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Parity-time (PT ) symmetric systems have two distinguished phases, e.g., one with real energy
eigenvalues and the other with complex conjugate eigenvalues. To enter one phase from the other,
it is believed that the system must pass through an exceptional point, which is a non-Hermitian
degenerate point with coalesced eigenvalues and eigenvectors. Here we reveal an anomalous PT
transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity
increases, the original linear system evolves along two distinct PT -symmetric trajectories, each of
which can have an exceptional point. However, the two trajectories collide and vanish away from
these exceptional points, after which the system is left with a PT -broken phase. We first illustrate
this phenomenon using a coupled mode theory and then exemplify it using paraxial wave propagation
in a transverse periodic potential.

I. INTRODUCTION

Parity-time (PT ) symmetry originated in the search for
an alternative framework of canonical quantum mechanics
and quantum field theory [1–3]. It has since stimulated
fast growing interest in optics [4–21], microwaves [24],
radio waves [25], acoustics [26], and mechanics [27]. In
all these systems, a well-known and intriguing property is
the existence of two distinguished phases, e.g., one with
real energy eigenvalues (“PT -symmetric phase”) and the
other with complex conjugate eigenvalues (“PT -broken
phase”). The same property is shared with other systems
with novel symmetries [28], which is the consequence of
having a pseudo-Hermitian Hamiltonian [29].

The two aforementioned phases are separated by ex-
ceptional points (EPs) [30–39], which are non-Hermitian
degenerate points with coalesced eigenvalues and eigenvec-
tors. While EPs are ubiquitous in non-Hermitian systems,
they are singular points in the parameter space and can
be reached only by a sweep involving two or more pa-
rameters in general. PT -symmetric systems are special
in this regard, as they only require sweeping a single
parameter to reach an EP. This parameter can be, for
example, the gain and loss strength in the system or the
effective wavelength of the eigenstates [40]. As such, it
is believed that if the system maintains PT symmetry,
then it must pass through an EP in order to enter one
phase from the other, regardless of which parameter is
varied. To the best of our knowledge, the only exception
to this rule occurs when the underlying Hermitian system
(i.e., without gain or loss) has genuine degeneracy [16, 17]
with identical eigenvalues but distinct eigenstates. This
scenario, nevertheless, can be taken as the limiting case
of a system with an EP and increasing system size [41].

Here we reveal an anomalous transition from the PT -
symmetric phase to the PT -broken phase that takes place
away from an EP in a nonlinear system: as the nonlin-
earity increases, the original linear system evolves along
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two distinct PT -symmetric trajectories, each of which
can have an EP. However, the two trajectories collide and
vanish away from these EPs, after which the system is
left with only a PT -broken phase.

We will refer to this phenomenon as anomalous PT
transition (APT). Below we first illustrate the existence
of APT using a coupled mode theory, which cannot be
induced by the typical form of nonlinearity considered
previously [42, 43]. Instead, APT requires distinct and
eigenstate-dependent paths of the effective Hamiltonian
as the nonlinearity increases, which we illustrate using
nonlinearity-shifted couplings. We then exemplify APT
using paraxial wave propagation in a transverse periodic
potential, where the PT transition (and the associated
spectral singularity [44]) is no longer due to an exceptional
point in the Hilbert space defined by a given transverse
momentum. We conclude by discussing how APT can
be identified in an experiment and show that it does not
occur from the PT -broken phase to the PT -symmetric
phase.

II. ROUTE TO APT

We start by considering two identical oscillators with
energy E0. They are subjected to gain and loss at rate±κ0
and a real-valued coupling g0 that can be negative. Before
we introduce nonlinearity, the effective Hamiltonian of
the system can be written as

H0 =

[
E0 + iκ0 g0

g0 E0 − iκ0

]
, (1)

which is PT -symmetric and well studied. For example,
it has been used to describe coupled waveguides [4, 42]
and photonic molecule lasers [39, 45], including those
made up of coupled InGaAsP microring resonators [18],
GaAs/AlGaAs quantum cascade microdisk resonators
[46], and erbium-doped silica microtoroid resonators [47].
A generalization of Eq. (1) to include multiple oscillators
has been used to describe discrete fiber networks [15, 48]
and supersymmetric laser arrays [49]. It is also worth
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noting that Eq. (1) is not a Hamiltonian in the sense of
quantum mechanics, since it incorporates gain and loss
directly and is hence non-Hermitian, which captures the
dynamics of the corresponding systems nevertheless.

