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We propose using nonlinear Mach-Zehnder interferometer (NMZI) to efficiently prepare photonic
quantum states from a classical input. We first analytically investigate the simple NMZI that
can filtrate single photon state from weak coherent state by preferrentially blocking two-photon
component. As a generalization, we show that the cascaded NMZI can deterministically extract
arbitrary quantum state from a strong coherent state. Finally, we numerically demonstrate that the
cascaded NMZI can be very efficient in both the input power and the level of cascade. The protocol
of quantum state preparation with NMZI can be extended to various systems of bosonic modes.

PACS numbers: 42.50.Dv, 42.50.Hz, 42.50.St

I. INTRODUCTION

Integrated photonics can achieve unprecedented inter-
ferometric stability [1, 2] and build large scale interferom-
eters [3, 4]. However, reliable quantum state preparation
for integrated photonics remains an important challenge,
because interferometers and coherent input states are in-
sufficient for quantum states preparation. We may use
either post-selection or nonlinear interaction to overcome
this challenge. The approach of post-selection only re-
quires linear optical elements and photon detectors, but
the preparation of quantum state is probabilistic and con-
ditioned on the outcome of the projective measurement
[5–7]. The approach of nonlinear interaction assisted by
an ancillary two-level system (TLS) can deterministically
prepare arbitrary quantum state of the photonic mode
[8–10], but it requires strong coupling between the opti-
cal mode with the single TLS, which is experimentally
challenging for integrated photonics. Alternatively, we
may consider using the nonlinear optical waveguide com-
bined with ultra-stable interferometers to achieve reli-
able quantum state preparation, without requiring TLS
[8–10], post-selection [11–13], nor feedback/feedforward
control [14].
In this paper, we propose to use interferometry com-

bined with Kerr nonlinearity to filtrate single photons or
extract any desired quantum states from coherent state
input, as illustrated in Fig. 1(a). We first present the
idea of quantum state filtration (QSF) of single pho-
tons, which keeps the desired single photon component
by blocking the undesired component to a different port.
We then generalize the idea to quantum state extraction
(QSE), which not only keeps the desired component, but
also extracts the desired component from the undesired
component before blocking/redirecting the residual pho-
tons.
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II. SINGLE PHOTON FILTRATION

We first consider the simple task of QSF of single pho-
tons. As shown in Fig. 1(b), we use a nonlinear Mach–
Zehnder interferometer (NMZI), with a Kerr nonlinear
medium in one of the arms. Since Kerr nonlinearity can
induce photon number dependent phase shift, we can de-
sign the NMZI to induce destructive interference at the
output port when there are two photons. More specifi-
cally, with a vacuum input at Path A (upper path) and
a coherent state input at Path B (lower path), the input
state to the filtration is

|ψ〉in = |vac〉A ⊗ |α〉B , (1)

where |α〉 = e−|α|2/2
∑∞

n=0
αn

n! (b
†)n |vac〉, and a(a†) and

b(b†) are annihilation (creation) operators for Paths A
and B, respectively. Each beam splitter (BS) induces a
unitary evolution,

UBS(θ1,2) = eiθ1,2(a
†b+ab†), (2)

with θ1 and θ2 for BS1 and BS2, respectively. The evo-
lution in the nonlinear Kerr medium in Path A is

UK(φ, ϕ) = eiφa
†a+iϕa†a†aa, (3)

where ϕ is the Kerr coefficient and φ is linear phase shift
(relative to Path B). The final output state of the single
photon filtration is

|ψ〉out =UBS(θ2)UK(φ, ϕ)UBS(θ1) |ψ〉in

=
∞
∑

p=0

∞
∑

q=0

µp,q(a
†)p(b†)q |vac〉 , (4)

with µp,q =
∑p

l=0

∑l+q
n=l λn,p+q−n

(

n
l

)(

p+q−n
p−l

)

