Spectrally dependent fluctuations of thermal photon sources
K. Olson and J. Talghader
DOI: 10.1103/PhysRevA.94.013822
Spectrally dependent fluctuations of thermal photon sources

K. Olson1, and J. Talghader1*
1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
(Received 27 June 2016)

Many current quantum optical systems, such as microcavities, interact with thermal light through a small number of widely separated modes. Previous theories for photon number fluctuations of thermal light have been primarily limited to special cases that are appropriate for large volumes or distances, such as single modes, many modes, or modes of uniform spectral distribution. Herein, a theory for the general case of spectrally dependent photon number fluctuations is developed for thermal light. The error in variance of prior art is quantitatively derived for an example cavity in the case where photon counting noise dominates. A method to reduce the spectral impact of this variance is described.

PACS numbers: 42.50.Ar, 44.40.+a, 02.50.Cw, 05.30.Jp

I. INTRODUCTION

The development of microcavities of dimensions comparable to wavelength [1–5], such as in coherent thermal emission [3,5–10], narrowband thermal detection [1,4,11], and cavity quantum electrodynamics [12–18] has opened an entire class of devices whose thermal statistics cannot be addressed by existing theory. Thermal light emitted into free space generally interacts with an enormous spectral density of modes. The photon number fluctuations of thermal emission into each mode have Poisson and Bose-Einstein (B-E) contributions, but the latter average out when integrated over many modes, resulting in only Poisson statistics for most thermal light. If there are multiple modes but the spectrum is completely uniform, then the variance in the number fluctuations can be given by the following equation [19,24].

$$\langle (\Delta n)^2 \rangle = \langle n \rangle + \frac{\langle n \rangle^2}{M}$$ (1)

In Eq. (1) n is the number of photons, $\langle n \rangle$ is the expected number of photons, M is the number of modes, and $\langle (\Delta n)^2 \rangle$ is the variance.

Following an algorithm developed previously [25] and in the appendix, the general probability density for thermal photons is given by the following equation.

$$P(n) = \sum_{d=1}^{D} \prod_{m=1}^{M} \frac{1}{(1 + \langle n_m \rangle)(1 + \langle n_m \rangle^{-1})^{n_m,d}}$$ (2)

In Eq. (2) and the rest of the manuscript the following variables are defined as the following: n is the number of photons; m indicates the mode index; $\langle n_m \rangle$ is the average number of photons in mode m; d indicates the distribution index; $P(n)$ denotes the probability of having n photons given $\langle n_m \rangle$; M is the total number of modes; D is the total number of ways to distribute n photons in M modes; $n_{m,d}$ denotes the number of photons in mode m and distribution d; $\langle n \rangle$ is the average total number of photons; $\langle (\Delta n)^2 \rangle$ is the variance in the total number of photons.

Note that n is the discrete random variable, in other words, for $n = 0$, Eq. (2) computes the probability of having 0 photons given the distribution $\langle n_m \rangle$. The
The number of possible photon distributions, \(D \), is given by,

\[
D = \frac{(n+M-1)!}{n!(M-1)!}
\]

(3)

II. GENERAL SPECTRALLY DEPENDENT MODE DISTRIBUTIONS

To find the variance of general spectrally dependent thermal photon statistics, we first need to find an expression for the mode distribution scaled to the total average photon number. The scaled mode distribution in the general case can be visualized in Fig. 1. Naturally, the sum of the average photon number in each mode equals the total average photon number, but it is convenient to normalize a scaled distribution to the total average photon number such that the distribution is a function of the total average photon number.

The sum of the average photon number in the modal distribution, \(\langle n_m \rangle \), is equal to the expected number of photons, \(\langle n \rangle \), as in the following equations,

\[
\langle n \rangle = \sum_{m=1}^{M} \langle n_m \rangle = \sum_{m=1}^{M} A \langle n_m \rangle_s
\]

(4)

\[
A = \frac{\langle n \rangle}{\sum_{m=1}^{M} \langle n_m \rangle_s}
\]

(5)

\[
\langle n_m \rangle = \frac{\langle n \rangle \langle n_m \rangle_s}{\sum_{m=1}^{M} \langle n_m \rangle_s}
\]

(6)

The scaling factor \(A \) in Eq. (4) scales the modal distribution to a normalized value as in Eq. (6). Now that there is an expression for the general mode distribution we can plug this into Eq. (2) and solve for the probability of having 0 or 1 photon in the system.

