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We analyze the stability of extended edge modes in a nonlinear (i.e. interacting) bosonic topo-
logical insulator. We see that these nonlinear modes are always unstable, despite the topological
protection of edge modes in the linear system. For concreteness we use a photonic platform, but
the results generalize to other bosonic systems. We give detailed description of the system in two
extreme cases low nonlinearity and high nonlinearity, and discuss the breakup of the nonlinear edge
states into solitons.
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Topological insulators represent a new class of mate-
rials, in which conduction of current is possible only on
the surfaces/edges of the sample, but not inside it [1, 2].
In the two- and three-dimensional case, this conduction
is robust and free of backscattering, arising from the so-
called topological protection of the edge modes. In solid-
state materials, such topological protection arises when
significant spin-orbit coupling [3–5] or strong magnetic
field are present [6], or in systems that are periodically
modulated in time [7, 8]. The concept of topological pro-
tection is not restricted to electronic systems, and in the
past few years there have been numerous works propos-
ing to implement topological protection for other scenar-
ios, such as photonic systems [9–12], acoustic waves [13]
and optomechanical resonators [14]. Indeed, in the past
few years topological phenomena have been observed in
microwaves [15], photonics [16, 17], mechanical systems
[18, 19], and ultracold atoms [20, 21]. Specifically in pho-
tonics, a topological insulator was implemented using an
array of coupled helical waveguides [16], and indepen-
dently by employing specific delay in a network of cou-
pled optical cavities [17].

The discussion on the properties of topological insula-
tors deals mainly with non-interacting systems. In Bose-
Einstein condensates, this means that interactions be-
tween the particles are neglected, and in photonic sys-
tems this means that the optical power used to excite
the system is relatively weak such that photon interac-
tion is not mediated by the ambient medium (or alterna-
tively, that the nonlinear response is sufficiently small).
In bosonic systems (for example photonic systems) when
local interactions are no longer negligible and there are
a sufficient number of particles, the interactions can be
modeled with a mean-field approach if they are strong
enough, according to the Gross-Pitaevskii equation [22],
also known as the cubic nonlinear Schrödinger equation
[23, 24]. Indeed, there is a direct equivalence between the
case of interacting Bose-Einstein condensates and non-
linear optical systems in that they are both described
by the aforementioned equation. In fact, the Gross-
Pitaevskii/Nonlinear Schrödinger equation arises as a
limit of the Bose-Hubbard model and is completely uni-
versal: it should always be obeyed by interacting bosons
in the mean-field limit. Thus, introducing nonlinearity

generalizes the treatment of topological systems to the
interacting case potentially leading to fundamentally new
phenomena. For example, nonlinearity was found to in-
duce self-localized states that behave akin to topological
edge modes of the small nonlinear defect they induce [25].
Also, in the regime of weak nonlinearity, it was shown
that the nonlinearity can overcome the slight dispersion
of the topological edge states, giving rise to long propaga-
tion distances without the spreading of the wavepacket
[26]. Using quenching of a Zeeman field, it was shown
that exponentially fast population of edge modes in ultra-
cold boson systems can be achieved [27]. Nonlinear prop-
erties of topological edge states have also been studied in
another Floquet topological insulator structure [28].

Here, we discuss the effects of nonlinearity on the sta-
bility of extended topological edge states, in the context
of Floquet topological insulators. We show that such
bosonic-type topological edge states are in fact unstable
to interactions and will always break up - even the states
with zero diffraction coefficient (inverse effective mass).
We calculate the nonlinear dispersion of edge states with
nonlinearity of various strengths, and show that, while
for weak nonlinearities the spectrum coincides with that
of the linear system, for stronger nonlinearity the spec-
trum of the edge states is starkly different. Depending on
the strength of the nonlinearity, these edge states then
break up to either bulk modes, or soliton-like wavepack-
ets that can be either traveling or stationary. In contrast
to the results of ref. [26], which apply to the regime of
weak interactions, we always find the topological edge
states to be unstable. These results do not contradict
each other, since in the case of weak nonlinearity the
solitons constitute the results of the breakup of the edge
states. The specific physical context in which we present
our results is the photonic system presented in [16]; how-
ever our results are universal - they can be easily gen-
eralized to other bosonic topological insulator systems
in photonics [29, 30], cold-atom systems with mean-field
interactions [31], exciton-polariton superfluids [32], and
any system where bosonic physics is described by a non-
linear Schrödinger-type wave equation.

