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The coherent photon scattering of atoms in an atomic array is studied. It is found that due
to cooperative photon exchanges, the excitation probability of an atom in an array parallel to the
direction of laser propagation (k̂) will either grow or decay along k̂, depending on the detuning of
the laser. The symmetry of the system for atomic separations of a = jλ/2 causes the excitation
distribution and scattered radiation to abruptly become symmetric about the center of the array,
where j is an integer and λ is the transition wavelength. For atomic separations of a < λ/2, a
collection of non-radiating states (Γ ∼ 0), disrupts the described trend. In order to interpret this
surprising result, a band structure calculation in the N → ∞ limit is conducted, where the decay
rates and the collective Lamb shifts of the eigenmodes versus quasimomentum are obtained. This
calculation shows that the collective exchange of photons in an array strongly affects its scattered
radiation, allowing one to easily manipulate the collective Lamb shift and directly excite either
superradiant or subradiant eigenmodes by correctly choosing the angle of the driving laser.

PACS numbers: 42.50.Nn, 42.50.Ct, 32.70.Jz, 37.10.Jk

I. INTRODUCTION

The coherent nature of the coupling between a col-
lection of radiators and the electromagnetic field [1] has
proven to be a fruitful field of study for over 60 years. De-
spite its history, the study of collective radiation is still
providing important insights into quantum optics, lead-
ing to deeper understandings of waveguides [2], quantum
information [3], biophysics [4, 5], and cold atom clouds
[6–14]. In particular, cold atom clouds have proven to be
an important system for studying collective phenomena.
For example, it has been noted that cooperative photon
scattering can cause the excitation distribution of a cigar-
shaped cloud to deviate from the results predicted by the
Beer-Lambert law [6]. Further, the interplay between the
collective Lamb shift [15–18], the energy shift due to the
exchange of virtual photons between radiators [19], and
its relationship to superradiance/subradiance [20–24] has
produced a plethora of new physics. Notably, the study
of the large-scale coherent build-up of forward photon
emission in cold atom clouds has shown that coherent
dipole-dipole interactions can produce superradiance in
extended samples [6, 7, 25–27]. On the other hand, de-
spite rapidly increasing interest, subradiance is still a dif-
ficult subject to study. Although recent work has made
impressive progress [10, 21, 22], schemes for producing
and studying subradiant states are rare.
Collective interactions in atomic arrays/lattices are

also well-studied and can produce exciting effects, such
as the appearance of superradiant and subradiant eigen-
modes [28–34]. However, these studies do not fully ad-
dress the physics of position dependent phase correlations
in the array. When an extended system is illuminated by
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FIG. 1. When a red detuned laser drives an array of atoms,
the probability of excitation grows logarithmically down the
line of the array. This effect and the others discussed in this
paper, are due to the spatially dependent phase correlations
between the driving laser and the dipole radiation.

a laser, it excites the atoms to a state where the phase
of the excitation amplitude of each atom is proportional
to the laser’s own phase (a timed-Dicke state) [27]. This
produces coherences that dramatically change the photon
scattering [16, 22, 25, 35]. This effect has recently been
studied by considering the emission of timed-Dicke states
when an array has spacings, a, much less than the res-
onance wavelength (λ), where only nearest neighbor in-
teractions are considered [36]. However, the limit a ≪ λ
is not relevant to most experimental setups. Also, in this
regime the near field term in the dipole field propagator
(see Eq. (2)) overshadows the interesting physics result-
ing from the coherent buildup of the ∝ 1/r term over
the whole system. When a ∼ λ or larger, even though
the individual dipole-dipole interactions are small, they
can coherently build over an extended sample and cause
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surprisingly large effects. In this paper, we show that
when both the phase correlations caused by the driving
laser and the collective dipole-dipole interactions between
all the atoms in an array are considered, they produce
novel physics that allows for the manipulation of both
the atoms’ scattered light and excitation probability in a
straightforward manner.
Specifically, it is shown that an array’s probability dis-

tribution, when driven by a laser parallel to the array,
is highly dependent on the detuning of the laser. For
red (blue) detuned light, the dipole radiation in the di-
rection of the laser causes the probability of excitation
to increase (decrease) logarithmically (see Fig. 1). For
atomic separations, a, of jλ/2, where j is an integer, the