The effective Hamiltonian (1) satisfies PT H0PT = H0,
where the parity operator P is represented by a rotation
matrix [ 0 1

1 0 ] and the time-reversal operator T by the
complex conjugate. The two eigenvalues of H0 are given
by E(1,2) = E0±

√
g20 − κ20, which are real when |g0| > κ0

and the system is in the PT -symmetric phase; they form
a complex conjugate pair when |g0| < κ0 and the system
is in the PT -broken phase. The EP is located at |g0| = κ0,
which the system must pass through to go from one phase
to the other.

The two eigenstates of the system can be expressed

as ψ(j) = c
(j)
a ϕa + c

(j)
b ϕb (j = 1, 2), where ϕa,b are the

uncoupled wave functions of the two oscillators. Below
we drop the superscript j when ambiguity is unlikely, and
we use the normalization |ca|2 + |cb|2 ≡ 1 as usual. We
also emphasize that |ca| and |cb| are equal in the PT -
symmetric phase (given by 2−1/2), which is not the case
in the PT -broken phase.

To illustrate the simplest case where APT arises, we
take κ0 to be independent of the nonlinearity ε. We
assume the typical nonlinear energy shift in the effective
Hamiltonian, with E0 replaced by Ea,b(ε) = E0 +2ε|ca,b|2
in the two diagonal elements [42, 43]. Most importantly,
we consider nonlinearity-shifted couplings given by

ga(ε) = g0 + εβc∗acb + εγ|ca|2, (2)

gb(ε) = g0 + εβc∗bca + εγ|cb|2, (3)

which are the key quantities for APT to take place as
we will show. Here β, γ are two real constants, and ga =
g∗b holds by construction when |ca| = |cb|. The global
phase of ψ, which does not bear a physical significance, is
eliminated in ga,b(ε) thanks to the product c∗acb and its
complex conjugate. Below we will refer to our nonlinear
Hamiltonian as

H ≡
[
Ea(ε) + iκ0 ga(ε)

gb(ε) Eb(ε)− iκ0

]
, (4)

and we recover the typical nonlinear Hamiltonian men-
tioned previously (H̃) when β, γ are taken to be zero (i.e.,
ga,b(ε) = g0).

While H̃ displays interesting dynamical effects [42], it
does not lead to a transition between the PT -symmetric
phase and the PT -broken phase with increasing nonlinear-
ity [23]. In contrast, the nonlinear Hamiltonian H given
by Eq. (4) displays a qualitatively different behavior. Let
us start in the PT -symmetric phase with |g0| > κ0. As
mentioned previously, |ca| = |cb| = 2−1/2 holds for both
linear eigenstates. As |ε| increases, ca,b evolve continu-
ously from their linear values, and if we assume that they
still have the same modulus, then we find Ea(ε) = Eb(ε)

as well as g
(j)
a (ε) = [g

(j)
b (ε)]∗ as mentioned previously.

It is important to note that the couplings g
(1,2)
a (ε) [and
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FIG. 1. (Color online) Anomalous PT transition away from an

EP. (a) Two nonlinear energy eigenvalues E
(1)
− and E

(2)
+ in the

PT -symmetric phase (solid lines) annihilate each other at the
APT point where ε = −0.091 (filled circle). Dashed lines show

the two additional eigenvalues E
(1)
+ and E

(2)
− of the linearized

Hamiltonians H(1,2), and the open circle shows the EP of H(2).