In our work we will focus on Floquet topological in-
sulators, which have seen tremendous advancement in
the past few years [7, 8, 33–35]. In Floquet topological
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insulators, gauge fields are used in order to induce topo-
logical properties in otherwise non-topological systems
by breaking time-reversal symmetry explicitly. Floquet
topological insulators were first proposed in the context
of condensed matter and electron transport [7, 8, 33, 34],
where the gauge field was external electromagnetic radi-
ation. The first realization of such Floquet topological
insulator was implemented in photonics [16] in a system
of coupled waveguides, arranged in a honeycomb lattice.
The gauge field was introduced by rotating the waveg-
uides in a helical fashion, causing an artificial gauge field
to appear. A more recent realization of Floquet topologi-
cal insulator was also implemented in cold-atom systems
[20], where the gauge field was introduced by periodically
moving the optical lattice.

We begin by describing our system under linear con-
ditions. In the photonic topological insulator described
in [16, 25], the system is a two-dimensional waveguide
array arranged in a honeycomb lattice [36, 37]. We
use the tight-binding model to describe our system, in
which the wavefunction is described by the amplitudes at
each waveguide. Our waveguides are arranged in a semi-
infinite honeycomb lattice, terminated along one direc-
tion and infinite (or periodic) along the other direction.
In this setting, eigenmodes of the system have a well-
defined wavenumber along the periodic direction, which
we will denote as the x-direction, while the direction in
which the system is finite (i.e., is terminated by edges)
will be denoted as the y-direction. An example of such
a system, terminated in what is called a ”zigzag edge”
is shown in Fig. 1(a). To form a Floquet topological
insulator, the waveguides have to spin around the prop-
agation axis z at a given longitudinal frequency Ω and
radius R (Fig. 1(a)). In the frame of reference in which
the waveguides are stationary, the spinning of the waveg-
uides can be described by introducing a vector potential
A (z) = A0 · (cos (Ωz) x̂+ sin (Ωz) ŷ) /a to the system
[16, 25]. Here, a is the lattice constant, and A0 = k0ΩRa
is a measure of the spinning radius (k0 is the wavenumber
inside medium). Formally, our equation of motion is:

i∂zun (z) =
∑
〈m〉

c · eiA(z)·rmnum (z) (1)

where the sum is over neighboring sites according to the
honeycomb geometry, the coefficient c is the coupling
constant between nearest neighbors, z is the propaga-
tion axis of the waveguides, and rmn is the displacement
between waveguides m and n. For convenience, we set
c = 1, without loss of generality.

In order to solve for the system’s eigenvalues and eigen-
functions, we must first realize that there are no static
eigenmodes, due to the fact that Eq. (1) is z-dependent.
Instead, we can define Floquet eigenmodes of the sys-
tem, based on the fact that in Eq. (1), written as
i∂zun (z) =

∑
〈m〉Hmn (z)um (z), with the Hamiltonian

Hmn (z) is periodic with period Λ = 2π/Ω [7, 8]. The Flo-
quet eigenmodes are un (z) = eiµzϕn (z) with ϕn (z) be-
ing Λ-periodic, and µ is the Floquet eigenvalue or ’quasi-
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FIG. 1. (a) Honeycomb lattice, made from helical waveg-
uides. The black waveguides between the two lines represent
a unit cell in the x direction. (b) Spectrum of eigenmodes
(in units of the coupling constant) for a finite lattice in the
y direction, with A0 = 2 and Ω = 10c. (c) Same as (b), but
with A0 = 3 and Ω = 3c.

