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Schemes to achieve strong coupling between mechanical modes of aluminum nitride micro-
structures and microwave cavity modes due to the piezoelectric effect are proposed. We show
that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either
enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar
resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent
conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical
system will be an efficient transducer for applications in hybrid quantum systems.

I. INTRODUCTION

Efficient conversion between microwave and optical
modes has attracted great attentions recently [1–5]. The
microwave-optical (M-O) interface between supercon-
ducting quantum circuits and optical photons is essen-
tial for quantum communications and distributed quan-
tum computation networks [4, 6, 7]. A high-efficiency
M-O converter will enable quantum state transfer and
long-distance commutation between two microwave sys-
tems by optical fibers, without being impacted from mi-
crowave thermal noise at room temperature [8–10]. In
addition, the M-O converter is also useful for single mi-
crowave photon level detectors [11–13]. Generally, the M-
O conversion can be realized by either direct approaches
or indirect approaches. The direct approaches harness
the nonlinear optical effects in dielectrics, such as the
electro-optic effect [14–16] and the magneto-optic effect
[17]. The indirect approaches, on the other hand, exploit
intermediate degrees of freedom to mediate the coupling
between microwave and optical photons. For example,
the reversible M-O conversion mediated by phonons has
been proposed and demonstrated experimentally [18–20],
where microwave and optical cavities are coupled to a
common mechanical resonator. In addition, recently, the
M-O conversion mediated by magnons has also studied
experimentally [21, 22].
The coherent coupling between a microwave cavity and

phonon modes due to piezoelectricity has been demon-
strated [23, 24], and the piezoelectric effect has also
been utilized to actuate mechanical motion in optome-
chanical systems [24–29]. However, integrated systems
with both piezoelectric coupling and optomechanical cou-
pling for M-O conversion have neither been theoreti-
cally investigated nor experimentally demonstrated. In
this paper, we propose a strongly coupled cavity piezo-
optomechanical system for the M-O interface, where me-
chanical resonators on an aluminum nitride (AlN) chip
are coupled with photonic and microwave cavities si-
multaneously. To distinguish from the electromechanics
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where the capacitive coupling between mechanical mo-
tion and microwave cavities would induce a frequency
shift [18–20], we call the linear piezoelectric coupling
as piezomechanics. Piezomechanical systems have sev-
eral advantages: (i) The frequency of phonon can be
near resonance with the microwave cavity, for example
above 10GHz, which relaxes the cyrogenic temperature
required to cool the system to the ground state. In
contrast, in the flexible electromechanical system, the
phonon frequency is usually orders smaller than that
of microwave photon to enable dispersive microwave
photon-phonon coupling [19], thus requires lower ambi-
ent temperature to suppress thermal phonon excitation.
(ii) For near-resonant microwave and mechanical modes,
both the microwave and the optical cavities are within
the resolved-sideband regime, thus the unwanted Stokes
process (the parametric photon-phonon pair generation)
is greatly suppressed. (iii) The microwave and mechani-
cal modes are linearly coupled, hence additional bias DC
field or microwave field is not required. (iv) The sys-
tems proposed here are combined with integrated pho-
tonic chips [29], which are very robust and scalable.

The paper is organized as follows. In Sec. II, we study
the basic features of cavity piezomechanics, develop the
Hamiltonian description of the system, and discuss the
possibility of ultrastrong piezomechanical coupling. Sec.
III discusses the implementation in more realistic phys-
ical systems of AlN microstructures coupled to a three-
dimensional (3D) microwave cavity or coupled to a quasi-
two-dimensional coplanar cavity. With practical device
parameters, it is estimated that piezomechanical coupling
strength ranging from one to a few hundreds of MHz
is feasible. In Sec. IV, the piezomechanical coupling
is combined with the optomechanics, through which co-
herent M-O conversion is studied with optimized system
parameters. High conversion efficiency (∼ 90%) can be
achieved, mainly limited by the intrinsic optical loss of
the material. Sec. V. summarizes the main results of this
paper.
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FIG. 1. (a) Schematic illustration of a piezomechanical sys-
tem. An LC circuit is coupled with a thin aluminum nitride
film sandwiched in the capacitor. (b) Distributions of the
z-direction strain field of thickness modes. (Only first four
orders of modes are shown). (c) Normal mode frequencies
of the piezomechanical system, with the AlN film perfectly
matches the spacing of the capacitor. ω1 and Ω1 are the fre-
quencies of decoupled microwave and fundamental thickness
modes, as indicated by the dashed lines.