\[
P(0) = \prod_{m=1}^{M} \left(\frac{1}{1 + \sum_{m=1}^{M} \langle n_m \rangle_s} \right)
\]

(7)

\[
P(1) = \sum_{d=1}^{M} \prod_{m=1}^{M} \left(1 + \frac{\langle n \rangle \langle n_m \rangle_s}{\sum_{m=1}^{M} \langle n_m \rangle_s} \right) \frac{\delta_{n,d}}{1 + \sum_{m=1}^{M} \langle n_m \rangle_s}
\]

(8)

\[
P(2) \equiv 1 - P(1) - P(0)
\]

(9)

\[
P(n > 2) \equiv 0
\]

(10)

These probabilities are accurate for average photon numbers much less than one. However, notice that it is the scaling factor that has forced the photon number to this low value. We will later consider the limit as the average photon number approaches zero to recover the analytical result, and then adjust the scaling factor to show that it applies to all photon numbers, low and high.

With the above probabilities, the variance in the signal can be found for small expected photon numbers. Using standard statistical techniques the variance is defined by the following equation.

\[
\langle (\Delta n)^2 \rangle = \sum_{n=0}^{2} (n - \langle n \rangle)^2 P(n)
\]

(11)

From Eq. (1) it is reasoned that the variance must have a lower limit defined by Poissonian statistics in the case of infinite modes, and an upper limit defined by the sum of both Poissonian and B-E terms in the case of a single mode. It follows then that the variance can be scaled and normalized by the following equation to force the variance between the limits of zero and one.

\[
\overline{\langle (\Delta n)^2 \rangle} = \frac{\langle (\Delta n)^2 \rangle - \langle n \rangle}{\langle n \rangle^2}
\]

(12)

From the normalized and scaled variance, finding the limit as the average photon number goes to zero can now be attempted. Solving the equation would be quite difficult, instead a limit-based approach is presented whereby the solution is found.

The first thing to notice is that in most cases where spectrally dependent thermal photon noise will be
critical, the number of modes will be small. This is because in systems with large number of modes the statistics will approach Poissonian statistics, and the spectral dependence will become negligible. Therefore, the number of modes, \(M \), will be set to one and the limit will be found. The number of modes will then be increased and a new limit will be found. This will continue until a fit is found for the limit as a function of the number of modes. The limit of the normalized and scaled variance as the average photon number goes to zero is found to be given by the following equation.

\[
\langle (\Delta n)^2 \rangle = \langle n \rangle + \langle n \rangle \frac{\sum_{m=1}^{M} \langle n_m \rangle_s^2}{\left(\sum_{m=1}^{M} \langle n_m \rangle_s \right)^2} \quad (13)
\]

Equation (13) was verified and confirmed to be exactly correct for \(1 \leq M \leq 36 \) modes with Mathematica for any photon distribution \(\langle n_m \rangle_s \), with any photon occupancy greater than 0. Systems with greater than 36 modes could not be solved exactly, but it is strongly implied that Eq. (13) is exactly correct for any arbitrarily large number of modes. To verify this assumption further the limit can be solved numerically with some certain defined spectrums with more than 36 modes, and no spectrums were found to not obey Eq. (13). More importantly Eq. (13) is exactly correct for any photon occupancy, even when the B-E term dominates with an average photon occupancy greater than 1.

De-normalizing the result in Eq. (13) can be completed by substituting the result into Eq. (12) and solving for the variance. Doing so results in the following general theory of thermal photon statistics.

\[
\langle (\Delta n)^2 \rangle = \langle n \rangle + \langle n \rangle \frac{\sum_{m=1}^{M} \langle n_m \rangle_s^2}{\left(\sum_{m=1}^{M} \langle n_m \rangle_s \right)^2} \quad (14)
\]

It can be shown that Eq. (14) reduces to the standard estimation given in Eq. (1) for a uniform spectrum.

