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Many current quantum optical system, such as microcavities, interact with thermal light through a small number 
of widely separated modes. Previous theories for photon number fluctuations of thermal light have been 
primarily limited to special cases that are appropriate for large volumes or distances, such as single modes, many 
modes, or modes of uniform spectral distribution. Herein, a theory for the general case of spectrally dependent 
photon number fluctuations is developed for thermal light. The error in variance of prior art is quantitatively 
derived for an example cavity in the case where photon counting noise dominates. A method to reduce the 
spectral impact of this variance is described. 
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I. INTRODUCTION 

 
The development of microcavities of dimensions 

comparable to wavelength  [1–5], such as in coherent 
thermal emission  [3,5–10], narrowband thermal 
detection  [1,4,11], and cavity quantum 
electrodynamics [12–18] has opened an entire class of 
devices whose thermal statistics cannot be addressed 
by existing theory. Thermal light emitted into free 
space generally interacts with an enormous spectral 
density of modes. The photon number fluctuations of 
thermal emission into each mode have Poisson and 
Bose-Einstein contributions, but the latter average out 
when integrated over many modes, leaving only 
standard Poisson statistics. Historically, since almost 
all thermal emission occurred in systems with large 
numbers of modes, it has not been important to have a 
quantitative model of photon statistics for a small 
number; however, the aforementioned experimental 
and theoretical work in cavity micro- and nano-optics 
has changed this situation dramatically.  

A microcavity can define an enormous variety of 
mode distributions, and the strength of coupling 
between these modes and free space can vary from 
mode to mode. An analytical derivation of the thermal 
photon noise for the general case of an arbitrary 
number of modes with an arbitrary spectral distribution 
(determined by both the Planck distribution and the 
mode coupling) has eluded scientists since the late 
1950’s due to the complicated mathematics at 
hand [19–23]. We propose and demonstrate using an 
expansion of the probability density function to 
analytically find an exact general result for thermal 
photon population fluctuations for any average number 
of photons in any number of modes with any spectral 
dependence. This method sidesteps many of the 
mathematical complexities of previous treatments and 
produces a closed-form result. 

Thermal photons will have number fluctuations 
given by the sum of Poisson and Bose-Einstein (B-E) 
terms in single mode systems. The B-E contribution 
will be reduced to zero when integrated over many 
modes resulting in only Poisson statistics for most 
thermal light. If there are multiple modes but the 
spectrum is completely uniform, then the variance in 
the number fluctuations can be given by the following 
equation [19,24]. 
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In Eq. (1) n is the number of photons, 〈n〉 is the 
expected number of photons, M is the number of 
modes, and 〈(Δn)2〉 is the variance. 

Following an algorithm developed previously [25] 
and in the appendix, the general probability density for 
thermal photons is given by the following equation. 
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In Eq. (2) and the rest of the manuscript the 

following variables are defined as the following: n is 
the number of photons; m indicates the mode index; 
〈nm〉 is the average number of photons in mode m; d 
indicates the distribution index; P(n) denotes the 
probability of having n photons given 〈nm〉; M is the 
total number of modes; D is the total number of ways 
to distribute n photons in M modes; nm,d denotes the 
number of photons in mode m and distribution d; 〈n〉 is 
the average total number of photons; 〈(Δn)2〉 is the 
variance in the total number of photons. 
 Note that n is the discrete random variable, in other 
words, for n = 0, Eq. (2) computes the probability of 
having 0 photons given the distribution 〈nm〉. The 



number of possible photon distributions, D, is given 
by, 
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II. GENERAL SPECTRALLY DEPENDENT 

MODE DISTRIBUTIONS 
 

To find the variance of general spectrally dependent 
thermal photon statistics, we first need to find an 
expression for the mode distribution scaled to the total 
average photon number. The scaled mode distribution 
in the general case can be visualized in Fig. 1. 
Naturally, the sum of the average photon number in 
each mode equals the total average photon number, but 
it is convenient to normalize a scaled distribution to the 
total average photon number such that the distribution 
is a function of the total average photon number. 

 

 
FIG. 1. General spectrally dependent mode distributions; the 
subscript “s” signifies that this distribution is scaled, and that the 
sum does not equal the total average photon number. 

The sum of the average photon number in the 
modal distribution, 〈nm〉, is equal to the expected 
number of photons, 〈n〉, as in the following equations, 
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The scaling factor A in Eq. (4) scales the modal 

distribution to a normalized value as in Eq. (6). Now 
that there is an expression for the general mode 
distribution we can plug this into Eq. (2) and solve for 
the probability of having 0 or 1 photon in the system. 
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(2) 1 (1) (0)P P P≅ − −  (9)
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These probabilities are accurate for average photon 

numbers much less than one. However, notice that it is 
the scaling factor that has forced the photon number to 
this low value. We will later consider the limit as the 
average photon number approaches zero to recover the 
analytical result, and then adjust the scaling factor to 
show that it applies to all photon numbers, low and 
high. 

