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A non–commuting measurement transfers, via the apparatus, information encoded in a system’s
state to the external “observer”. Classical measurements determine properties of physical objects. In
the quantum realm, the very same notion restricts the recording process to orthogonal states as only
those are distinguishable by measurements. Therefore, even a possibility to describe physical reality
by means of non–Hermitian operators should volens nolens be excluded as their eigenstates are not
orthogonal. Here, we show that non–Hermitian operators with real spectrum can be treated within
the standard framework of quantum mechanics. Furthermore, we propose a quantum canonical
transformation that maps Hermitian systems onto non–Hermitian ones. Similar to classical inertial
forces this map is accompanied by an energetic cost pinning the system on the unitary path.

PACS numbers: 03.65.-w, 03.65.Ta, 03.65.Ca

I. INTRODUCTION

The no–cloning theorem states that unknown quantum
states cannot be copied [1], since no measurement can
distinguish arbitrary states with certainty. Similarly, the
unitary transfer of information from a quantum system
to the measuring device – apparatus – cannot distinguish
between non–orthogonal states [2, 3]. In contrast, all
physical properties of classical systems can be determined
with arbitrary precision as the recording process does
not perturb the system. To put it differently, classical
measurements do not involve any back–action.

Those profound facts rely on a rather natural as-
sumption regarding the physical world – the repeatabil-
ity of measurements. The latter requires that consecu-
tive measurements should result in the same outcome.
Consequently, the demand for all physical observables
to be Hermitian seems to be justified from the “first
principles” [3]. Therefore, even a possibility to repre-
sent observables using non-Hermitian operators should
volens nolens be excluded as their eigenstates are non–
orthogonal [4].

Nevertheless, a variety of experimental findings can be
explained by means of non–Hermitian operators. For in-
stance, a spontaneous symmetry breaking observed in
Ref. [5, 6] has been linked to PT –symmetry, a condi-
tion weaker than hermiticity [7]. Here P and T denote
the parity and time reflection, respectively, and PT –
symmetry guaranties that [PT , H] = 0, where H is the
system’s Hamiltonian. Additionally, exceptional eigenen-
ergies of complex value have also been measured [8]. Re-
cent years have witnessed great theoretical progress to-
wards the understanding of as such non–Hermitian sys-
tems [4, 9]. It has been shown, for example, that con-
ventional quantum mechanics can be extended to the
complex domain [10]. Interesting examples are opti-
cal systems with complex index of refraction [11], tilted

optical lattices with defects [12] or systems undergoing
topological transitions [13, 14]. The latter can serve as
realizations of PT –symmetry in Bose–Einstein conden-
sates [15]. Also, many breakthroughs in thermodynam-
ics and statistical physics have been reported for non–
Hermitian systems. The Jarzynski equality [16] or the
Carnot bound [17] may serve as good examples [7, 18].

It is only natural to ask whether such theories are fun-
damental or provide only an effective (e.g. open sys-
tems with balanced loss and gain [5]) description of na-
ture [19]. In this article we show that the requirement to
be able to repeat measurements does not exclude all non–
Hermitian “observables” from the description of physical
reality. We will prove that the non–Hermitian observ-
ables with real spectrum are as physical as their Her-
mitian counterparts. In fact, a formal correspondence
between the two classes can be established by means of a
quantum canonical transformation [20]. To put it differ-
ently, non–Hermitian operators provide a convenient way
of representing quantum systems in a physically equiva-
lent way [21, 22]. This situation is completely analogous
to classical mechanics where classical canonical transfor-
mations are used to simplify Hamilton’s equations of mo-
tion [23].

II. REPEATABILITY OF QUANTUM
MEASUREMENTS

Let H be a non–Hermitian observable, i.e. H† 6= H.
Without loss of generality we assume that H is the
Hamiltonain of a quantum system. To be physically rele-
vant H needs to be at least diagonalizable. This require-
ment assures the existence of an orthonormal [24] ba-
sis, {|En〉} and eigenenergies, En, that can be measured.
However, |En〉 are not the eigenvectors corresponding to
En. These will be constructed shortly. For the sake of
simplicity, we further assume that the energy spectrum is
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discrete and non-degenerate. Therefore, we can write [25]