III. DISCUSSION

Equation (14) can be simplified further by noticing that a physical mode distribution is actually just the scaled mode distribution with a scaling factor equal to one. In this case we can simplify the general theory of thermal photon statistics as in the following equations.

\[
\langle (\Delta n)^2 \rangle = \langle n \rangle + \langle n \rangle^2 \frac{\sum_{m=1}^{M} \langle n_m \rangle_s^2}{\left(\sum_{m=1}^{M} \langle n_m \rangle_s \right)^2} \quad (15)
\]

By substituting Eq. (4) into (15) the following simplifications can be made.

\[
\langle (\Delta n)^2 \rangle = \sum_{m=1}^{M} \langle n_m \rangle \quad + \quad \sum_{m=1}^{M} \langle n_m \rangle^2
\]

\[
= \sum_{m=1}^{M} \langle n_m \rangle + \sum_{m=1}^{M} \langle n_m \rangle^2
\]

\[
= \sum_{m=1}^{M} \langle n_m \rangle + \langle n \rangle^2
\]

What is proved by Eq. (16) is that spectrally dependent thermal photon statistics are very simple to compute with a general closed-form expression. The variance in photon number for a thermal source is given by the sum of the variances of each individual mode. This also means the covariance between any two modes is zero for thermal photons.

As an example of how important this result can be, we calculate the thermal noise in the emission spectrum of an absorbing Fabry-Pérot cavity, as plotted in Fig. 2. When the cavity with this mode distribution is heated, it will emit thermal radiation defined by the spectral emissivity of the cavity multiplied by Planck’s law of thermal radiation. The peaks generated by the cavity can be thought of as different thermal emission modes. Integrating over each peak will produce the photon mode distribution to be modeled.
The number of modes can be estimated by the following equation [20].

\[M = \frac{8\pi^2 \mu \nu V}{c^3} \]
\[\approx (17) \]

In Eq. (17), \(\mu \) is the index of refraction in the middle of the cavity, \(\nu \) is the frequency of light, \(V \) is the volume of the cavity, and \(c \) is the speed of light. Using the cavity in Fig. 2, the weighted number of modes is approximated as 2.5.

Let us use this cavity to compare the variance predicted by assuming a uniform spectral distribution of photons in Eq. (1), and the exact results derived in Eq. (14). In Eq. (1) the variance is shown to be:

\[\langle (\Delta n)^2 \rangle = \langle n \rangle + (4\langle n \rangle)^2, \]
\[\text{(18)} \]

while in Eq. (14) the variance is shown to be (to three significant figures).

\[\langle (\Delta n)^2 \rangle = \langle n \rangle + (0.459\langle n \rangle)^2 \]
\[\text{(19)} \]

The average number of photons in the cavity is about 0.173, found by integrating the spectrum in Fig. 2 and multiplying by the volume of the cavity. The standard uniform spectrum approximation results in about a 1% error in the total variance.

At this point is reasonable to ask if such errors would have a measurable impact on a practical microcavity. A cavity with the spectrum shown in Fig. 2 can be constructed of two Distributed Bragg Reflectors (DBRs) made from alternating SrF\(_2\) and Ge layers, with a doped Ge absorbing layer in a central half-wave cavity layer. The finesse of the cavity is a function of the reflectivity of the mirrors, and absorptivity of the center layer.

Specifically, such a cavity might have a top mirror made of 2 pairs of 528nm thick SrF\(_2\), and 185nm thick Ge layers, followed by an air cavity 571nm thick with a 25nm doped Ge absorbing layer in the center of the cavity, and finally a bottom mirror made from 8 pairs of identical layers as the top mirror.

Two main noise sources, thermomechanical and photon counting noise, can cause the cavity dimensions to depart from their equilibrium positions. Photon pressure within the cavity is another source of noise, although the overall contribution to the total noise is negligible due the extremely limited number of photons existing in the cavity at any one time. The photon counting noise is inversely proportional to the variance as seen in the following equation [26,27].

\[\langle (\Delta z)^2 \rangle = \left(\frac{\lambda}{4\pi F} \right)^2 \frac{1}{\langle (\Delta n)^2 \rangle} \]
\[\text{(20)} \]

In the previous equation \(\lambda \) is the wavelength of light, \(F \) is the finesse of the cavity, and \(z \) is the displacement of the mirrors and absorber within the cavity relative to their equilibrium positions. If the cavity contains very few photons, the photon counting noise will approach infinity and will dominate all other noise sources. The ambiguity in the cavity center frequency due to the apparent displacement degrades the finesse of the cavity proportionally to the variance in thermal photons. Given a spectrometer with a resolution of 1cm\(^{-1}\), this cavity could then be used to measure the thermal photon statistics accurately enough to measure a difference between the predictions of equations 18 and 19.