excitation distribution along the direction of the laser (k̂)
rapidly changes so that it becomes completely symmetric
about the center of the array.
In the interest of understanding the nature of the scat-

tered emission of a finite array of atoms, the N → ∞
limit is investigated through a band structure calculation
that gives both the collective Lamb shift and the decay
rate of the eigenmodes for a given quasimomentum. It
is then shown that the appearance and disappearance of
Bragg diffraction peaks causes the eigenmodes to discon-
tinuously jump from subradiant (superradiant) to super-
radiant (subradiant) when plotted versus quasimomen-
tum. For extended samples (much larger than λ), it is
straightforward to produce subradiant states with decay
rates much less than a single atom. Where in the Dicke
limit (samples much smaller than λ) subradiant states are
the set of antisymetrical states, subradiant states for our
extended periodic system are those with a specific quasi-
momentum (see Sec. V). Lastly, it is demonstrated how
the relationship between an eigenmode’s quasimomen-
tum and its decay rate allows one to directly and specifi-
cally excite subradiant eigenmodes by correctly choosing
the angle of the driving laser.

II. THEORY/METHODS

For a weak laser, a collection of two-level atoms polar-
ized in the x̂ direction can be treated as coupled damped
harmonic oscillators [9, 35, 37, 38],

ḃn(t) = (i∆− Γ/2)bn(t)− i(d/~)E(rn)

− (Γ/2)
∑

m 6=n

G(rm − rn)bm(t), (1)

where bn represents the polarization amplitude of atom n,
d is the electric dipole matrix element, E(rn) = E0e

ik·rn

is the the laser field at atom n, ∆ is the detuning, Γ is
the single atom decay rate, and G(r) is the usual dipole
field propagator [39],

G(r) =
3eikr

2ikr
{[1− (r̂ · x̂)2] + [1− 3(r̂ · x̂)2][

i

kr
−

1

(kr)2
]},

(2)

where r = |r|, and r̂ is the vector r̂ = r/r. These coupled
equations can be rewritten in matrix-vector form:

ḃ = Mb− i
d

~
E (3)

and the steady state solution (ḃ = 0) may be obtained
by inverting a complex symmetric N ×N matrix.

One may gain insight into this system by examining
the eigenvalues and eigenvectors defined by:

Mvµ =
{

i(δµ +∆)−
Γµ

2

}

vµ. (4)

Here vµ represents the µth eigenmode, (δµ + ∆) corre-
sponds to the imaginary part of the eigenvalue and gives
the laser’s detuning from the collective Lamb shift of
the eigenmode, Γµ corresponds to the real part of the
eigenvalue and gives the decay rate. Since M is complex
symmetric rather than Hermitian, v†

νvµ = δνµ does not
hold under the assumption of non-degenerate eigenval-
ues. However, vT

ν vµ = δνµ does [40]. Using this identity,
we may rewrite Eq. (3) as:

ċµ(t) =
{

i(δµ +∆)−
Γµ

2

}

cµ(t)− iαµ(t), (5)

where cµ = v
T
µb and αµ = d

~
v
T
µE. This may be rewritten

in the t → ∞ limit as:

cµ(∞) =
αµ

(δµ +∆) + iΓµ/2
. (6)

The steady state population of the eigenmode, cµ(∞),
will be at a maximum when ∆ = −δµ and will have a
linewidth of Γµ/2. This shows that the amplitude of an
eigenmode is dependent on both its projection onto the
driving laser, αµ, as well as its detuning with respect to
∆.

For the band structure calculations of Sec. V, the
N → ∞ limit is implemented in order to calculate the
eigenvalues of M for a specific quasimomentum, q. In
this limit, the translational symmetry of the system may
be used in order to rewrite the eigenvalue problem:

∑

n

Mmnvnq =
{

i(δq +∆)−
Γq

2

}

vmq (7)

as

∑

n

Mmne
inaqv0 =

{

i(δq +∆)−
Γq

2

}

eimaqv0

∑

n

Mmne
i(n−m)aq =

{

i(δq +∆)−
Γq

2

}

, (8)

where we have replaced vnq with v0e
inaq. The calculation

has now been reduced to an infinite sum that converges
for most values of q (see Sec. V).
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III. EXCITATION DISTRIBUTION