II. PIEZOMECHANICAL COUPLING

In general, the internal energy of a piezomechanical
system is [30, 31]

U =
1

2

ˆ

dv(T · S+E ·D), (1)

where T and S are the stress and strain fields, E and
D are the electric and electric displacement fields. The
piezomechanical interaction can be written in the strain-
charge form as

S = s ·T+ d
T · E, (2)

D = d ·T+ ǫ ·E, (3)

where s, ǫ, and d are the elastic, permittivity, and piezo-
electric tensors of the material. Substitute them into
Eq. (1), we obtain the piezoelectric energy

Upe =
1

2

ˆ

dv(T · dT ·E+E · d ·T). (4)

The total stress of the mechanical system can be de-
composed by the eigenmodes of the unperturbed system

as

T(t) =
1√
2

∑

m

bmT
(m)e−iΩmt + h.c., (5)

E(t) =
1√
2

∑

n

anE
(n)e−iωnt + h.c.. (6)

Here, bm and an are quantized bosonic operators for the
m-th mechanical mode and the n-th microwave cavity
mode, T(m) and E

(n) are the corresponding normalized
field distributions, Ωm and ωn are the eigenmode fre-
quencies.
The Hamiltonian of the piezomechanical system rep-

resented by the Bosonic operators for phonon b†m and
microwave photon a†n is

Hpm =
∑

m

~Ωmb†mbm +
∑

n

~ωna
†
nan

+
∑

m,n

~gmn(b
†
m + bm)(an + a†n), (7)

with coupling strength

gmn =
1

2

ˆ

dv(T(m) · dT ·E(n) +E
(n) · d ·T(m)). (8)

For crystals with hexagon 6mm (C6v) symmetry, such as
AlN and GaN [32], the piezoelectric coefficient tensor has
the following form

d
T =





0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0



 , (9)

where, the first subscript (1, 2, 3) labels the (x, y, z) com-
ponents of the vector field E, while the second sub-
script (1, 2, ..., 6) labels the (xx, yy, zz, yz, xz, xy) com-
ponents of the tensor field T.
Figure 1(a) shows a simple cavity piezomechanics sys-

tem, where an inductor-capacitor (LC) circuit serves as a
microwave resonator, and a thin aluminum nitride (AlN)
film sandwiched by the capacitor is a film bulk acoustic
resonator (FBAR). In the capacitor, the displacement
field D3 is constant when the electric fringe effect is ne-
glected. The value ofD3 for a single microwave excitation

satisfies 1
2

D2

3

ǫ0ǫr
ACh+ 1

2
D2

3

ǫ0
AChs =

1
2~ω1. Then we obtain

the uniform electric field in the dielectric as

E
(1)
3 =

1

ǫ0ǫAlN

√

~ω1

AC(
hs

ǫ0
+ h

ǫ0ǫAlN
)
. (10)