(b) Difference between |g(j)a (ε)| and κ0. Filled and open circles
show the APT point and EP, respectively. The parameters
used are: E0 = 0.55, κ0 = 0.22, g0 = −0.25, β = 0.6, and
γ = −0.8. (c) Same as (a) but with β = 0. The APT point
is replaced by an EP at ε = −2(κ0 + g0)/γ = −0.075. The
difference between the now path-independent |ga(ε)| and κ0

is shown in (d).

g
(1,2)
b (ε)] differ, which prompts us to restore the nonlinear

mode index j (j = 1, 2). This j-dependence arises from
the relative phase between ca and cb contained in the
product c∗acb and its complex conjugate, which is different
for the two eigenstates. As we shall see, this j-dependence,
or equivalently a nonzero β, leads to APT.

Along these two j-dependent nonlinear trajectories,
the system now has two distinct linearized Hamiltoni-
ans H(j), each still being PT -symmetric and satisfying
PT H(j)PT = H(j). The eigenvalues of H(j) are hence
either real or complex conjugates, and they are given by

E
(j)
± = E0 + ε±

√
|g(j)a (ε)|2 − κ20. (5)

The corresponding eigenvectors in the PT -symmetric
phase still satisfy |ca| = |cb|, which is consistent with our
assumption. We note that the two linearized Hamilto-
nians H(1,2) have four eigenvalues in total, but for each
H(j), only one of its eigenvalues corresponds to the non-
linear eigenstate ψ(j). These nonlinear eigenstates are
stable as can be shown using a standard linear stability
analysis suitable for non-Hermitian systems [43, 50], and
we denote the corresponding nonlinear eigenvalues by

E
(1)
− , E

(2)
+ , with the other two spurious ones by E

(1)
+ , E

(2)
−
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[see Fig. 1(a)].
As is clear from Eq. (5), each of the two H(j) can

have an EP at |g(j)a (ε)| = κ0, which could in principle
lead to two PT transitions to their respective PT -broken
phases. However, APT takes place away from these EPs,

when E
(1)
− and E

(2)
+ annihilate each other at a different

nonlinearity strength [see Fig. 1(a)]. We will refer to this
annihilation point as the APT point, beyond which the
system is left with only a PT -broken phase, which we
will discuss later in Fig. 3.

We have labeled E
(2)
± by continuity beyond their EP

in Fig. 1(a), i.e., with inverted signs before the square
root in Eq. (5). It is straightforward to see from Eq. (5)

that the annihilation of E
(1)
− and E

(2)
+ is accompanied

by |g(1)a (ε)| = |g(2)a (ε)|. In fact not just their moduli,

g
(1,2)
a (ε) ≡ X + iY themselves also become the same

at the APT point. They are given by the intersections
of a circle and a hyperbola in the complex plane, both
parametrized by ε:(

X − g0 − ε
γ

2

)2
+ Y 2 =

(
εβ

2

)2

, (6)(
2X − g0 − ε

γ

2

)
Y = −εβκ0

2
. (7)

These two conic curves are derived using Eq. (2) and

cb =
±
√
|ga|2 − κ20 − iκ0

ga
ca (8)

in the PT -symmetric phase, and they become tangent
to each other at a maximum nonlinearity strength |ε|max,
beyond which they no longer intersect. |ε|max determines
the position of the APT point, and it is 0.091 in the
example shown in Figs. 1(a) and 1(b).

To verify that the APT point is not an EP itself, we

compute the difference between |g(j)a (ε)| and κ0 along
the two nonlinear trajectories. As Fig. 1(b) shows, this
difference diminishes as ε reduces, but it does not become
zero at the APT point. Instead, it reaches zero at an EP
along the trajectory of H(2) before the APT point. It may

look surprising at first as to why E
(2)
± do not enter the

PT -broken phase beyond this EP. However, one quickly

realizes that since E
(1)
− is still in the PT -symmetric phase

beyond this EP, E
(2)
+ has to stay in the PT -symmetric

phase also in order to annihilate it at the APT point,
where they are both real. In this sense, it is the APT that

prevents E
(2)
± from entering the PT -broken phase beyond

its EP. In addition, we note that κ0 is not just the cut-off

of |g(2)a (ε)| imposed by the PT -symmetric phase; it is also

the true minimum of |g(2)a (ε)| which cannot be passed.