A. Numerical Results

An understanding of the highly directional nature of
the interactions that add coherently can be gained by
noting the similarities in the phases accumulated between
the driving laser and the dipole-dipole interactions [6].
Essentially, the phase a laser will accumulate when going
from atom n to atom m is eik·(rn−rm), while the phase
accumulated in a photon exchanged by the two atoms is
eik|rn−rm|. These two phases are equivalent when (rn −

rm) is parallel to k̂. Because of this, all of the radiation

and virtual photon exchanges along k̂ add coherently,

while they add incoherently along −k̂ relative to atom n.
Therefore, the excitation probability of atom n:

P (n) ≡ |bn|
2, (9)

depends mainly on the dipole-dipole interactions from
the n − 1 atoms in the −k̂ direction relative to n. This
is shown in Fig. 2(a), where except for small oscillations
caused by reflections off of the end of the array, the value
of P (n) follows approximately the same curve for an ar-
ray of 50 atoms as an array of 100 atoms for both red
and blue detunings. Note that this mechanism is only
true when a 6= jλ/2, where j is an integer, as will be
discussed shortly.
The nature of P (n) can be intuitively understood by

considering that the nth atom in the array will only see a
significant contribution of electric field from the driving

laser and the n−1 atoms located in the −k̂ direction rel-
ative to it, as well as the fact that the dominant term in
the dipole-dipole interaction is ∝ 1/(kr) for large spac-
ings. It can now be seen that atom n will feel a sum of
dipole-dipole interactions that add either constructively
or destructively with the driving laser. This results in
the polarization amplitude having the form:

bn − b1 ∝
1

ka

∑

m<n

1

m
, (10)

which is ∼ ln(n) for large values of n. This gives the
approximate form of P (n) shown in Fig. 2(a). Also note
that in Fig. 2, the magnitude of the the change in P (n)
for a given array is larger for red detunings than blue
detunings of the same magnitude, since the resonance
frequency for an array of atoms parallel to k̂ is red shifted
(see Sec. V).

The above description holds only for values of a 6= jλ
2 ,

where j is an integer. This can be understood from the
fact that the only terms in Eq. (1) distinguishing b1 from
bN , b2 from bN−1, etc... are the phase factors e

ikna, where
n is the atom label. If eikna → ±1 for all n, Eq. (1) is
symmetric about the center of the array. Resultantly
when a → jλ

2 , P (n) must have mirror symmetry. Be-
cause of this, the only parameter determining the value
of P (n) is the total magnitude of all the dipole-dipole

FIG. 2. (a) Probability of excitation of atom n (P (n)) di-
vided by the single atom excitation probability (P0) for that
detuning (∆). For the top two plots, P (n)/P0 is shown for a
detuning of −0.6Γ using 50 and 100 atoms. Note that except
for small oscillations, both plots lie on top of each other for up
to n=50. This is due to the highly forward character of the
coherent interactions. For the bottom two plots, P (N)/P0 is
shown for a detuning of +0.6Γ using 50 and 100 atoms. The
non-interacting probability for the same Rabi frequency and
|∆| is shown for reference. (b) The symmetric probability
distribution present for integer and half integer values of a is
shown for red and blue detunings.

interactions atom n experiences. For red detunings this
causes the atoms experiencing the strongest interactions
(atoms in the center of the array) to be the most excited.
For blue detunings, dipole-dipole interactions add such
that the atoms in the center are the least excited. Both
of these effects may be seen in Fig. (2). Because both
the forward and backward dipole-dipole interactions now
add coherently, the dependence described in Eq. (10) be-
comes:

bn − b1 ∝
1

ka

∑

m 6=n

1

|m− n|
. (11)

The symmetry about the center of the array also causes
a large increase in the coherent backscattering (see Fig.
3). Normally the phase correlations of an array of atoms

parallel to k̂ only allow for coherent forward scattering
[16, 26], however because of the symmetry about ±k̂

when a → jλ
2 , light scattered in the −k̂ direction also

adds coherently, causing a Bragg diffraction peak. The
inset in Fig. 3 shows a close up of one of the peaks.
Near a given peak, the coherent backscattering has the
approximate form: {j0(kNα)}2, where α = a− jλ/2 and
j0(x) is the zeroth spherical Bessel function. This can be
shown using the equation for the angular distribution of
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the photon scattering rate:

dγ

dΩ
=

3Γ

8π

{

1− (k̂ · x̂)2
}

∑

n,m

ei
~k·(~rm−~rn)bnb

∗
m, (12)

where γ is the photon scattering rate, and making the ap-
proximation that the atoms are in the timed-Dicke state

(bn = |b0|e
ikna) caused by a laser propagating in the +k̂

direction. The differences in the heights of the diffrac-
tion peaks shown in Fig. 3, are mainly caused by the
fact that the collective Lamb shift of the eigenmode that
the laser drives changes with a. In Fig. 3, the intensity of
successive diffraction peaks increases until a = 2λ, where
it then begins to decrease. For different laser detunings,
this pattern follows a different form.