V −1HV =
∑
n

En |En〉 〈En| with En ∈ C, (1)

where 〈En|Em〉 = δnm. Generally, H is non–Hermitian,
and thus the similarity transformation V is not unitary,
i.e, V † 6= V −1.Let us rewrite equation (1) as

H =
∑
n

En |ψn〉 〈φn| , (2)

where |ψn〉 := V |En〉 and 〈φn| := 〈En|V −1. By con-
struction, these states form a biorthonormal basis [7, 26],
that is, 〈φn|ψm〉 = δnm and I =

∑
n |ψn〉 〈φn|. Moreover,

the eigenvalue problem for H can be stated as

H |ψn〉 = En |ψn〉 and 〈φn|H = En 〈φn| . (3)

We emphasize the importance of this biorthonormal set
of vectors used for non–Hermitian quantum systems. It
plays an analogous role, both conceptual and computa-
tional, to a complete set of eigenvectors of a Hermitian
operator. As a result, the left 〈φn| corresponds to the
right |ψn〉 in Dirac notation [27]. Hence, the way the
probability is assigned to a physical process has to be re-
visited. For instance, consider a system that is prepared
in one of its energy eigenstates, say |ψn〉, and then imme-
diately perturbed by a map U (e.g. time evolution or a
measurement). Then the probability to measure energy
Em reads

pnm = p(|ψn〉 → U → |ψm〉) =
∣∣ 〈φm|U |ψn〉 ∣∣2. (4)

This formula provides a natural generalization of the
“standard” recipe, | 〈ψm|U |ψn〉 |2, for calculating prob-
abilities in Hermitian quantum mechanics [27].

Thus far we have seen that the proper identification of
probabilities of the measurement outcomes allows to in-
clude non–Hermitian operators into the usual framework
of quantum mechanics rather naturally. This is done, in a
physically consistent way, by properly accounting for the
fact that non–Hermitian observables have different left
and right eigenstates. The probability pn = | 〈φn|ψ〉 |2 to
find the system in its eigenstate |ψn〉 can also be rewrit-
ten, using this state explicitly, as

pn = | (〈ψn| g) |ψ〉 |2, g =
∑
m

|φm〉 〈φm| . (5)

Thus, the Dirac correspondence between bra and ket vec-
tors can now be understood as 〈ψ| g ↔ |ψ〉. Above, g is
a positive–definite, invertible linear operator – that is a
metric [28]. Indeed, we have

〈ψ| g |ψ〉 =
∑
m

| 〈φm|ψ〉 |2, g−1 =
∑
n

|ψn〉 〈ψn| , (6)

where the first equality expresses positivity and the sec-
ond expression provides an explicit formula for the in-
verse map in terms of eigenstates |ψn〉. As a result,

assigning probabilities when measuring non–Hermitian
“observables” defines a new inner product, namely
(ψ, gφ). Moreover, a simple calculation shows that
H†g = gH and therefore (Hψ, gφ) = (ψ, gHφ) for all
states |ψ〉, |φ〉. This fact can also be interpreted as: H is
Hermitian with respect to this new inner product.

It is important to realize that non–Hermitian operators
such as in equation (1) can generate unitary dynamics.
This is possible if and only if the energy spectrum is
real. Therefore, a priori, non–Hermitian operators do not
necessarily violate the conservation of probability. Note,
not only every superposition of states |ψn〉 is allowed but
also an arbitrary state |ψ0〉 can be expressed in such a
manner, |ψ0〉 =

∑
n cn |ψn〉, where

∑
n |cn|2 = 1 and

|cn|2 is the probability for the system to be found in its
eigenstate |ψn〉. The corresponding 〈φ0| is given by

〈φ0| =
∑
n

c∗n 〈φn| . (7)

The initial state |ψ0〉 evolves under the Schrödinger equa-
tion, i~∂t |ψt〉 = H |ψt〉. Therefore, the solution reads
|ψt〉 =

∑
n e
−iEnt/~cn |ψn〉, and, as a consequence of

equation (7), the corresponding 〈φt| evolves according
to

〈φt| =
∑
n

e+iE
∗
nt/~c∗n 〈φn| . (8)

Thus, if and only if all eigenvalues En are real then the
system’s dynamics is unitary and therefore

〈φt|ψt〉 =
∑
n

|cn|2ei(En−E∗
n)t/~ = 〈φ0|ψ0〉 , (9)

proving that the probability is indeed conserved.
We have demonstrated that a fully consistent quan-

tum theory can be built with non–Hermitian operators.
We have imposed that “observables” are diagonalizable,
which assures that the spectrum can be measured. Its
reality, on the other hand, yields unitary dynamics and
thus the conservation of probability.

