy shift due to the Ising interaction terms
and magnetic field terms on the inner spins, we simply have N decoupled spins (i.e., the outer spins) in a transverse
field of strength (1/2)(1− s), so the lowest energy state has its energy reduced by (1/2)(1− s)N . So, the gap in this
(2N + 1)-dimensional space is equal to ∣∣(1/2)s− (1/2)(1− s)N

∣∣.
In this case, the gap closes at s = N/(N + 1). For N = 4, this gives a gap closing at s = 0.8, which is close to where
the minimum gap was observed numerically (the minimum gap was observed at s = 0.77 . . ., while for N = 6, this
gives a gap closing at s = 0.857 . . ., while the minimum gap was observed at s = 0.84 . . .).

The projection onto this (2N + 1)-dimensional subspace gives a gap closing. We now consider the Hamiltonian in
the full Hilbert space, considering transitions via the other states perturbatively in the transverse field. This will
induce an effective tunneling amplitude, that we write teff , between the two lowest energy states that will open the
gap. The lowest order contribution (fewest number of spin flips) requies flipping all the spins in the inner ring and
hence occurs at N -th order in perturbation theory. Let us write heff for the transverse field strength at the given
s. In this case, heff = (1 − s)(1/2). The lowest energy process at this order (the process that involves transitions
through the lowest energy intermediate states) involves flipping a single inner spin which creates a pair of domain
walls, and then successively flipping additional spins to move the domain walls around the inner ring (without creating
any additional domain walls) until the domain walls annihilate against each other with all spins flipped in the inner
ring. The additional energy of a pair of domain walls is equal to 4Jeff where Jeff = (1/4)s is the strength of the

Ising coupling at the given s. Thus, naively the amplitude for such a process would be hNeff/J
N−1
eff . However, there

is an additional overlap amplitude to take into account: in the initial state, the outer spins are polarized in the z
direction while in the final state they are polarized in the x direction; this overlap leads to a factor of 2−N/2. Thus,
for this process we get an overall amplitude of 2−N/2hNeff/J

N−1
eff . We must then sum over possible processes: the

first spin flipped is one of N possible spins, and then at each step afterwards (except for the last step) there are two
possible spins which can be flipped to move a domain wall without creating additional domain walls. Thus, this gives
N2N−2 possible processes, giving teff ≈ 2N/2−2NhNeff/J

N−1
eff . In fact, this is only an approximation even at leading

order in perturbation theory: there are other process which create additional domain walls (for example, two pairs
of domain walls) which are smaller but which are not parametrically suppressed in heff/Jeff ; we do not estimate
the effects of these (we expect them to multiply the final amplitude by cN for some constant c in the large N limit
so that the gap is still super-exponentially small). Doubling teff to get the effective gap, we get the minimum gap

∆Emin ≈ 2N/2−1NhNeff/J
N−1
eff . We emphasize that a similar perturbation theory calculation could be given for the

model with one inner spin having vanishing field, but the particular sequences that contributed to tunneling would
be slightly different.

Now, we consider how well this estiamte of the gap agrees with the numerics. Unfortunately, this agreement is
difficult to check: at small values of N , the value heff is sufficiently large that higher order effects are important while
at large values of N the exponential dependence on N leads to a gap which becomes small compared to numerical
precision. So, in order to achieve the goal of keeping N modest (so that the gap is not too small) while keeping heff
small (so that this perturbation theory is accurate), we instead further modify the model by changing the inner field
strength from (1/4)(N − 1)/N to (1/4)(0.95); for modest values of N , this increases the field strength and moves the
transition to larger values of s where heff is smaller. Indeed, using the theory above, the minimum gap is now at
s ≈ 0.95. The minimum gap is then roughly 3.64×10−6 at N = 4 and 1.7×10−7 at N = 5. Numerically, we find that
the gap is roughly 4.7× 10−6 at N = 4 and 3.1× 10−7 at N = 5, giving qualitative agreement between perturbation
theory and numerics. When we incorporate other processes into perturbation theory which involve creating additional
domain walls, theory agrees much more closely with numerics. For example, at N = 4, in addition to the 16 processes
identified above in which only 2 domains walls are created (16 = N2N−2), there are an additional 8 processes which
involve flipping a spin at a single inner site (N = 4 possible such choices) creating a pair of domain walls, then flipping
the inner spin diametrically opposite that spin (there is a unique choice of that spin) giving 4 domain walls, and then
finally flipping the remaining two inner spins in either order (2 possible such choices). These 8 processes give an

amplitude which is (1/2)2−N/2hNeff/J
N−1
eff , where the additional factor of 1/2 is due to the larger energy denominator

with 4 domain walls. Including these processes increases the perturbation theory result for the ga; to 4.6 × 10−6, in
close agreement with the numerical result 4.7 × 10−6; the remaining slight difference may be due to either a slight
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shift in where the minimum gap occurs, or due to other processes at higher order in heff/Jeff , or due to numerical
error.

This comparison of perturbation theory and numerics supports the picture that the dynamics is governed by an
effective Ising model on the inner ring with transverse and parallel magnetic fields.