×
(−1)n−l(sinθ2)

p+n−2l(cosθ2)
q−n+2l and λn,m =

αn+m(cos θ1)
n(− sin θ1)

m

n!m! e−|α|2/2+inφ+in(n−1)ϕ. The
probability of p photons at the output of Path A is

Pp = 〈p|TrB{|ψout〉 〈ψout|} |p〉 =
∞
∑

q=0

p!q! |µp,q|2 . (5)
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Figure 1. (color online) (a) Schematic illustration the arbi-
trary quantum state filtration and extraction from coherent
state input. (b) The configuration for QSF of single photon
from coherent state input |α〉, using the simple NMZI (con-
sisting of Mach–Zehnder interferometer, and Kerr medium
and phase shifter). (c) Three processes for two photon out-
put of Path A for weak coherent input. (d) The probabilities
of n photons output of Path A against the phase difference
between two arms φ, with ϕ = 0.1 and α = 0.1. (e) The

second-order correlation function (g(2)) of light output of Path
A against φ for various ϕ with α = 0.1. The solid and dashed
lines are obtained by the exact numerical and approximated
analytical solutions, respectively.

The second-order correlation function [15] is

g(2) =

〈

a†a†aa
〉

〈a†a〉2
=

∑∞
p=2 p(p− 1)× Pp

(
∑∞

p=1 p× Pp)2
, (6)

which characterizes the generated single photon state.
For a weak coherent input |α|2 ≪ 1, we have P2 ≪ P1

and can safely neglect the probability of multiple photons
(Pn≥3). By considering the leading contribution, we have

g(2) ≈ 2P2

P1
2
≈
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∣

∣
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2

, (7)

where µ1,0 = αcosθ1cosθ2(e
iφ − η) and µ2,0 =

1
2 (αcosθ1cosθ2)

2[−2ηeiφ + ei2(φ+ϕ) + η2] for the simple
NMZI with η = tanθ1tanθ2. The three terms in µ2,0 cor-
respond to three different processes with two photons at
the output of Path A, as shown in Fig. 1(c). The inter-
ference of these three processes can be controlled by the
linear phase shift (φ) and nonlinear coefficient (ϕ). The
optimal condition for µ2,0 = 0 is

ηe−iφ = 1±
√

1− ei2ϕ, (8)

which can always be fulfilled as long as ϕ 6= 0, so that
the leading contribution to g(2) can be eliminated.

Fig. 1(d) shows the probability of n photons at the
output of Path A (Pn) depending on the linear phase

shift φ, with parameters ϕ = 0.1, η = |1 −
√
1− ei2ϕ|

and α = 0.1. We find that the P2 is greatly suppressed
for φ ≈ −0.13π, while the dominant single photon emis-
sion P1 ≫ P2,3,4 is not significantly affected. In Fig.

1(e), the relation between g(2) and φ are plotted for dif-
ferent values of nonlinear coefficient ϕ, with α = 0.1 and
η given by optimal condition from Eq. (8). We find good
agreement between the approximated analytical solution
from Eqs. (7)&(8) (solid lines) and the exact numerical
solution from Eq. (6) (dashed lines). With increasing
nonlinear coefficient ϕ, the deviation from g(2) = 1 be-
comes more significant, due to the Fano interference of
the three processes (Fig. 1(c)) contributing to µ2,0. These

Fano-like curves show sub-Poisson statistic with g(2) ≈ 0
for φ close to the optimal condition (Eq. (8)), where the
two photon output can be totally forbidden due to de-
structive interference. Meanwhile, we can also find the
constructive interference of the two-photon output, which
gives rise to super-Poisson statistic (g(2)(0) ≫ 1) output.
Comparing the curves with different nonlinear effect co-
efficients, the single photon filtration is more sensitive
to phase φ for smaller ϕ, indicating the crucial role of
nonlinearity.