An alternative cavity can be produced where the center frequency is almost independent of the noise, and therefore little or no ambiguity in spectrum occurs. In this case the bottom mirror starts with the Ge layer instead of the SrF\(_2\) layer, and has a total of 10 pairs, also the cavity thickness is increased to 1,135nm. This design is more practical than the previous one where usually a higher finesse is desired. Figure 3 shows the spectral response of the two cavity designs with and without taking into account thermal photon noise.

FIG. 3. Photon counting noise limited peak broadening for two cavity designs. The solid lines were calculated for no noise in the system and the dashed lines are calculated from having 50nm of displacement noise in the system. (A) The first cavity design showing a dramatic reduction in Finesse as well as peak height. (B) The second design where the broadened peak is almost indistinguishable from the peak with no noise broadening.
IV. CONCLUSION

The modal and total variance of thermal photon populations in cavities with arbitrary mode distributions is described. Over the past 60 years, estimations have been used to find thermal photon variance that work in situations where the number of modes is essentially infinite. With recent developments in optical micro- and nano-cavities with small numbers of modes with different couplings to free space, these estimations could lead to significant quantitative inaccuracy. Examples of such error were described.

The analytical expressions derived in equations 14 and 16 are marginally more complex than the standard noise expression of Eq. (1), yet they fully describe thermal photon noise for all systems, are derived from first principals, and make no assumptions.

ACKNOWLEDGEMENTS

The authors would like to thank the Army Research Office for funding under grant W911NF-15-1-0243.

APPENDIX: DERIVATION OF THERMAL PHOTON PROBABILITY DENSITY

Photons are indistinguishable from one another, and can occupy the same energy state as each other, meaning they follow Bose-Einstein statistics. They also do not need to be number conserved, i.e. they can be created or destroyed within a system. This means the chemical potential is zero for photons obeying B-E statistics.

Thermal photons then further obey the canonical ensemble whereby photons of higher energy are exponentially less likely to exist, and is given by the Boltzmann distribution. Taking the Boltzmann distribution and applying it to B-E statistics one will find that the probability of finding, \(n \), photons in a mode, \(h \nu \), will be given by the following equation,

\[
p(n) = e^{-n \hbar \nu / k_B T} (1 - e^{-\hbar \nu / k_B T})
\]

(A1)

Where \(h \) is Planck’s constant, \(\nu \) is the frequency of the photon, \(k_B \) is the Boltzmann constant, and \(T \) is the temperature. The average number of photons, \(\langle n \rangle \), is then given by the following.

\[
\langle n \rangle = \sum_{n=0}^{\infty} n p(n) = \frac{1}{e^{\hbar \nu / k_B T} - 1}
\]

(A2)

Multiplying Eq. (A2) by the energy of a photon and the mode density results in Planck’s law of thermal emission. It would be convenient if Eq. (A1) was given in terms of the average photon number as is calculated in (A2). After some algebraic manipulation of equation (A2) the following equations are derived [19,25].

\[
e^{-n \hbar \nu / k_B T} = \frac{1}{(1 + \langle n \rangle)^{-1}}
\]

(A3)

\[
1 - e^{-\hbar \nu / k_B T} = \frac{1}{(1 + \langle n \rangle)}
\]

(A4)

Substituting the equalities from (A3) into equation (A1) results in the useful representation of the probability of finding \(n_m \) photons in a mode.

\[
p(n_m) = \frac{1}{(1 + \langle n \rangle)(1 + \langle n \rangle)^{-1}^{n_m}}
\]

(A5)

Although equation (A4) is mathematically nice and easy to work with it has a few limitations when working with thermal photon noise. The first limitation is that this is valid for a single mode. To incorporate systems with multiple or infinite modes (as is the case in most thermal light applications) the joint probability must be used as in equation (A5). To find the joint probability the probability of finding \(n_m \) photons in each mode must be multiplied. However, there is an added difficulty in that there are multiple distributions possible, thus requiring a sum over all the distributions wherein each modal probability is multiplied [19,25].

\[
P(n) = \sum_{d=1}^{D} \prod_{m=1}^{M} \frac{1}{(1 + \langle n \rangle)(1 + \langle n \rangle)^{-1}^{n_m, d}}
\]

(A5)

*email: joey@umn.edu; address: 4-174 Keller Hall, 200 Union St SE, Minneapolis, MN 55455; phone: (612)-625-4524