energy’. In other words, Floquet modes obey Bloch-
periodic boundary conditions in the temporal variable.
Note that, by definition, the values of µ obey −Ω/2 ≤
µ < Ω/2. Thus, we can write un (z + Λ) = un (z) eiµΛ,
that is, the wavefunction un (z) self-reproduces every Λ
up to a phase. The spectrum of a semi-infinite system
is calculated vs. kx (the wavenumber in the periodic di-
rection), where kx is measured in the units of the inverse

lattice constant in the x-direction,
√

3a. The spectrum
using Ω = 10c and A0 = 2 is shown in Fig. 1(b), and
for a system with Ω = 3c and A0 = 3 in Fig. 1(c).
In both cases, we see two bands which populate the bulk
modes, and between them mid-gap modes which are con-
centrated on the edges of the system, arising from the
fact that the system is finite in the y-direction. These
are the edge modes, and we see one mode for each edge
top and bottom. Here, we will consider the two edges to
be far apart such that there is no overlap between modes
on different edges, which is valid assuming the lattice is
sufficiently large. We emphasize three important prop-
erties, seen in the spectra of Fig. 1(b) and (c). First, is
the fact that the edge modes have well-defined group ve-
locity left or right, for the top and bottom edge, respec-
tively. Second, the edge modes are deep in the bandgap,
which means they are immune to scattering into the bulk
for any type of elastic scattering. Finally, there is only
one mode at a given energy on a given edge, meaning
that these states must propagate robustly: there is no
mode moving backwards into which backscattering can
be possible. These three properties are the origin of the
topological protection of edge modes, which means that
propagating modes along the edge cannot be scattered or
back reflected [1, 2, 30].

We now introduce interactions into the system, by
adding a nonlinear term into the equation. The nonlin-
ear term represents the mean-field interaction between
bosonic cold-atom systems [22], as well as optical Kerr-
type systems [23, 24]. Eq. (1) with the added term is
now written as:

i∂zun (z) =
∑
〈m〉

Hmn (z)um (z)− σ |un (z)|2 un (z) (2)

where σ = ±1 denotes the sign of the nonlinearity (de-
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termined by whether atoms are attractive or repulsive,
or whether the photonic nonlinear medium is of the fo-
cusing or defocusing type), and the strength of it is de-
termined by the norm of the wavefunction, or the power,
P =

∑
n |un (z)|2, where the sum is over all sites in a

unit cell, as shown in Fig. 1(a). We wish to solve for
nonlinear eigenmodes of Eq. (2) in the Floquet sense -
meaning solutions repeat themselves (up to a phase) after
a period. Previous investigations of Eq. (2) in topologi-
cal insulator systems found the existence of self-localized
wave-packets (solitons) that rotate in accordance with
topological nature of the underlying linear system [25],
and approximate solutions for edge modes that use weak
nonlinearity to overcome the dispersion in the edge-mode
spectrum [26]. Also, an interacting topological insula-
tor system made from ultracold bosons was considered
in [27]. There, a nonlinear instability leads to exponen-
tially fast population of edge modes when the system is
initialized in a coherent state. However, instabilities of
the edge modes themselves were outside the scope of the
work. We look for nonlinear edge modes - extended solu-
tions along x with a well-defined wavenumber kx that are
at the same time exponentially localized along the y di-
rection. We find these solutions using the self-consistency
method [25], in which the criteria for mode selection is
the mode most localized on the edge.

In general, nonlinear waves are potentially subject to
nonlinear instabilities. For extended waves, such insta-
bility is modulation instability (MI), in which small per-
turbations are amplified and reach the point where they
break up the initial wave [38]. When the nonlinear wave
breaks up, it can sometimes result in solitons, which are
self-localized nonlinear solutions of Eq. (2). Generally,
extended waves in a nonlinear self-focusing system tend
to be unstable, if the dispersion is anomalous. In a pe-
riodic system (a lattice), extended states are subject to
MI when the diffraction coefficient, (or inverse effective
mass) (D = m−1 = ∂2µ/∂k2

x) [23] and the nonlinearity
have the same sign, e.g., when the nonlinearity is of the
self-focusing type and the diffraction coefficient is posi-
tive. For a nonlinearity of the defocusing type, MI occurs
for extended waves with negative diffraction coefficient
[39–41]. It is important to note here that because the
spectrum in our case is symmetric to µ → −µ (see Fig.
2(a) and (b)), for any region in the spectrum with pos-
itive D there exists an equivalent region with negative
D. This property arises from the tight-binding approxi-
mation we use, and is only an approximate feature when
more accurate models are considered. Because of this
symmetry in the spectrum, any result we get with fo-
cusing nonlinearity (σ = 1) has a counterpart with the
defocusing nonlinearity (σ = −1). This means that the
sign of nonlinearity does not play a role in the results
presented here, and for the rest of this article we choose
to solve for σ = 1.