Let |A0〉 be a “ready to measure” initial state of the
apparatus A. Further, by |ψn〉, |ψm〉 we denote distinct
(n 6= m) eigenstates of H. Also, we assume that E∗n = En
and without loss of generality, we choose A to be a Her-
mitian system. The repeatability of measurements guar-
antees that every unitary transfer of information from
system S to A leaves states |ψn〉 and |ψm〉 undisturbed.
It follows that

U : |ψk〉 |A0〉 → |ψk〉 |Ak〉 for k = n,m, (10)

where U is a unitary map (e.g. UU† = I) modelling
the recording process. As illustrated in Fig. 1, after the
transfer has been completed, new states |Am〉 and |An〉
of the apparatus A encode the information about the
system’s eigenstates |ψn〉 and |ψm〉. The measurement
preserves the norm on the Hilbert space S ⊗ A as well.
Hence

〈φm|ψn〉 (1− 〈Am|An〉) = 0. (11)
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FIG. 1. (color online) Schematic representation of the uni-
tary transfer of information from a quantum system S to the
measuring device – apparatus A. Information encoded in a
quantum state |ψ〉 is being recorded by A and is written down
into its state |Aψ〉. The recording process |A0〉 → |Aψ〉 is uni-
tary and does not influence the information carried by |ψ〉.

As a result, the apparatus states |Am〉 and |An〉 can dif-
fer (indicating some information being stored) only when
〈φm|ψn〉 = 0. To put it differently, extracting informa-
tion that distinguishes between two measured states is
possible only when the transition probability between
state |ψn〉 and |ψm〉 vanishes.

The above analysis demonstrates that the reality of the
spectrum, which guarantees unitarity, rather that her-
miticity is necessary to acquire information. We stress
that | 〈ψm|ψn〉 |2 is not the transition probability between
states |ψn〉 and |ψm〉. That is given by | 〈φm|ψn〉 |2 and
the two coincide only when H is Hermitian as only then
the left and right eigenstates are the same.

Adopting the similar formula that was de-
rived for Hermitian systems [2] one could write
〈ψm|ψn〉 (1− 〈Am|An〉) = 0. As a result, one would have
to conclude that 〈Am|An〉 = 1 showing the apparatus
cannot tell the measured states apart. However, as we
have shown, since H is non–Hermitian equation (11)
applies, which allows non–orthogonal states to be
measured.

III. RELATION TO HERMITIAN SYSTEMS

As we have seen, from the viewpoint of a measurement,
there is no physical difference between non–Hermitian
operators with real spectrum and Hermitian observables.
Therefore, one should be able to represent quantum sys-
tems either way depending on the situation. Of course,
in complete analogy to classical physics the goal is to find
the simplest possible Hamiltonian. One can establish a
correspondence between H and its Hermitian counter-

part K in the following way [29]

K = g1/2Hg−1/2 = eG/2He−G/2

= H +
1

2
[G,H] +

1

2!22
[G, [G,H]] + · · ·

(12)

where G := ln(g). In the second line we have used the
Baker–Campbell–Hausdorff like formula [30]. Note, since
the metric g is positive definite its logarithm and square
root exist and moreover, both of these quantities are Her-
mitian operators [31]. Although equation (12) was intro-
duced in Ref. [29] as a similarity map between Hilbert
spaces, its physical significance was missed. Although
this infinite series does not truncate after a finite num-
ber of terms in general, there are physically relevant ex-
amples where it does (see Example 2 below). We stress
that equation (12) can be used to transform an arbitrary
observable O between Hermitian and non–Hermitian rep-
resentations.

First of the above equations (12) shows that K is in-
deed Hermitian, whereas the second one demonstrates an
interesting feature of physical reality. Namely, a quan-
tum system can be represented equivalently either by a
Hermitian operator or a non–Hermitian one with real
spectrum. Although there is no essential physical differ-
ence between the two representations, their mathemati-
cal structures are quite different. It follows directly from
equation (12) that a complicated Hermitian system may
have a very simple non–Hermitian representation and
vice versa. Transformation (12) plays an analogous role
to the canonical transformation well established in clas-
sical mechanics [23]. Note, this transformation cannot
be unitary as it changes the hermiticity of an operator.
However, it preserves the canonical commutation rela-
tion and as such belongs to a class of quantum canonical
transformations [20, 32].