For QSF of single photon, the fidelity is F = P1 =
(cosθ1cosθ2)

2|α2|
∣

∣1− ei2ϕ
∣

∣. The optimal condition re-

quires η = tanθ1tanθ2 ≈ 1, we have |cosθ1cosθ2| < 1
2

and P1 < ϕ|α2|/2, which implies that the fidelity de-
pends on both the the Kerr nonlinearity coefficient and
the intensity of the coherent state input. QSF with sim-
ple NMZI cannot suppress the components with n > 2
photons (see Fig. 1(d)), and it only works for weak coher-
ent state

∣

∣α2
∣

∣ ≪ 1, which significantly limits the fidelity.
Moreover, the fidelity of QSF is fundamentally limited
by the overlap between the input state and the target
state, Psucc < |〈ψout|ψin〉|2, because it blocks all unde-
sired components. To go beyond this limit, we need to
generalize QSF to QSE, which not only keeps the desired
component, but also extracts the desired component from
the undesired ones.

III. QUANTUM STATE EXTRACTION

To implement QSE, we consider the cascaded NMZI,
with a series of NMZIs connected sequentially. As shown
in Fig. 2(a), the basic element consists of a BS (θ) fol-
lowed by a linear phase shifter (φ) and a Kerr medium
(ϕ) in the upper path. The basic element can be repre-
sented by a standard two-port unitary [Fig. 2(b)]

U(φ, ϕ, θ) = UK(φ, ϕ)UBS . (9)
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Figure 2. (color online) Cascaded NMZI. (a) The basic ele-
ment consists of a BS (θ) followed by a linear phase shifter
(φ) and a Kerr medium (ϕ) in the upper path. (b) Schematic
representation of the element for cascaded NMZI. (c) Fidelity
of the single photon extraction increases with the number of
cascade elements, N . The parameters are optimized numeri-
cally under the constrain Pn≥2 < 0.01 with ϕ = 0.1. (d) Fi-
delity of Fock state extraction (n = 1, 2, 3) increase with |α|2
for cascaded NMZI with N = 40. The results are obtained
by optimize the parameters of each unit under the constrain
that 1− P0 − Pn ≤ 0.01.

The cascaded MNZI with N elements can be character-
ized by

UN = ΠN
l=1U(φl, ϕl, θl). (10)

For example, the simple NMZI (Fig 1(b)) consists of N =
2 basic elements, with φ2 = ϕ2 = 0.
The cascaded NMZI can not only keep the desired

single-photon component, but also extract the (desired)
single-photon state from (undesired) multi-photon states,
as long as there are enough photons in the undesired com-
ponent. We numerically optimize the fidelity by tuning
the parameters of the N elements. As illustrated in Fig.
2(c), the optimized fidelity of single photon extraction
F = P1 increases with N monotonically, with asymptotic
value F → 1 − |〈0|α〉|2 (dashed lines), because our pas-
sive device cannot extract single photon from the vacuum
component. Furthermore, the cascaded NMZI can ex-
tract Fock state |n〉 with n = 1, 2, 3, · · · . The asymptotic

fidelity of n-photon extraction is F → 1−∑n−1
m=0 |〈m|α〉|2,

which can be achieved for |α|2 ≤ 1.5/n with cascaded
NMZI of N = 40 elements, as shown in Fig. 2(d).
Remarkably, the cascaded NMZI can extract arbitrary

superposition of Fock states with a large coherent state
input (|α| ≫ 1) with almost perfect fidelity. For θl ≪ 1
with l = 1, · · · , N , almost all input photons will be
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Figure 3. QSE for |ψtarget〉 = (|0〉 + |1〉)/
√
2. (a) The prob-

ability of |0〉 and |1〉, (b) the Fidelity (F ) and Purity (Q) of
the output. The results are obtained by optimize the param-
eters of a chain of N = 20 units under the constrain that
1− P0 − P1 ≤ 0.01.