The new findings on topological systems raise a natural
question: do the unique features associated with topolog-
ical protection protect the topological edge states from

nonlinear instabilities? This question is further high-
lighted by the simple fact that the dispersion curve of
mid-gap topological edge states exhibits regions of pos-
itive, negative and zero D. Specifically, the cases with
negative D and zero D, which are cases where conven-
tionally nonlinear instabilities are nonexistent [40, 41].
In the next paragraphs we show that any value of the
nonlinearity gives rise to MI: the nonlinear edge modes
of our system are always unstable and break up.

For concreteness, consider a helical waveguide array,
with parameters Ω = 10 and A0 = 2 and for edges of the
zigzag type. Here, we choose the work with the focusing
nonlinearity σ = 1. It is important to emphasize that
the results presented here are general, applicable to a
wide range of parameters and to all three common types
of edges in a honeycomb lattice (zigzag, bearded, arm-
chair). We use low values of the nonlinearity (P ≤ 0.2)
in the results presented in Fig. 2, and we will describe re-
sults with strong nonlinearity in the next section. In Fig.
2(a) we show the nonlinear spectrum of the edge modes,
together with the linear spectrum for ease of comparison,
where each symbol corresponds to nonlinearity of differ-
ent value. We see that the spectrum of the nonlinear
edge modes is very similar to the spectrum of the linear
edge modes, an unsurprising result that arises from the
fact that the nonlinearity is weak. We then calculate the
instability spectrum for each nonlinear mode. We do so
by calculating the spectrum of weak modulations of the
mode, and looking for modulations with an exponential
blow-up. In Fig. 2(b) we plot the maximal exponential
coefficient, fmax for the mode with P = 0.05. The results
are essentially the same for all powers obeying P ≤ 0.2.

For all values of nonlinearity discussed in this section,
the modes are always unstable. This means that even for
such low power levels, the topological modes are not pro-
tected against nonlinear instabilities. Physically, small
modulations superimposed on the edge modes, through
the nonlinearity, are coupled both to other edge modes
and also to bulk modes. These modulations are then ex-
ponentially amplified until the original topological edge
mode breaks up completely. For each mode, defined by
its power and its wavenumber, the inverse of the values
presented in Fig. 2(b) gives the typical propagation dis-
tance before the edge mode breaks up as a result of small,
random fluctuations. Notably, even the mode at k = π,
for which D is zero, exhibits nonlinear instability, as it
can break into both bulk modes and other edge modes.
This happens because the small modulations can couple
to other bands, where modes with nonzero D exist at
k = π. Had the band of edge modes been the only band
in the spectrum, the specific topological edge mode with
zero D would have been immune to the nonlinear insta-
bility [40, 41]. In Fig. 2(c) we plot the dynamics of such a
break-up, for typical parameters of kx = π and P = 0.05.
The pattern shown in this figure displays the intensity at
the edge sites as a function of propagation distance. The
lattice used in the calculations and presented in Fig. 2(c)
has 40 unit cells, as represented in Fig 1(a), with periodic
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FIG. 2. Spectrum of nonlinear edge states, for low powers,
with A0 = 2 Ω = 10. Plus signs: nonlinear edge modes for
P = 0.05. Circles: nonlinear edge modes for P=0.1. Squares:
onlinear edge modes for P=0.2. Solid lines: underlying linear
spectrum. (b) Instability spectrum for the nonlinear modes
with P = 0.05. The y axis represents the exponential growth
coefficient of noise, for each nonlinear edge mode. (c) Propa-
gation simulation results for a nonlinear mode with P = 0.05.
The figure presents intensity only on the edge. after a dis-
tance of z = 1000, the mode spontaneously breaks apart into
solitons.

boundaries along x-axis. The horizontal axis in Fig 2(c)
is the unit-cell index, and the vertical axis is the propaga-
tion distance, normalized using the coupling distance. In
Fig. 2(c) we see that even for such low powers, the modes
break up into soliton-like modes, which propagate on the
edge, as predicted in [26]. These solitons exist only for
weak nonlinearities, in which the nonlinearity compen-
sates for dispersion arising from the small curvature in
the dispersion curve in Fig. 2(a).