FIG. 3. Photon scattering rate (γ) in the −k̂ direction ver-
sus array spacing, a, for an array of 100 atoms for values of
detuning ∆ = 0.5Γ (green solid line) and ∆ = −0.5Γ (red dot-
ted line). The inset shows the same graph zoomed in around
a = 2λ. Note that the difference in the heights of the peaks
is mainly due to the fact that the collective Lamb shift of the
driven eigenmode changes with a.

Figure 2(a) is for a = 2.3λ and detunings of |∆| = 0.6,
which for red detunings shows a ∼ 70% difference be-
tween the first and last atoms. However, due to the
long-range nature of the coherent build-up of dipole radi-
ation, the logarithmic growth of P (n) does not saturate
for large values of a. For example, in Fig. 4(b), a ∼ 2.6%
growth in P (n) is seen for a = 50.3λ. In fact, until other
timescales, such as retardation effects, become impor-
tant there is no value of a where this logarithmic growth
doesn’t, in principle, happen.
The nature of P (n) described here is qualitatively valid

in non-ideal circumstances. This is tested using Monte
Carlo routines where the filling factor and the random-
ness of the position of each atom is varied. The mag-
nitude of the overall growth for non-integer wavelengths
is approximately proportional to the filling factor of the
sample. For example, if an experiment would have pro-
duced an array where the first and last atoms have an
excitation probability that differs by 50%, a filling factor

of 0.5 causes the overall effect to reduce to ∼ 25%. It
is also found that for a 6= jλ

2 when each atom’s x, y, z
values are allowed to randomly vary, the noise of a given
array’s P (n) increases while the average value of P (n)
does not change until the randomness of the atoms’ posi-
tions are allowed to vary distances comparable to a, not
λ. For example if a = 20.3, the sample is significantly
more resilient to random positions than if a = 2.3. How-
ever, it is found that the described symmetry for a = jλ

2
is more sensitive to non-ideal scenarios. Unlike the log-
arithmic buildup, the robustness of the symmetry about
the center of the array does not seem to depend on the
value of a. It is found that for all spacings, letting the
atom positions randomly vary more than ∼ 0.3λ, causes
the symmetric P (n) distribution to begin to approach

the logarithmic function seen for a 6= jλ
2 . Note that the

probability distributions described here only occur when
k̂ is parallel to the array.

B. Analytic Derivation of Excitation Distribution

In this section, the approximation that dipole-dipole

interactions adding incoherently (occurring in the −k̂ di-
rection) are negligible, is implemented in order to derive
an equation for P (n) analytically. Note that this is only

valid when a 6= jλ
2 . Neglecting all incoherent interactions

allows us to replace M in Eq. (3) with a lower triangular

matrix. When the ḃ → 0 limit is taken, solving for b is
reduced to solving the system of equations:

0 ≃ (i∆−
Γ

2
)b1 − i(d/~)E(r1)

0 ≃ (i∆−
Γ

2
)b2 − i(d/~)E(r2)−

Γ

2
G(a)b1

0 ≃ (i∆−
Γ

2
)b3 − i(d/~)E(r3)−

Γ

2
G(a)b2 −

Γ

2
G(2a)b1

... , (13)

where bn is the amplitude of the nth atom. This can be
solved for b1, which can be plugged into the equation for
b2 etc... The approximation indicated in Eq. (13) remains
quantitatively accurate when a > λ. This can be seen
in Fig. 4(a) where, except for small oscillations due to
reflections off the end of the array, the curve produced
by solving Eq. (13) remains nearly identical to the full
numerical result. Assuming Eq. (13), and keeping only
the first order terms in 1/(ka) allows one to obtain a
closed form solution for bn:

bne
−ik(n−1)a ≃

idE0/~

i∆− Γ/2

(

1−
3iΓ

4ka(i∆− Γ/2)

n−1
∑

m=1

1

m

)

.