Here, we have only one mode in the LC circuit at ω1 =
1/

√
LC, where L is the inductance and C = ACǫ0ǫAlN

h+hsǫAlN
is

the capacitance. AC is the area of the capacitor, h and
hs are the thickness of AlN and the air spacing in the
capacitor, respectively. ǫ0 is the permittivity of vacuum,
ǫAlN = 8.5 is the relative permittivity of the AlN.
The thickness modes of the thin film satisfy the equa-

tion [31] ∂2u3

∂z2 = 1
v2

l

∂2u3

∂t2
, where u3 is the displacement
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in z-direction and vl is the longitudinal acoustic wave
velocity in the material. The solutions have the form

as u
(n)
3 (z, t) = [A sin(knz) + B cos(knz)]e

−iΩnt, with

kn = Ωn

vl
. Due to the boundary conditions T3 = 0

at z = 0 and z = h, we have A cos(0) − B sin(0) =
0, A cos(knh)−B sin(knh) = 0. Therefore, A = 0, B = 1
and knh = nπ for the n-th standing acoustic wave modes
as shown in Fig. 1(b). Then, the normalized stress can

be solved T
(n)
3 =

√

2~Ωnc33/AAlNh sin(knz) by neglect-
ing the effects from the fringe fields, where c33 is the
elastic constant, AAlN is the area of the AlN film. Sub-
stituting the expressions of stress and electric fields into
Eq. (8), we obtain the coupling strength

g1n = ξn
√

ω1Ωn, (11)

where the normalized coupling coefficient

ξn =
1√
2

1− cosnπ

nπ

Aol√
ACAAlN

× d33

√

c33
ǫ0ǫr(ǫrhs/h+ 1)

. (12)

Here, Aol < min{AAlN, AC} is the overlapping area be-
tween the AlN film and the capacitor.
The hybridization of the fundamental FBAR mode and

the LC mode leads to new normal modes whose frequen-
cies are

ω2
± =

ω2
1 +Ω2

n

2

±
√

(ω2
1 − Ω2

n)
2 + 16ξ2nω1Ωn

2
. (13)

From Eq. (12), the expression (1−cosnπ)/nπ indicates
that only odd-order mechanical modes can couple with
the LC resonator, and the coupling strength reduces for
high order mechanical modes. The term Aol/

√
ACAAlN

represents the filling factor of the system, which can not
exceed one. Therefore, the largest achievable coupling
strength is

ξ1 =

√
2

π
d33

√

c33
ǫ0ǫAlN

, (14)

for AAlN = AC and hs = 0 that correspond to unity fill-
ing factor. Using the experimentally determined material
constants of AlN [32–34] d33 = 4.0 pm/V , ǫr = 10.4,
c33 = 389GPa, vl = 11 km/s, ξ1 is estimated to be
0.13. In Fig. 1(c), we plotted the frequencies of nor-
mal modes for the ideal setup (solid lines), comparing
with the uncoupled modes (dashed lines). For ω1 ≈ Ω1,
the large coupling strength g11 ≈ 0.13Ω1 leads to the
avoided crossing of modes, with a splitting of about
2g11 ≈ 0.26Ω1. This value is even comparable with the
resonant frequencies of the microwave and the mechani-
cal modes, reaching the so-called “ultrastrong coupling”
regime [35, 36].

III. PIEZOMECHANICS ON ALN CHIPS

Now we propose possible experimental configurations
for realizing strong piezomechanical coupling. To be com-
patible with integrated photonics, we study the piezome-
chanics on an AlN photonic chip and using the system
parameters from Ref. [26, 29], where an AlN thin film
(h = 550 nm) is deposited on a silicon (Si) substrate
(thickness is hSi = 500µm), with a 2µm silicon diox-
ide (SiO2) layer between the AlN and the Si. During the
fabrication, AlN microstructures, such as waveguides and
microcavities, can be suspended by etching away the sac-
rificial silica layer. The AlN layer, on one hand, confines
the visible or telecom photons due to the high refrac-
tive index contrast to vacuum; on the other hand, it also
supports the mechanical thickness mode to couple to an
external 3D microwave cavity or an on-chip microwave
resonator.
In the following calculations, we focus on the funda-

mental thickness mode n = 1 with Ω/2π = vl/2h =
10GHz and assume a mechanical quality factor of Qb =
2 × 104 at low temperatures according to experimen-
tal results [26, 29]. The corresponding amplitude decay
rate of the mechanical mode is κb/2π ≈ 0.25MHz. For
superconducting microwave cavities, an intrinsic qual-
ity factor of Qa = 2 × 105 is feasible [37], which gives
κa,0/2π ≈ 0.025MHz. In the following, we will demon-
strate that the strong coupling that gpm > κb, κa,0 can
be achieved for both 2D and 3D configurations.