This is evidenced by the vanishing slope of |g(2)a (ε)| at the
EP shown in Fig. 1(b), and it can be shown rigorously
using a perturbation theory.

Interesting, the EP before the APT point can occur on

the trajectory of H(1) instead (see Fig. 2), if |g(1)a (ε)| <
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FIG. 2. (Color online) Another example of anomalous PT
transition away from an EP. (a) and (b) are the same as those
in Figs. 1(a) and (b) except that the EP before the APT point

is now on the nonlinear trajectory of H(1). The parameters
are the same as in Fig. 1 except for β = −0.6.

|g(2)a (ε)| in the PT -symmetric phase. In fact, E
(j)
± only

depends on the absolute value of g
(j)
a (and g

(j)
b ). Therefore,

by noting

g(2)a (−β) =
[
g(1)a (β)

]∗
(9)

using Eqs. (2) and (8), we find that the values of E
(1)
± are

exchanged with E
(2)
± when we flip the sign of β. In other

words, the four curves in Fig. 2(a) are identical with those
in Fig. 1(a) but labeled differently. However, it is the lower
lobe that corresponds to the two nonlinear eigenvalues of
H in Fig. 1(a), while it is the upper lobe that gives the
two nonlinear eigenvalues of H in Fig. 2(a). Consequently,
we find that the two sets of nonlinear eigenvalues, one in
the system with +β and the other in the system with −β,
cross at the EP when plotted together.

The annihilation of two eigenvalues is a generic feature
in non-Hermitian and nonlinear systems upon the vari-
ation of a parameter. Here this tuning parameter is the
nonlinearity itself, and other instances can be, for exam-
ple, the lengths of the gain and loss regions in a slab laser
[36] and a random laser [51]. In fact, this annihilation also
happens when β = 0 [see Fig. 1(c)], with which ga,b(ε)
no longer depend on the nonlinear mode index j in the
PT -symmetric phase: they only depend on |ca| and |cb|,
which are the same (i.e., 2−1/2) for the two nonlinear eigen-
states. As a result, these two nonlinear states ψ(1,2) are
captured by the same linearized Hamiltonian H, and their
eigenvalues are given by E(1,2) = E0 + ε±

√
|ga(ε)|2 − κ20.

Therefore, if these two nonlinear eigenstates annihilate,
it has to be at an EP where |ga(ε)| = κ0 [see Fig. 1(d)].
From this comparison we see that a nonzero β, or more
generally, a path-dependent evolution of ga,b and H with
nonlinearity, leads to the occurrence of APT.

As to the PT -broken phase beyond the APT point,
it consists of two additional nonlinear eigenstates ψ(3,4)

that spin off from one of the two PT -symmetric eigen-
states (see Fig. 3). We note that if ψ(3) = caϕa + cbϕb

is a nonlinear eigenstate of H, it is straightforward to
show that c∗bϕa + c∗aϕb is also a nonlinear eigenstate

of H. This is indeed how ψ(3,4) are related, i.e. they
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satisfy PT ψ(4) = ψ(3)(x), and their eigenvalues satisfy
E(4) = [E(3)]∗. These properties are identical to those in
a linear PT -broken phase, but we emphasize that ψ(3,4)

are eigenstates of two distinct linearized Hamiltonian
H(3,4), respectively. Neither of H(3,4) is PT -symmetric,
i.e., PT H(3,4)PT 6= H(3,4), but they are PT -symmetric
partners and satisfy PT H(3)PT = H(4).