In Fig. 3, we present results calculated with strong
values of nonlinearity, corresponding to P ≥ 0.5, with
Ω = 10 and A0 = 2. The spectrum of the nonlinear
modes is presented in Fig 3(a), where each symbol rep-
resents modes with different value of nonlinearity. We
see that in these cases, the spectrum of the nonlinear
edge modes no longer resembles that of the spectrum of
the linear modes, but takes completely different shape.
In particular, we see that the range in momentum space
in which edge modes exists differs from the linear case,
and there are cases where nonlinear edge modes cover
the whole Brillouin zone (for example, P = 3) unlike
in the linear case, where they cover only 1

3 of the mo-
mentum space. We also note that for each kx value, the
spectrum of the nonlinear edge modes never coincides
with the spectrum of linear bulk modes. We calculate
the instability spectrum in a similar fashion as the case
with weak nonlinearities, which is presented in Fig. 3(b).
Even here, we see that all the modes are unstable that
even with a very small perturbation, they are bound to
break up. The pattern shown in 3(c) shows the outcome
of such a break-up, for typical parameters of kx = π,
propagation distance of z = 150 , and P = 3. As shown
in this figure, after a certain distance, every extended
edge mode breaks up into several isolated, single site
modes. These are in fact single-site solitons, in which
the nonlinearity is so strong that they do not couple to
neighboring sites at all. We understand these results by
noting that for such high nonlinearities, the potential at
each site changes significantly, to the point where the lin-
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FIG. 3. Spectrum of nonlinear edge states, for high powers,
with A0 = 2 Ω = 10. Trianlges: nonlinear edge modes for
P = 0.25. x signs: nonlinear edge modes for P = 0.75. Plus
signs: nonlinear edge modes for P = 1.5. Circles: nonlinear
edge modes for P = 2. Squares: nonlinear edge modes for
P = 3. solid lines: underlying linear spectrum. (b) Instability
spectrum for the nonlinear modes with P = 3. The y axis
represents the exponential growth coefficient of noise, for each
nonlinear edge mode. (c) Propagation simulation results for a
nonlinear mode with P = 3. The figure presents the intensity
pattern of the whole lattice after propagating a distance of
z = 150. The existence of solitons, residing on single site is
evident.

ear bulk band structure is very non-resonant. We confirm
this observation by noting that the propagation constant
of such soliton-like wavepackets does not lie in the topo-
logical band gap. If it were, we would expect behavior
closely connected with topological edge-modes, such as
unidirectional energy flow [25]. Instead, the propagation
constant lies in the semi-infinite gap above the upper
band, which is wrapped around to the bottom of the
lower band due to the periodicity of the system.

Before closing, we consider the effects of losses on the
results presented here. Losses are natural to almost any
system (including photonic systems and cold-atom sys-
tems). Due to the nonlinear nature of the instability
discussed here, losses which cause the wave to dissipate
power will naturally cause any nonlinear effect to dimin-
ish. Specifically, if the loss coefficient in the system is
greater than the exponential factor of the modulations,
the wave will dissipate power too fast for the modula-
tions to significantly affect it, rendering it stable. If, on
the other hand, the losses are small, then nonlinear dy-
namics will qualitatively behave as though there is no
loss - that is, the nonlinear wave will experience modu-
lation instability. Here it should be emphasized in both
photonic and cold-atom systems, losses can be managed
to a high degree, making the observation of nonlinear
phenomena ubiquitous.

In conclusion, we have studied the nonlinear properties
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of edge modes in a model of a photonic Floquet topolog-
ical insulator; we have analyzed their stability properties
in two regimes - weak nonlinearity and strong nonlinear-
ity, and have shown that in both regimes the modes are
always unstable. Specifically, we have shown that the
topological nature of the linear spectrum does not give
rise to stable edge states. We have shown that the modes,
under certain circumstances, break up into soliton-like
wavepackets. When the nonlinearity is weak, wavepack-
ets break up into solitons in which the weak nonlinearity
compensates for the small dispersion of the edge mode
spectrum. When the nonlinearity is strong, wavepack-
ets break up into solitons that are guided in a single

waveguide, where the coupling to the linear bulk modes is
very non-resonant. While our results are presented in the
language of optical waveguide systems, they are applica-
ble to other bosonic systems in which interactions can
be modeled via a nonlinear Gross-Pitaevskii-type term,
such as Bose-Einstein condensate systems and exciton-
polariton condensates.
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