With the above probabilities, the variance in the 
signal can be found for small expected photon 
numbers. Using standard statistical techniques the 
variance is defined by the following equation. 
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From Eq. (1) it is reasoned that the variance must 

have a lower limit defined by Poissonian statistics in 
the case of infinite modes, and an upper limit defined 
by the sum of both Poissonian and B-E terms in the 
case of a single mode. It follows then that the variance 
can be scaled and normalized by the following 
equation to force the variance between the limits of 
zero and one. 
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From the normalized and scaled variance, finding 

the limit as the average photon number goes to zero 
can now be attempted. Solving the equation would be 
quite difficult, instead a limit-based approach is 
presented whereby the solution is found. 

The first thing to notice is that in most cases where 
spectrally dependent thermal photon noise will be 



critical, the number of modes will be small. This is 
because in systems with large number of modes the 
statistics will approach Poissonian statistics, and the 
spectral dependence will become negligible. Therefore, 
the number of modes, M, will be set to one and the 
limit will be found. The number of modes will then be 
increased and a new limit will be found. This will 
continue until a fit is found for the limit as a function 
of the number of modes. The limit of the normalized 
and scaled variance as the average photon number goes 
to zero is found to be given by the following equation. 
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 Equation (13) was verified and confirmed to be 
exactly correct for 1 ≤ M ≤ 36 modes with 
Mathematica for any photon distribution 〈nm〉s with any 
photon occupancy greater than 0. Systems with greater 
than 36 modes could not be solved exactly, but it is 
strongly implied that Eq. (13) is exactly correct for any 
arbitrarily large number of modes. To verify this 
assumption further the limit can be solved numerically 
with some certain defined spectrums with more than 36 
modes, and no spectrums were found to not obey Eq. 
(13). More importantly Eq. (13) is exactly correct for 
any photon occupancy, even when the B-E term 
dominates with an average photon occupancy greater 
than 1. 

De-normalizing the result in Eq. (13) can be 
completed by substituting the result into Eq. (12) and 
solving for the variance. Doing so results in the 
following general theory of thermal photon statistics. 
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 It can be shown that Eq. (14) reduces to the 
standard estimation given in Eq. (1) for a uniform 
spectrum. 
 

III. DISCUSSION 
 

 Equation (14) can be simplified further by noticing 
that a physical mode distribution is actually just the 
scaled mode distribution with a scaling factor equal to 
one. In this case we can simplify the general theory of 
thermal photon statistics as in the following equations. 
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 By substituting Eq. (4) into (15) the following 
simplifications can be made. 
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 What is proved by Eq. (16) is that spectrally 
dependent thermal photon statistics are very simple to 
compute with a general closed-form expression. The 
variance in photon number for a thermal source is 
given by the sum of the variances of each individual 
mode. This also means the covariance between any two 
modes is zero for thermal photons. 
 As an example of how important this result can be, 
we calculate the thermal noise in the emission 
spectrum of an absorbing Fabry-Pérot cavity, as plotted 
in Fig. 2. When the cavity with this mode distribution 
is heated, it will emit thermal radiation defined by the 
spectral emissivity of the cavity multiplied by Planck’s 
law of thermal radiation. The peaks generated by the 
cavity can be thought of as different thermal emission 
modes. Integrating over each peak will produce the 
photon mode distribution to be modeled. 
 

 
FIG. 2. Spectral Photon Radiance of a thermal source at 2000K in a 
microcavity, calculated for normal incident light. R1 and R2 are the 
reflectivities of the top and bottom cavity mirrors respectively, A is 
the single pass absorption of the cavity, and l is the thickness of 
the cavity. The discrete modal spectral distribution can be 
calculated by integrating over each peak as highlighted, and is 
decidedly non-uniform. 



 The number of modes can be estimated by the 
following equation [20]. 
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 In Eq. (17), μ is the index of refraction in the 
middle of the cavity, ν is the frequency of light, V is 
the volume of the cavity, and c is the speed of light. 
Using the cavity in Fig. 2, the weighted number of 
modes is approximated as 2.5.  

Let us use this cavity to compare the variance 
predicted by assuming a uniform spectral distribution 
of photons in Eq. (1), and the exact results derived in 
Eq. (14). In Eq. (1) the variance is shown to be: 
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while in Eq. (14) the variance is shown to be (to three 
significant figures). 
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The average number of photons in the cavity is 
about 0.173, found by integrating the spectrum in Fig. 
2 and multiplying by the volume of the cavity. The 
standard uniform spectrum approximation results in 
about a 1% error in the total variance. 
 At this point is reasonable to ask if such errors 
would have a measurable impact on a practical 
microcavity. A cavity with the spectrum shown in Fig. 
2 can be constructed of two Distributed Bragg 
Reflectors (DBRs) made from alternating SrF2 and Ge 
layers, with a doped Ge absorbing layer in a central 
half-wave cavity layer. The finesse of the cavity is a 
function of the reflectivity of the mirrors, and 
absorptivity of the center layer.  