III. AN EXAMPLE OF APT

To exemplify APT in a model system, we consider
paraxial wave propagation with Kerr nonlinearity

i∂zψ ≡ Hψ = −∂2xψ + V0(x)ψ + ξ|ψ|2ψ, (10)

where ψ(x, z) is the wave function normalized by 〈ψ|ψ〉 ≡∫D/2

−D/2
|ψ|2 dx = 1 and z, x are the scaled coordinates of

the longitudinal and transverse directions. D is the length
of one period of the potential V0(x) = VR(x) + iVI(x),
which is PT -symmetric and satisfies VR(−x) = VR(x) and
VI(−x) = −VI(x). For simplicity, we consider VR(x) =
− cos(x)2 and VI(x) = −τ sin(2x) with D = π, which
have been studied previously in the linear regime [7]. Its
first two linear bands (with ξ = 0) are in the symmetric
phase unless |τ | is larger than 0.5 [7], with which the
modes near the band edge enter the PT -broken phase
[see Figs. 4(a) and 4(b)]. This linear model has been
realized experimentally using coupled fiber loops with
temporal modulated gain and loss, which is equivalent to
a synthetic photonic lattice [15]. Strong Kerr nonlinearity
exists in fiber optics [52] and hence can be implemented
in this system.

In Figs. 4(c) and 4(d) we focus on the two modes
ψ(1,2)(x) at k = 0.77, which are in the linear PT -
symmetric phase with τ = 1. We note that the intensities
of these two modes satisfy |ψ(j)(−x)|2 = |ψ(j)(x)|2, which
is equivalent to |ca|2 = |cb|2 in the coupled mode theory
discussed previously. As a result, they do not break the
PT -symmetry of the system, since now the nonlinearity-
modified potential V (j)(x) = V0(x) + ξ|ψ(j)(x; k)|2 still
has a symmetric real part (i.e., VR(x)+ξ|ψ(j)(x; k)|2) and
an antisymmetric imaginary part (i.e., VI(x)). As we have
emphasized in the coupled mode theory, APT requires
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FIG. 4. (Color online) Anomalous PT transition in a trans-
verse periodic potential V0(x) = − cos(x)2 − i sin(2x) with
Kerr nonlinearity. (a,b) Real and imaginary parts of the first
two band near the band edge k = 1 (solid lines) in the linear
regime. Open circles in (a) and (c) mark the same pair of
modes at k = 0.77 that we study in the nonlinear regime.
The dots show the linear bands calculated using the coupled
mode theory (14) with ξ = 0. (c,d) Anomalous PT transition
from the PT -symmetric phase to the PT -broken phase when
nonlinearity increases, similar to that shown in Figs. 1(a) and
(b).

two path-dependent evolutions of the system Hamiltonian
with nonlinearity. This property is satisfied here because
|ψ(1)(x)|2 6= |ψ(2)(x)|2 in the linear case, resulting in dif-
ferent nonlinear potentials V (j)(x) and path-dependent
H(j).

By choosing a focusing nonlinearity (ξ < 0) and increas-
ing its strength, we find that ψ(1,2)(x) indeed display APT
[see the solid lines in Fig. 4(c) and 4(d)]: they approach
each other and annihilate at ξ = −0.35, beyond which
the system is left with a PT -broken phase. Similar to
the situation in the coupled-mode theory, each linearized
H(j) has more than one eigenstate, but only one of them
corresponds the nonlinear mode ψ(j). The others never-
theless indicate where the EP of H(j) is. As can be seen
from Fig. 4(c), the EP of H(2) (where E

(2)
± crosses) is

again located at a smaller nonlinearity strength than the
APT point, similar to the scenario shown in Fig. 1(a).

Below we formulate a two-mode coupled mode theory
that reproduces the APT in this example. For a given
wave number k, the modes of the Hermitian periodic
potential VR(x) are given by the Bloch wave functions
ϕi(x; k) exp(ikx), and ϕi(x; k) are determined by[
− ∂2

∂x2
− 2ik

∂

∂x
− k2 + VR(x)

]
ϕi(x; k) = Eiϕi(x; k).