(14)
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To the same order in (1/ka), one can now obtain a solu-
tion for P (n):

P (n) ≃
(dE0/~)

2

∆2 + Γ2/4

(

1− 2Re
{ 3iΓ

4ka(i∆− Γ/2)

n−1
∑

m=1

1

m

})

(15)
These equations hold in the limit ka ≫ 1, and describe

FIG. 4. The probability of excitation of atom n (P (n)) di-
vided by the probability of excitation of the first atom (P (1)),
for an array containing 500 atoms. (a) Comparison between
the full numerical calculation (green), Eq. (13) (red), and our
analytic model (blue) for a = 2.3λ. Since the approximations
made in the analytic derivation hold only for ka ≫ 1, the
analytic model is only qualitatively accurate in this regime.
Note that when P (n) is generated from Eq. (13), it lies on top
of the full calculation (excluding small oscillations at large n)
for all a > λ. (b) Comparison between the full numerical
calculation (green) and the analytic model (blue) for ka ≫ 1.
This illustrates the fact that the analytic model approaches
the quantitive numerical result for this condition, as well as
the fact that the logarithmic growth holds for very large array
spacings. Note that these results are only true for a 6= jλ

2
.

how P (n) grows for red detunings and diminishes for blue
detunings. This can be seen by rewriting the second term
in Eq. (15) in terms of its real and imaginary parts. The
real part of the second term, which is the dominant con-
tributor to P (n), adds to the probability amplitude for
red detunings, and subtracts from the probability ampli-
tude for blue detunings. Physically, this means that in

the steady state limit the singly scattered photons add
in phase with red detuned lasers and out of phase with
blue detuned lasers. As seen in Fig. 4, for smaller spac-
ings the simple model used to derive Eq. (14) becomes
only qualitative. This is because in this regime, higher
order 1/(ka) terms matter. As a becomes smaller than
λ, individual dipole-dipole interactions grow and despite
the fact that they add incoherently, the contributions of

a couple of large interactions in the −k̂ direction begin
to become significant, causing Eq. (13) to break down.

IV. a < λ/2 BEHAVIOR

As can be seen in Fig. (5), the excitation distribution
described above breaks down for values of a < λ/2. This
may be understood by considering the distribution of
eigenvalues, i(δµ +∆)−Γµ/2, of M . Here, Γµ is the µth

eigenmode’s decay rate, while (δµ + ∆) gives the laser’s
detuning from the collective Lamb shift of the eigenmode.
When a < λ/2, there exists a collection of non-radiating
(Γµ ∼ 0) eigenmodes of M within a relatively small en-
ergy range (see Fig. 6). This effect has been studied
in systems such as arrays of metallic nanospheres [41–
43], where it has been shown that these eigenmodes may
be used for their optical transport properties. The same
physics strongly affects the excitation distribution of an
array driven by a laser. In Fig. 5, the excitation distribu-
tion for an array of 100 atoms, where a = 0.4λ, is shown
for various values of ∆. In Fig. 5(a), it may be seen
that the values of ∆ that lie within the energy range of
the collection of subradiant states (∆ = −0.4Γ− −0.9Γ)
produce very different excitation distributions than the
logarithmic ones described in the previous sections. How-
ever, Fig. 5(b) shows that once the laser is off resonance
with the collection of subradiant states, the distribution
becomes logarithmic again.
Figure 6 shows the decay rates (Γµ) and collective

Lamb shifts (δµ) for the eigenmodes of an array where
a = 0.4λ, ∆ = 0, and N = 100. Here it can be seen
that despite the fact that the overall size of the system is
40λ, there is a collection of eigenmodes such that Γµ ∼ 0,
within a very narrow range of energies. Even though pop-
ulating an individual subradiant state can be difficult due
to the narrowness in energy of its photon scattering cross
section, the fact that they all occur in a very small en-
ergy range causes them to be the dominant feature of
the steady state solution for values of ∆ within their en-
ergy band. The presence of Γµ ∼ 0 decay modes will be
explained in Sec. V.