Specifically, such a cavity might have a top mirror 
made of 2 pairs of 528nm thick SrF2, and 185nm thick 
Ge layers, followed by an air cavity 571nm thick with 
a 25nm doped Ge absorbing layer in the center of the 
cavity, and finally a bottom mirror made from 8 pairs 
of identical layers as the top mirror. 

Two main noise sources, thermomechanical and 
photon counting noise, can cause the cavity dimensions 
to depart from their equilibrium positions. Photon 
pressure within the cavity is another source of noise, 
although the overall contribution to the total noise is 
negligible due the extremely limited number of 
photons existing in the cavity at any one time. The 
photon counting noise is inversely proportional to the 
variance as seen in the following equation [26,27]. 
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 In the previous equation λ is the wavelength of 
light, F is the finesse of the cavity, and z is the 
displacement of the mirrors and absorber within the 
cavity relative to their equilibrium positions. If the 
cavity contains very few photons, the photon counting 
noise will approach infinity and will dominate all other 
noise sources. The ambiguity in the cavity center 
frequency due to the apparent displacement degrades 
the finesse of the cavity proportionally to the variance 
in thermal photons. Given a spectrometer with a 
resolution of 1cm-1, this cavity could then be used to 
measure the thermal photon statistics accurately 
enough to measure a difference between the 
predictions of equations 18 and 19. 
 An alternative cavity can be produced where the 
center frequency is almost independent of the noise, 
and therefore little or no ambiguity in spectrum occurs. 
In this case the bottom mirror starts with the Ge layer 
instead of the SrF2 layer, and has a total of 10 pairs, 
also the cavity thickness is increased to 1,135nm. This 
design is more practical than the previous one where 
usually a higher finesse is desired. Figure 3 shows the 
spectral response of the two cavity designs with and 
without taking into account thermal photon noise. 
 

 
FIG. 3. Photon counting noise limited peak broadening for two 
cavity designs. The solid lines were calculated for no noise in the 
system and the dashed lines are calculated from having 50nm of 
displacement noise in the system. (A) The first cavity design 
showing a dramatic reduction in Finesse as well as peak height. (B) 
The second design where the broadened peak is almost 
indistinguishable from the peak with no noise broadening. 

 
 
 



IV. CONCLUSION 
 

 The modal and total variance of thermal photon 
populations in cavities with arbitrary mode 
distributions is described. Over the past 60 years, 
estimations have been used to find thermal photon 
variance that work in situations where the number of 
modes is essentially infinite. With recent developments 
in optical micro- and nano-cavities with small numbers 
of modes with different couplings to free space, these 
estimations could lead to significant quantitative 
inaccuracy. Examples of such error were described. 
 The analytical expressions derived in equations 14 
and 16 are marginally more complex than the standard 
noise expression of Eq. (1), yet they fully describes 
thermal photon noise for all systems, are derived from 
first principals, and make no assumptions. 
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APPENDIX: DERIVATION OF THERMAL 

PHOTON PROBABILITY DENSITY 
 
Photons are indistinguishable from one another, and 

can occupy the same energy state as each other, 
meaning they follow Bose-Einstein statistics. They also 
do not need to be number conserved, i.e. they can be 
created or destroyed within a system. This means the 
chemical potential is zero for photons obeying B-E 
statistics. 

 Thermal photons then further obey the canonical 
ensemble whereby photons of higher energy are 
exponentially less likely to exist, and is given by the 
Boltzmann distribution. Taking the Boltzmann 
distribution and applying it to B-E statistics one will 
find that the probability of finding, nm, photons in a 
mode, hν, will be given by the following equation, 
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Where h is Planck’s constant, ν is the frequency of 
the photon, kB is the Boltzmann constant, and T is the 
temperature. The average number of photons, 〈nm〉, is 
then given by the following. 
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Multiplying Eq. (A2) by the energy of a photon and 

the mode density results in Planck’s law of thermal 
emission. It would be convenient if Eq. (A1) was given 

in terms of the average photon number as is calculated 
in (A2). After some algebraic manipulation of equation 
(A2) the following equations are derived [19,25]. 
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Substituting the equalities from (A3) into equation 
(A1) results in the useful representation of the 
probability of finding nm photons in a mode. 
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Although equation (A4) is mathematically nice and 

easy to work with it has a few limitations when 
working with thermal photon noise. The first limitation 
is that this is valid for a single mode. To incorporate 
systems with multiple or infinite modes (as is the case 
in most thermal light applications) the joint probability 
must be used as in equation (A5). To find the joint 
probability the probability of finding nm photons in 
each mode must be multiplied. However, there is an 
added difficulty in that there are multiple distributions 
possible, thus requiring a sum over all the distributions 
wherein each modal probability is multiplied [19,25]. 
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