A. 3D cavity

Figure 2(a) shows the schematic of a system, where
an AlN-on-Si chip is placed in a 3D microwave cavity.
For simplicity, we assume that the AlN microstructure is
either waveguide or microring, with width w and length l.
To concentrate the electric field to the photonic chip, we
adapt a 3D re-entrant cavity structure [38, 39] that has
a square post in the middle. As shown in Fig. 2(b), the
electric field is greatly enhanced in the small gap between
the post and the top of the cavity.
Based on the numerically simulated electric field dis-

tribution, we calculate the piezomechanical coupling
strength gpm using Eq. (8). For simplicity, we assume
that the electric distribution is not affected by the non-
uniform AlN layer and only the Si substrate is included
in the numerical model, since the field is mainly deter-
mined by the thick Si substrate. By fixing the size of
the Si substrate to match the size of the square post and
introducing hs = 10µm thick spacing between the chip
surface and the cavity wall (Fig. 2(a)), we calculate gpm
with the simulated electric field on the surface of Si. The
results are plotted in Fig. 2(c). Compared with the case
without silicon or air spacing, where gpm/2π = 1.3GHz,
the achievable gpm in 3D cavity is reduced by more than
3 orders, due to the additional spacing between the ca-
pacitor and the reduced filling factor F3D = AAlN/y

2
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FIG. 2. (a) Schematic illustration of the 3D cavity piezome-
chanical system configuration. (b) The electric field distribu-
tion of the cavity for the square post size y = 3mm. The chip
area matches the post with hs = 10µm and hSi = 500µm.
(c) The piezomechanical coupling strength gpm between the
fundamental cavity mode and 1st order thickness mode for
different AlN device areas AAlN = 10, 100, 1000µm3.

for practical devices (gpm ∝
√
AAlN to a given cavity

geometry). Considering the dielectric constant of Si sub-
strate ǫSi = 12 and the spacing hs = 10µm, we esti-
mate the best achievable coupling strength gpm/2π ≈
√
2

π
d33

√

c33
ǫ0ǫAlN

/( ǫAlNhs

h
+ ǫAlNhSi

ǫSih
+ 1)Ω ≈ 85MHz for

Ω/2π = 10GHz with the AAlN matching the post size
(F3D = 1). By changing the geometry of the 3D cav-
ity, we find that the gpm decreases monotonously with
increasing post size, because the cavity mode volume in-
creases with y. For a structure with w = 1µm and l =
100µm, we get AAlN = 100µm2 and gpm/2π ≈ 0.59MHz
for y = 1mm.

B. Coplanar resonator

Since the 3D microwave cavity has a relatively large
mode volume, we also consider the piezomechanics in
a planar geometry with integrated superconducting res-
onators. Figure 3(a) shows a schematic of the proposed
structure. To ease the fabrication difficulty, we avoid the
implementation of the parallel capacitor which requires a
buried electrode below the waveguide. Instead, the bot-
tom electrode is offset from the waveguide to form the
ground plane. In addition, to avoid the metal induced

(b)
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FIG. 3. (a) The cross section of a suspended AlN waveguide
coupled with a coplanar microwave resonator, where gap =
500 nm and w = 1µm. The contour plot shows the electric
field Ez. The arrows indicate the electric field vectors. (b)
The dependence of piezomechanical coupling strength gpm on
the waveguide width w for different AlN to electrode gaps .

mechanical loss, the top electrode is fabricated beside
the waveguide with a gap between them. This arrange-
ment guarantees a considerable portion of the out-of-
plane electric field in the waveguide, albeit at a reduced
amplitude compared to the parallel plate geometry.