V. BAND STRUCTURE

In order to understand the eigenmodes and eigenval-
ues of this system, we examine its band structure (see
Eq. (8)) in the N → ∞ limit. Since in Eq. (1) there
is only one oscillator per atom, there is only one band
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FIG. 5. The probability of excitation of atom n (P (n)) di-
vided by the probability of excitation of atom 1 (P (1)). (a)
Excitation distribution for a laser resonant with the collec-
tion of subradiant states (Γµ ∼ 0) for an array of 100 atoms
separated by a distance of 0.4λ. Over the range of laser detun-
ings ∆ = −0.4Γ − −0.9Γ the behavior is drastically altered
due to the almost complete lack of decay by photon emission.
(b) The same array of atoms for laser detunings that do not
lie within (∆ ∼ −0.4Γ − −0.9Γ) show qualitatively similar
results to those described previously.

of eigenvalues. Setting ∆ = 0, for a given eigenvalue
(iδq − Γq/2), the real part (Γq) corresponds to the de-
cay rate of eigenmode q, while the imaginary part (iδq)
corresponds to its collective Lamb shift. Here the q rep-
resents the quasimomentum of the eigenmode, giving the
change in the phase of the probability amplitude going
from atom to atom. Note that values of δq that are posi-
tive correspond to redshifts in the resonance line of that
eigenmode.

In Fig. 7, the values of Γq and δq are plotted for the
positive half of the Brillouin zone (0 ≥ q < π/a). Note
that q is the quasimomentum of eigenmode vq shown in
Eq. (8). The negative values of q may be omitted since
the calculation is symmetric and yields the same results.
As will be discussed in Sec. VI, the value of q for an
array may be changed by adjusting the direction of laser
propagation with respect to the array. In Fig. 7(a), a

FIG. 6. The decay rate (Γµ) and the collective Lamb shift
(δµ) of the eigenmodes of an array divided by the single atom
decay rate (Γ), where a = 0.4λ, ∆ = 0 and N = 100. Note
the collection of eigenvalues near the Γµ = 0 axis, despite the
fact that the length of the array is 40λ.

discontinuity is seen at ka = qa, when the value of Γq

drops to 0, changing the eigenmode from superradiant
to non-radiant. At the same time in Fig. 7(b), when
ka + (qa) = 2π the value of Γq shows a discontinuity
from a subradiant mode to a superradiant mode. The
same pattern occurs for larger array spacings. In Fig.
7(c), when (ka) − 2π = qa the eigenmodes shift from
superradiant to subradiant, while in Fig. 7(d), when
ka + (qa) = 4π the eigenmodes jump from subradiant
to superradiant. While the magnitude of each discontin-
uous jump of Γq decreases with a, approaching Γq = Γ
when a → ∞, the described band structure pattern re-
peats for every integer increase in a/λ. This can be un-
derstood in terms of the appearance and disappearance
of Bragg diffraction peaks. This phenomena was some-
what addressed in [28], but the effect of different phase
correlations (values of q) on the decay rate was not.
Figure 7 can be understood by examining Eq. (12),

which gives the photon emission rate per unit solid angle,
for a line of two level atoms polarized in the x̂ direction:

dγ

dΩ
=

3Γ

8π

{

1− sin2 θ cos2 φ
}

|b0|
2
∑

n,m

ei(m−n)a(k cos θ−q),

(16)
where b0 is a magnitude determined by the detuning and
the Rabi frequency, while q is the quasi-momentum of
the eigenmode. All of the phases in Eq. (16) will add
coherently, resulting in a Bragg diffraction peak when:

a(k cos θ − q) = 0,±2π,±4π, ..., (17)

which means there will be a peak at the angle:

θ = arccos
{

λ
(m

a
+

q

2π

)}

;m = 0,±1,±2... (18)

If every atom has the same phase (q = 0), then for values
of nλ < a < (n + 1)λ there will be 2n + 1 values of
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FIG. 7. The values of Γq and of δq (the collective Lamb shift),
are plotted versus values of 0 ≤ qa/2π < 0.5. (a) Shows this
for array spacings of a = 0.3λ, (b) a = 0.7λ, (c) a = 1.3λ, and
(d) a = 1.7λ. Note that for all four graphs the collective Lamb
shift diverges at qa/2π = 0.3, while Γq gives a discontinuous
jump, caused by the appearance or disappearance of a Bragg
diffraction peak.