IV. QUANTUM CORIOLIS FORCE

In classical mechanics, Newtonian equations of motion
have to be modified in non–standard, time–dependent,
frames of reference [23]. As a result, one observes so–
called inertial forces. Typical examples include Corio-
lis or centrifugal forces that are present only in rotating
frames of reference. Therefore, there are experimentally
accessible consequences of using such non–inertial coordi-
nates. One of the most famous examples is the Foucault
pendulum whose motion (precession) directly reflects on
the Earth’s rotation around its own axis [33].

Interestingly, if the non–Hermitian Hamiltonian is
time–dependent then the corresponding Schrödinger
equation also has to be modified to preserve unitar-
ity [34–36],

i~∂t |ψt〉 = (Ht + Ft) |ψt〉 , Ft = − i~
2

Λ−1t ∂tΛt. (13)

Above, Λt is a time–dependent metric that does not nec-
essarily coincide with gt [35]. More importantly, this
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metric is not unique. However, it can be chosen so that
the corresponding Hermitian Hamiltonian Kt in equa-
tion (12) (i) is the generator of dynamics and (ii) has
exactly the same spectrum as Ht.

Therefore, the dynamics in these two representations
differ considerably. Nevertheless, replacing ∂t with a
covariant derivative Dt := ∂t + Λ−1t ∂tΛt/2 [37] the
Schrödinger equation (13) can be put into its standard
form, i.e., with Ht being the generator, i~Dt |ψt〉 =
Ht |ψt〉. However, one can also think of the extra ener-
getic contribution ∼ Λ−1t ∂tΛt/2 as being a manifestation
of a force of inertia keeping a quantum system along the
unitary path during its evolution (see Example 3 below).
We can interpret this force as a quantum Coriolis force.

It is worth mentioning that the existence of Ft in non–
Hermitian representations has already been noticed yet
disregarded as unphysical (see for example Ref. [21] and
comments that followed). It was treated rather as a
mathematical necessity not having much to do with phys-
ical reality. We will now illustrate the novel concepts with
several analytically tractable examples.

V. EXAMPLES

A. PT –symmetric system

As a first example consider a harmonic oscillator with
a non–Hermitian perturbation, for instance [38]

H =
p2

2m
+

1

2
mω2x2 + iεx3 ≡ H0 + εH1, (14)

where H0 corresponds to the unperturbed harmonic os-
cillator and H1 is an anharmonic perturbation. Param-
eters m and ω correspond to the system’s mass and the
size of the harmonic trap, respectively. Here ε is a small
perturbation. The momentum p and position x opera-
tors obey the standard canonical commutation relation,
[x, p] = i~. This model has been extensively investigated
in literature [39]. Numerical studies have confirmed the
reality of its spectrum for all real ε. Using perturbation
theory one can establish that K = H0 + V (x, p) where
the momentum dependent potential V (x, p) up to O(ε3)
reads [29]

V (x, p) =
1

mω4

(
{x2, p2}+ p x2p+

3mω2

2
x4
)
ε2, (15)

where {A,B} := AB + BA is the anticommutator be-
tween A and B. Observe that this very complicated, mo-
mentum dependent potential can effectively be replaced
by a simple non–Hermitian term V ∼ ix3, which only
depends on the position x [40].

B. Localization in condensed matter physics

Another interesting example is a general one dimen-
sional quantum system whose Hamiltonian reads K =

p2/2m+V (x), where V (x) is an arbitrary potential. This
standard textbook Hermitian model can be turned into
a very powerful non–Hermitian system that can explain
localization effects in solid state physics [41, 42]. Indeed,
we have

H = e−ηxKeηx =
(p− i~η)2

2m
+ V (x), (16)

where the real parameter η expresses an external mag-
netic field [43]. Note that the metric g = e2ηx in this case
can be calculated explicitly. Furthermore, it depends on
the external control parameter – the magnetic field [44].
Also, since the commutator [x, p] = i~ is a complex num-
ber the infinite series in equation (12) truncates after only
two terms.