In Fig. 3(a), the electric field distribution for the copla-
nar microwave resonator by numerical simulation is plot-
ted. Although the AlN is not perfectly sandwiched be-
tween electrodes, there is still Ez-field in the waveguide
with the amplitude is about 20 times smaller than the
Ez-field in the air beneath the electrode. With the nu-
merically solved electric field distribution, the coupling
strength gpm is calculated using Eq. (8), the results are
shown in Fig. 3(b). Here, we set the microwave cav-
ity length to be λmw/4, where λmw ≈ 0.03m is the
wavelength of microwave. Introducing the filling factor
F2D = 4l/λmw, we have gpm ∝

√
F2D when l < λmw/4.

In Fig. 3(b), gpm is calculated with F2D = 1. gpm reduces
with increasing gap, because of the decaying electric field
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away from the electrode. When the waveguide width w
is increased from 0.2 to 2µm, gpm increases due to larger
overlap between the electric field and the AlN structure.
As w is further increased, gpm will eventually decrease to
zero, as the size of AlN is much larger than effective vol-
ume of microwave fields. For a structure with w = 1µm
and l = 100µm, we have F2D = 0.013. Then, we have
gpm/2π ≈ 12.3MHz for a 50-nm gap, which is more than
two times larger than the results obtained in 3D case.

IV. PIEZO-OPTOMECHANICS FOR

FREQUENCY CONVERSION

Now, we study the strong piezomechanical coupling en-
hanced M-O conversion on the AlN chip. Here, we focus
on the optomechanics interaction between the fundamen-
tal thickness mechanical mode and the optical mode in
photonic microcavities [24, 40].

A. The optomechanical coupling

In the optomechanical AlN microstructures, light is
confined in the thick AlN film, and the radiation pressure
force on the interface expands the film in thickness direc-
tion. Reversely, the change of thickness of the film by the
mechanical vibration will modify the boundary condition
of electromagnetic field, thus modulate the optical cavity
frequency. Therefore, the optomechanical system can be
described by the Hamiltonian

Hom = ~ωcc
†c+ ~Ωb†b+ ~gomc†c(b† + b). (15)

Here, c denotes the annihilation operator of optical pho-
ton mode. The optical cavity frequency is ωc/2π ≈
1.95 × 1014 Hz, with the intrinsic material limited loss
κc,0/2π = 100 MHz for a quality factor of Qc,0 = 106.
gom is the vacuum phonon-photon interaction strength
and can be estimated as

gTE(TM)
om ≈ 2ωc

n
TE(TM)
eff

∂n
TE(TM)
eff

∂h
uzpf −

2ωc

3h
n2p13(33)uzpf ,

(16)
where the first and second terms are due to the photo-
elastic and moving boundary effects [41–43]. Here, uzpf is
the zero-point fluctuation displacement of the film, n =

2.2 and n
TE(TM)
eff ≈ 1.86(1.73) are the refractive index of

the AlN and the effect index of the waveguide, respec-
tively. From numerical simulations of the AlN waveg-

uide, we have ∂n
TE(TM)
eff /∂h = 5.63(13.2) × 10−4 nm−1

for h = 550 nm and w = 1µm. Substitute the uzpf =
h
π

√

2~Ω
c33AAlNh

= 1.02×10−15/
√

hwl × µm−3 m and photo-

elastic constants of AlN p13(33) = −0.019(−0.107) [44, 45]
into the Eq. (16), we obtain

gTE
om/2π ≈ 142.9/

√

hwl × µm−3 kHz, (17)

gTM
om /2π ≈ 429.2/

√

hwl × µm−3 kHz. (18)

Here, the photoelastic effect contributes 15% and 29% for
TE and TM modes, respectively. According to the exper-
iment results by Bu et al. [45], the photoelastic constant
might be several times larger than the value we used here,
indicates photoelastic effect induced optomechanical cou-
pling is not negligible. Since the gTM

om is larger, we just
consider the TM optical mode in the following.