θ where Eq. (18) can be satisfied and photons may be
scattered. Thus when q = 0, the photon scattering of the
array produces the well-known behavior of a diffraction
grating. However, this is not the case when q 6= 0. For
example when 0 < a < λ/2 and qa > ka, there are no
solutions to Eq. (18). The result of this is that for infinite
arrays, states with values of qa > ka and a < λ/2 do

not decay. This is seen in Fig. 7(a), when Γq jumps
discontinuously to 0. The opposite effect happens when
λ/2 < a < λ. Here for small values of q, there is only
one angle where the array can emit radiation coherently.
However, when the value of q is increased to the point
where a(k + |q|) > 2π there is suddenly another value
of θ corresponding to a diffraction peak, resulting in a
discontinuous increase in the value of Γq (see Fig. 7).
This pattern continues for larger values of a as well. If
a = mλ+ η (m = 0, 1, 2...), where η < λ/2, then when q
is increased to the point where qa > kη there is one less
diffraction peak where photons may escape. This makes
the eigenmode’s decay rate smaller. However if λ/2 <
η < λ, when |qa| + kη > 2π there is one more allowed

peak, making the decay rate of the eigenmode larger. For
spatially disordered systems such as cold atom gases, this
discontinuity does not occur. However when the atoms
in a gas are excited to a timed-Dicke state, a similar peak
still occurs in the forward direction [27] which also results
in an increase in the decay rate [6, 16, 20].
Another surprising feature of Fig. 7 is the divergence

of the collective Lamb shift at the same values of q where
the discontinuities of Γq occur. This happens because the
phase in the sum given by Eq. (8) becomes a multiple of
2π at this point, making the value of the imaginary part
of ǫq dependent on a logarithmically diverging infinite
sum over 1

na
. The decay rate does not diverge however.

This is because when the phase in Eq. (8) becomes a
multiple of 2π the real part of the ∝ 1/r term disappears,
leaving only the convergent 1/r2 sum for the value of the
decay rate.

VI. CONTROLLING THE COLLECTIVE LAMB
SHIFT AND PROBING SUBRADIANT

EIGENMODES

The band structure of an array has a strong effect on
the scattered radiation versus the angle of the driving
laser. This is because if one changes the angle of the laser,
to first order they are also changing the quasimomentum
of the eigenmode being driven. For an array aligned along
ẑ, the phase of the laser at the nth atom is ikna cos θ. As
a result, when θ is changed, the laser’s projection onto
the qth eigenmode (αq from Eq. (5)) is also changed. For
example, if the laser is perpendicular to the atomic array,
the eigenmode corresponding to qa = 0 is being driven.
If the laser is situated at some arbitrary angle θ, the
value of qa of the eigenmode being driven is equal to
ka cos θ. Figure 8(a) shows how the photon scattering
rate changes with respect to θ. Here large changes in
the scattering rate occur when the laser changes from
driving a subradiant (superradiant) quasimomentum to a
superradiant (subradiant) quasimomentum. Figure 8(a)
also shows that the scattering rate dramatically drops at
the point where this change happens, due to the large
collective Lamb shift for this value of qa. It should be
noted that increases in qa of 2π correspond to the same
phase correlations. For example, Fig. 8(b) shows that
for an array with spacings a = 1.3λ, θ = 0 and θ =
arccos (1.0/1.3) give the exact same lineshape.
For values of a > λ/2, the photon scattering lineshapes

versus laser detuning fit a Lorentzian profile almost per-
fectly, with decay rates and collective Lamb shifts corre-
sponding to their band structure values. As seen in Fig.
8(b) for an array of 1000 atoms and a = 1.3λ, when θ = 0
or θ = arccos (0.3/1.3), Γq ≃ 0.94Γ and δq ≃ −0.54Γ.
The large shift in resonant energy occurs because of the
logarithmically diverging collective Lamb shift discussed
above, while Γq ≃ 0.94Γ because the value of qa occur-
ring at the discontinuous jump between subradiant and
superradiant modes is driven, which produces a decay
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FIG. 8. The dependance of the scattered photon emission on
the laser angle θ, which is the angle between an array of 1000
atoms and the driving laser. (a) The scattered radiation ver-
sus a cos θ/λ for a laser with ∆ = 0 and arrays with spacings
of 1.7λ and 2.3λ. Note that the large shifts in scattered radia-
tion occur when the eigenmode that the laser drives crosses a
band structure discontinuity. (b) The photon scattering rate
versus detuning of an array where a = 1.3λ, for three differ-
ent laser angles (θ): {0, arccos (0.3/1.3)}, {π/2, 1.0/1.3}, and
arccos (0.5/1.3). The scattering rates for all three angles fit
to a Lorentzian lineshape well, with decay rates and lineshifts
that correspond to those given by their N → ∞ limit band-
structure calculations, seen in Fig. 7.