C. Time–dependent metric and force of inertia

Finally, assume that the metric g from the previous
example depends explicitly on time (e.g. the magnetic
field ηt is time–dependent). We further choose V (x) to
be a harmonic trap, V (x) = mω2x2/2, where ω is its
frequency. Then the Hamiltonian in equation (16), now
time–dependent, can be written using the second quan-
tization [45] as

Ht = ~ω
[
(a− ηtα)

†
(a+ ηtα) +

1

2

]
, (17)

where α =
√

~/2mω and a, a† are annihilation and cre-
ation operators, respectively. As explained above, to pre-
serve unitarity the evolution generator Ht in the non–
Hermitian representation has to be modified accordingly.
By setting Λt = gt [17] in equation (13) we have

Ht → Ht + Ft, where Ft = −iη̇tα
(
a+ a†

)
. (18)

To analyse the evolution of this system we turn to nu-
merical simulations. We further assume that ηt changes
on a time scale τ linearly, that is, ηt = t/τ for 0 ≤ t ≤ τ .

The initial state is given by |ψ0〉 = (|0〉+ |1〉)/
√

2, where
|0〉 is the ground state of K = H0 and |1〉 = a† |0〉.

Figure 2 shows the average position 〈x〉 of a quantum
particle as a function of time t computed both in the
Hermitian (blue solid line) as well as the non–Hermitian
(red points) representation. According to the Ehrenfest
theorem, 〈x〉 corresponds to the classical trajectory in
a sense that it obeys Newton’s equations of motion [46].
As we can see, only when a proper energetic contribution
Ft is accounted for the two paths coincide. The dashed
green line, on the other hand, depicts a non–unitary path
resulting from not taking into account this contribution.
As expected, Ft does not have any influence on the sys-
tem’s dynamics in non–accelerating frames of reference
where η̇t = 0.
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FIG. 2. (color online) The average position 〈x〉 of a quantum
particle as a function of time t. Blue solid curve is the exact
solution to the Schrödinger equation obtained in the Hermi-
tian representation. Red points represent a numerical solution
to the same problem computed in the non–Hermitian (time–
dependent) representation. The two paths coincide only if
the inertial force is accounted for [see equation (18)]. Finally,
green dashed line depicts a “naive” solution obtained with-
out taking into account this contribution. Parameters are
~ = m = 1.0, ω = 0.5 and ηt = t/τ , where τ = 10. The initial
state is |ψ0〉 = (|0〉 + |1〉)/

√
2, where |0〉 is the ground state

of K = H0 and |1〉 = a† |0〉.

VI. SUMMARY

The very question whether physical observables should
be Hermitian or not reflects on a long lasting debate re-
garding physical reality. Nowadays, this issue is no longer
only of academic interest as leading groups are beginning
to investigate it experimentally [5, 8]. In this article we
have revisited this problem showing that the repeatabil-
ity of measurements does not exclude non–Hermitian op-
erators from the usual framework of quantum mechanics.
We have argued that operators which admit real spec-
trum are canonically equivalent to Hermitian ones. As

a result, all fundamental notions (e.g. repeatability of a
measurement, no cloning theorem, etc.) that have been
associated with the unitarity apply to all non–Hermitian
systems with real spectrum as well.

The question which of these two representations is
more adequate to describe a quantum system depends
on the problem under investigation. It may be more nat-
ural to use a non–hermitain frame of reference. However
in that case, as a result of using a non–standard repre-
sentation, the resulting Schrödinger equation has to be
modified accordingly [see equation (13)]. There is an ex-
tra energetic contribution that has to be accounted for
to preserve unitarity. We have associated this energetic
cost Ft with an inertial force (quantum Coriolis force)
that keeps a quantum system on the unitary path dur-
ing its evolution (see Example 3 ). As it is in classical
mechanics, Ft vanishes for all non–accelerating frames of
reference, i.e. with ġt = 0.

We should stress here that not all non–Hermitian sys-
tems have real spectrum. Those whose eigenenergies (at
least some of them) are complex were explicitly excluded
from our considerations. Such systems are open [47].
During their evolution they lose or gain energy and infor-
mation in a way that cannot be balanced [4]. Therefore,
a unitary map is not sufficient to capture their dynam-
ics anymore. Interesting examples can be found e.g. in
Ref. [8, 11].
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