B. The piezo-optomechanics

For the purpose of M-O frequency conversion, we need
the coherent conversion between b and c . To compen-
sate the energy difference between optical photon and mi-
crowave phonons, an external laser driving at frequency
ωd ≈ ωc − Ω is required. As Ω ≫ κa,0, κb, gpm, we sim-
ply apply the resolved-sideband approximation that ne-
glects the counter rotating terms, and obtain the effective
Hamiltonian

Heff = ~Gom(b†c+ bc†) + ~gpm(ba† + b†a), (19)

with the effective optical photon-phonon coupling
strength Gom =

√
Ndgom, where Nd is the intra-cavity

photon number.
The system dynamics incorporating all the interacting

modes reads

d

dt
a = χaa− igpmb− i

√

2κa,1Ain +
√
2κaã, (20)

d

dt
b = χbb− igpma− iGomc+

√
2κbb̃, (21)

d

dt
c = χcc− iGomb+

√
2κcc̃. (22)

where χa = −i(ωa − ωmw) − κa, χb = −i(Ω − ωmw) −
κb, χc = −i(ωc − ωd − ωmw) − κc, κa = κa,0 + κa,1,
κc = κc,0 + κc,1. Here, κa,0(1) and κc,0(1) denote the
intrinsic (external) loss rate of the microwave and the

optical cavity modes. ã, b̃ and c̃ represents the noise
inputs to the system. ωd is the drive laser frequency and
ωmw is the input microwave frequency. By neglecting
the noises, the steady state conversion efficiency can be
solved as

T =
2κc,1c

†c

|Ain|2
=

g2pmG2
om2κa,12κc,1

|G2
omχa + g2pmχc + χaχbχc|2

. (23)

For ideal frequency alignments among input laser and
microwave frequencies, we have χa = −κa, χb = −κb,
χc = −κc, then

T =
κa,1

κa

κc,1

κc

4
g2

pm

κbκa

G2

om

κbκc

[
G2

om

κbκc
+

g2
pm

κbκa
+ 1]2

. (24)

C. Conversion efficiency

AlthoughGom can be enhanced by the parametric laser
drive, the ultimate achievable coupling strength is limited
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by material’s power handling. For instance, as a rule
of thumb, the maximum power delivered to the waveg-
uide without damaging the waveguide is on the order of
Pcrit = 1 W/µm2. In the cavity, the equivalent circulat-
ing power is

P =
Nd~ωd/(l/vg)

hw
=

Nd~ωdvg
hwl

, (25)

where vg is the group velocity of light. The power han-
dling of the material requires P < Pcrit, corresponding
to Nd/hwl ≤ 5× 104 µm−3, giving rise to the maximum
achievable linear optomechanical coupling strength

Gom/2π ≤ 96.0MHz. (26)

Note that this maximum value is independent of the size
of the AlN photonic structure, regardless of the value of
the gpm, which can be adjusted by changing the filling
factor of the microstructures.
According to Eq. (24), largeGom and gpm are preferred

for efficient internal frequency conversion. The optimal

condition requires
g2

pm

κbκa
≈ G2

om

κbκc
≫ 1, which means that

gpm should be optimized according to the Gom, κa and
κc. In addition, the other two parameters – the extrac-
tion ratio ηa =