We note that the corresponding energy eigenvalue Ei

is real. It is straightforward to show that 〈i|j〉 ≡
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〈ϕi(x; k)|ϕj(x; k)〉 = δij in the absence of degeneracy.
〈·|·〉 denotes the Hermitian inner product as usual, with
the integration over one period (D) of the PT -symmetric
potential. In addition, the equation above is invariant
upon the parity operation x→ −x and taking the com-
plex conjugate (note again that Ei is real). Therefore,
in principle we can find ϕi(x; k) = ϕ∗i (−x; k). Neverthe-
less, the global phase of ϕi(x; k) is undetermined by its
normalization 〈i|i〉 = 1. Thus we find

ϕi(x; k) = ϕ∗i (−x; k) exp(2iθi) (11)

instead in general, where θi is the phase of ϕi(x = 0; k).
The coupled-mode theory is formulated using modes

ϕg,e(x; k) with energy Eg,e in the first two bands of the
Hermitian potential. As we shall see, a convenient choice
is to set θg = 0 and θe = π/2, leading to ϕg(x; k) =
ϕ∗g(−x; k) and ϕe(x; k) = −ϕ∗e(−x; k). The presence of

VI(x) (and ξ|ψ|2) in principle couples modes of the same
wave number k in all bands, but the coupling is the
strongest among modes of neighboring bands in general,
and we find that the inclusion of ϕg,e(x; k) is sufficient to
demonstrate APT. The basis of our coupled mode theory
is chosen as

ϕa,b(x; k) =
1√
2

[ϕg(x; k)± ϕe(x; k)], (12)

which satisfy 〈a|b〉 = 0 and 〈a|a〉 = 〈b|b〉 = 1. With
the phase conventions of ϕe,g chosen above, the following
relation also holds:

ϕa(−x; k) =
ϕ∗g(x; k)− ϕ∗e(x; k)

√
2

= ϕ∗b(x; k). (13)

We then find that 〈a|VI |a〉 = −〈b|VI |b〉 ≡ κ0 is real us-
ing the definition of the Hermitian inner product, which
denotes the gain and loss strength.

The effective Hamiltonian of the periodic PT -
symmetric system for the first two bands can then be
written as

Hc =

(
E0 + iκ0 g

g E0 − iκ0

)
+ ξ

(
Na La

Lb Nb

)
. (14)

E0 and the linear coupling g are given by (Eg±Ee)/2, re-
spectively. Note that 〈a|VI |b〉 = −〈a|VI |b〉 and 〈b|VI |a〉 =
−〈b|VI |a〉 both vanish, which otherwise would have ap-
peared in the off-diagonal elements of the linear part of
Hc in Eq. (14). The nonlinear terms Na, La in Hc are
given by

Na ≡ 〈aa|aa〉|ca|2 + 〈ab|aa〉c∗bca + 2〈ab|ab〉|cb|2, (15)

La ≡ 〈ab|bb〉|cb|2 + 〈aa|bb〉c∗acb + 2〈aa|ab〉|ca|2, (16)

and Nb, Lb are similarly defined with the subscripts
a and b in these expressions exchanged. The quar-
tic inner product here is defined by 〈ij|i′j′〉 ≡∫D/2

−D/2
ϕ∗i (x; k)ϕ∗j (x; k)ϕi′(x; k)ϕj′(x; k) dx, from which
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the coupled-mode theory (14) with ξ ≤ 0. Open circles in
(a) show the energies of the two linear bands at k = 0.77 by
solving Eq. (10) with ξ = 0.

we see immediately that 〈aa|aa〉, 〈bb|bb〉, 〈ab|ab〉 are
real by definition and 〈aa|bb〉 = 〈bb|aa〉∗. In addition,
we find 〈aa|aa〉 = 〈bb|bb〉 as well as 〈ab|aa〉 = 〈ab|bb〉∗,
〈aa|ab〉 = 〈bb|ab〉∗ using the relation (13). As a result, we
find that Na = N∗b , La = L∗b and PT HcPT = Hc when
|ca| = |cb|.