rate equal to the average of the two. When θ = π/2
or θ = arccos (1.0/1.3), the superradiant band is driven,
resulting in a broadened lineshape with Γq ≃ 1.2 and
δq ≃ 0.1Γ, while when θ = arccos (0.5/1.3) the subradi-
ant band is driven, giving Γq ≃ 0.66Γ and δq = 0.01Γ.
This indicates several interesting points. First, that it
is possible to create subradiant eigenmodes with decay
rates smaller than the single atom decay rate, even when
the atoms are separated by distances larger than λ. Sec-
ond, unlike in the Dicke limit where the decay rate of an
eigenmode is determined by its symmetry, for extended
and periodic systems whether a given eigenmode is sub-

radiant or superradiant depends on its quasimomentum.
Lastly, this shows how one may easily access either sub-
radiant or superradiant eigenmodes by correctly choosing
the angle of the driving laser.

VII. CONCLUSION

The effects in a coherently radiating atomic array be-
ing driven by a laser have been studied. It was shown
numerically that the excitation distribution for a given
array is highly dependent on whether the driving laser is
red or blue detuned. It was then shown analytically that
the probability of excitation grows along k̂ for red detun-
ings and diminishes along k̂ for blue detunings even for
extremely large values of a. This is because the singly
scattered photons along k̂ add in phase with red detuned
lasers and out of phase with blue detuned lasers. It was
also shown that the probability distribution and photon
scattering become symmetric about the center of the ar-
ray for spacings of jλ/2. These results break down when
a < λ/2 due to the presence of a collection of extremely
subradiant states (Γq ∼ 0).
In order to interpret the eigenmodes of the system,

a bandstructure calculation for an infinitely long array
of atoms was conducted. These calculations showed the
eigenmodes have both a collective Lamb shift that di-
verges logarithmically, as well as a discontinuous decay
rate when plotted versus quasimomentum. The sudden
jump from subradiant to superradiant eigenmodes can
be understood by the appearance and disappearance of
Bragg diffraction peaks of the scattered radiation. Be-
cause of this, it was shown that there exists a collection
of eigenmodes that have no diffraction peaks at all when
a < λ/2, and therefore do not radiate. Finally, it was
shown that these divergences and discontinuities in the
bandstructure of an array may be exploited in order to
control the photon scattering rate by changing the an-
gle of the driving laser, allowing one to manipulate the
collective Lamb shift as well as access subradiant eigen-
modes even when the size of the sample is much larger
than λ.
It has been suggested that coherently radiating sys-

tems should be thought of in terms of Bragg scattering
[12, 28, 44], where the radiators have certain spatially
dependent phase correlations. Here, this picture is nec-
essary. This is because the symmetries in an atomic
array cause the number of diffraction peaks to change.
Since photons are mainly emitted into these diffraction
peaks [28], the photon scattering rate changes drastically
with their appearance and disappearance. In systems
such as cold atom gases, where the spatial distribution
of atoms is highly disordered, the spatially dependent
phases caused by the driving laser still cause a diffrac-
tion peak in the forward direction. This phenomenon
is, of course, the well known coherent forward scattering
[20, 26]. A large part of understanding the nature of radi-
ators, in the low excitation regime essentially consists of
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determining the spatially dependent phase relationship
between atoms followed by determining their resulting
scattered emission. Recently interesting new physics has
resulted from approximating this relationship as the one
caused by the initial driving laser, i.e. the timed Dicke
state [6, 7, 16, 20]. Understanding the nature of how
these phase relationships develop, and how they may be
manipulated in order to explore new physical systems
will surely provide novel insights into the relationship
between light and matter in the future.

During the review process of this manuscript, we be-
came aware of work by Jen et. al. that studies the ap-
pearance of subradiant states in finite arrays of atoms
(arXiv:1603.00996). This contains some similar ideas to
that of Section IV.
The authors would like to thank Prof. C.-L. Hung

for enlightening conversations, as well as Jesús Pérez-
Rı́os for his valuable insights into graphic design. This
material is based upon work supported by the National
Science Foundation under Grant No. 1404419-PHY.
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