κa,1

κa,0+κa,1
and the input coupling ratio

ηc =
κc,1

κc,0+κc,1
– should be optimized for achieving high

output efficiency. Here, the intrinsic loss rates (κa,0 and
κc,0) are constant while external coupling rates (κa,1 and
κc,1) are adjustable by varying the structure geometry.
Figure 4(a) shows the microwave signal conversion ef-

ficiency against the input signal frequency for various
piezomechanical coupling strength gpm, with fixed ηa =
ηc = 0.9. At increased gpm, the bandwidth of the con-
version increases, while the best efficiency is obtained for
optimal gpm. From the spectrum for gpm/2π = 10MHz,
we can see two peaks due to the strong coupling. These
results indicate that for different gpm, we should choose
optimal ηa and ηc for best conversion efficiency. The inset
of Fig. 4(b) plots the conversion efficiency as a function
of ηa and ηc with fixed gpm/2π = 2MHz. It can be seen
that the optimal conversion efficiency T = 0.877 is real-
ized at ηa = 0.977, ηc = 0.961.
Therefore, we numerically solve the optimal conversion

efficiency T for on-resonance microwave signal and differ-
ent gpm. The result is shown as solid curve in Fig. 4(b),
the conversion efficiency monotonously increases with
gpm and saturated to T ≈ 0.9 when gpm/2π > 3MHz.

By introducing the intrinsic cooperativities Com =
G2

om

κbκc,0

and Cpm =
g2

pm

κbκa,0
, we can asymptotically solve the opti-

mal condition for Eq. (24) as κa,1 ≈ κa,0Cpm/
√
Com and

κc,1 ≈ κc,0

√
Com for Cpm ≫ Com ≫ 1. In this case, the

optimal achievable conversion efficiency is

Tsat ≈
Com

(√
Com + 1 + 1

)2

≈ 1− 1√
Com

+O
(

1

Com

)

, (27)

(a)

(b)

FIG. 4. (a) The frequency dependence of the conversion ef-
ficiency ξ for different gpm/2π = 1, 2, 3, 4, 5, 10MHz. (b)
The optimal conversion efficiency for a given gpm, by op-
timizing cavity extraction ratios ηa and ηc. The solid
(dashed) lines correspond to intrinsic optical dissipation rates
κc,0/2π = 100 (20)MHz. The inset shows the conversion ef-
ficiency against ηa and ηc, with gpm/2π = 2MHz. Other
parameters: gom/2π = 96.0MHz, ωa = ωb, ωd = ωc − ωb,
{κc,0, κb, κa,0}/2π = {100, 0.25, 0.025}MHz.

which is insensitive to the gpm. Therefore, the efficiency
is saturated due to the intrinsic optical quality factor
limited Com ∼ 400, leading to Tsat ≈ 0.9. If we in-
crease the intrinsic optical quality factor by 5 times, i.e.
κc,0/2π = 20MHz, the saturated efficiency can be in-
creased to Tsat ≈ 0.95 which agrees with the numerical
results (Dashed line in Fig. 4(b)).

With reasonable parameters gpm/2π = 5MHz, the op-
timum conversion can be obtained with ηa = 0.995 and
ηc = 0.95. The effective frequency conversion efficiency is
0.896, with a bandwidth about 5.6MHz. If the ambient
temperature is 2K, the corresponding thermal excitation
at 10GHz is nth = 3.6, and the added noise during the
microwave to optical frequency conversion is nadd ≈ 0.22
[19].
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V. CONCLUSION

In conclusion, the piezomechanical strong coupling is
proposed and investigated using practical device param-
eters. The numerical simulations show that strong cou-
pling can be achieved for microstructures in an AlN
chip coupled to microwave cavity photons in both three-
dimensional microwave cavities and planar superconduct-
ing resonators. Leveraging the piezomechanical strong
coupling will lead to greatly enhanced microwave to op-
tical frequency conversion. With practical parameters,
we show that the optimal conversion efficiency can ap-
proach 90%, with a bandwidth exceeding 5MHz and
added noise below 0.22. Compared to other electrome-
chanical schemes, the piezo-optomechanical system has

several advantages and is very promising for experiments.
Thus, piezomechanics in a photonic chip is a promising
platform for building future hybrid quantum technologies
and integrated photonics.
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