Although the nonlinearity represented by Na,b, La,b

does not take the exact form as in Eq. (4), the Hamil-
tonian given by (14) is PT -symmetric when |ca| = |cb|
and path-dependent (via c∗acb and its complex conjugate).
These two conditions are crucial for APT as we have
shown, and they can also be realized, for example, with
a gain and loss strength that depends on the nonlinear
eigenstates. This coupled mode theory agrees well with
the direct numerical solutions of the paraxial equation
(10) in the linear case, as we show in Figs. 4(a) and 4(b).
For the pair of modes at k = 0.77 shown in Fig. 4(c)
and (d), we find Eg = 0.0208, Ee = 1.0692, κ0 = 0.5006,
〈aa|aa〉 = 〈bb|bb〉 = 0.4791, 〈ab|aa〉 = 〈bb|ab〉 = 0.0048−
0.0088i = 〈ab|bb〉∗ = 〈aa|ab〉∗, 〈ab|ab〉 = 0.1588, and
〈aa|bb〉 = −0.0848 + 0.1343i = 〈bb|aa〉∗. This coupled
mode theory reproduces qualitatively the APT shown in
Fig. 4 (see Fig. 5), and we note that a deviation occurs
due to the omittance of the coupling to higher bands: the
EP now appears along the path of H(1) instead of H(2).
Similar (small) deviation in the coupled theory can be
seen in the linear case as well, as we show in Fig. 5(a) at
ξ = 0.

IV. CONCLUSION

In summary, we have revealed an anomalous PT tran-
sition from the PT -symmetric phase to the PT -broken
phase that takes place away from an EP. We note that the
transition in the opposite direction is not an APT: two
PT -broken eigenstates belong to two different linearized
Hamiltonians as we have mentioned. In order for these
complex conjugate eigenvalues to coalesce, they must be-
come real simultaneously at some nonlinearity strength,
which is an EP by definition. Hence this transition follows
the standard PT transition mechanism (see Ref. [23], for
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example). It may look difficult to distinguish APT from
a standard PT transition [cf. Figs. 1(a) and (c)] in an

experiment, because the spurious eigenvalues E
(1)
+ , E

(2)
− of

the linearized Hamiltonians cannot be accessed to identify

the EP. One possibility to overcome this difficulty is to
prepare another “conjugate” system, where the sign of β
is flipped as we have discussed at the end of Sec. II. The
crossing of the two sets of nonlinear eigenvalues in these
conjugate systems gives the EP.
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[10] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
parity-time symmetry in optics, Nature Phys. 6, 192
(2010).

[11] Y. D. Chong, L. Ge, and A. D. Stone, PT -symmetry
breaking and laser-absorber modes in optical scattering
systems, Phys. Rev. Lett. 106, 093902 (2011).

[12] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F.
Chen, Y. Fainman, and A. Scherer, Nonreciprocal light
propagation in a silicon photonic circuit, Science 333, 729
(2011).

[13] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
and D. N. Christodoulides, Unidirectional invisibility in-
duced by PT-symmetric periodic structures, Phys. Rev.
Lett. 106, 213901 (2011).

[14] L. Ge, Y. D. Chong, and A. D. Stone, Conservation
relations and anisotropic transmission resonances in one-
dimensional PT -symmetric photonic heterostructures,
Phys. Rev. A 85, 023802 (2012).

[15] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Parity-time syn-
thetic photonic lattices, Nature (London) 488, 167 (2012).

[16] L. Ge and A. D. Stone, Parity-time symmetry breaking
beyond one dimension: the role of degeneracy, Phys. Rev.
X 4, 031011 (2014).

[17] L. Feng, Z. J.Wong, R.-M.Ma, Y.Wang, and X. Zhang,
Singlemode laser by parity-time symmetry breaking, Sci-
ence 346, 972 (2014).

[18] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, Parity-timesymmetric microring
lasers, Science 346, 975 (2014).
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