guided in Path B, which effectively remains as a coherent
state (with small deviation of O (θ)) for all intermediate
stages. The effect of each beam splitter to the upper path
can be regarded as an effective displacement operation

to Path A, as D(ǫl) = eǫla
†−ǫ∗l a with ǫl = αθl and a small

deviation of O
(

ǫ2l /α
2
)

[16]. In addition, the linear phase
shift and Kerr nonlinearity can achieve the unitary evolu-

tion UK (φl, ϕ) = eiφla
†a+iϕa†a†aa. Hence, the cascaded

NMZI of N elements can induce the unitary evolution
UK (φN , ϕ)U (ǫN ) · · ·UK (φ2, ϕ)U (ǫ2)UK (φ1, ϕ)U (ǫ1),
which in principle can accomplish any desired unitary
transformation for sufficiently large N and carefully cho-
sen {φl, ǫl}l=1,··· ,N [17–19]. Despite the large overhead
in N , this provides a generic approach using cascaded
NMZI to extract arbitrary superposition of Fock states
from a large coherent state with almost perfect fidelity.
In practice, it is favorable to design the cascaded

NMZI with a small number of elements. To illustrate
the feasibility, we consider the target state |ψtarget〉 =

(|0〉+ |1〉)/
√
2 using N = 20 cascaded elements optimize

the fidelity by tuning parameters of {ϕl, φl, θl}l=1,··· ,N .
As illustrated in Fig. 3, we can improve the fidelity F
and purity Q = Tr(ρ2A) of the extracted state by increas-

ing |α|2. Both F and Q are greater than 97.5% when
|α|2 ≥ 1.5. It’s intriguing that a high fidelity QSE of
superposition of Fock states can be achieved using a rea-
sonable size coherent state and a finite-stage cascaded
NMZI.

IV. DISCUSSION

The photonic integrated circuits provide a promising
platform for realizing the QSF/QSE, where arrays of
beam splitters and phase shifters can be integrated on
a chip [3, 4]. In the experiments, the most challeng-
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ing part is the Kerr nonlinear at single photon level
(ϕ = 0.1 in this paper). One feasible approach for realiz-
ing such strong Kerr nonlinearity is taking the advantage
of the collective effect of atomic ensemble. Recently, the
single photon level nonlinearity has been demonstrated
by interfacing the atomic ensemble and photonic waveg-
uide [20–22], such as nanofiber [23, 24], hollow-core pho-
tonic crystal fiber [25, 26] and integrated waveguide [27].
Therefore, the QSF/QSE can be realized in the photonic
integrated chip by trapping the atom clouds close to the
chip. Alternatively, the strong Kerr nonlinearity can be
achieved by incorporating the materials with high intrin-
sic nonlinearity into the photonic chip [28, 29], and single
photon level nonlinear effect might be realized by new
materials such as graphene [30] and topological insulator
[31].

The idea of QSE can be extended from optical fre-
quency to microwave and terahertz frequencies. In par-
ticular, the superconducting quantum circuits [32, 33]
can readily realize the QSE by using the strong nonlin-
earity of superconducting qubits. In addition, the mecha-
nism of the QSE is very general, can also be generalized to
other collective Bosonic excitations in solids, such as sur-
face plasmon [34], exciton-polariton [35], magnon [36, 37]
and phonon [38]. For example, the phononic quantum
states can be engineered by coupling the high quality me-
chanical oscillators with superconducting qubits [38] or

using the intrinsic mechanical nonlinearity of mechanical
resonators [39].

V. CONCLUSION

We have demonstrated that the simple NMZI can fil-
trate single photon state from a weak coherent state. Us-
ing cascaded NMZI, we can reliably extract arbitrary
quantum state from a strong coherent state. Since
our scheme only requires Kerr nonlinearity, linear phase
shifter and beam splitter, it can be implemented in su-
perconducting circuits, coupled optomechanical systems,
as well as photonic integrated circuits.
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