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We propose a new technique to fully characterize the temporal structure of extreme ultraviolet
pulses by ionizing a bound coherent electronic wave packet. The influence of the dipole phase, which
is the main obstacle for state-of-the-art pulse characterization schemes, can be eliminated by angle
integration of the photoelectron spectrum. We show that particularly atomic Rydberg wave packets
are ideal and that wave packets involving multiple electronic states provide redundant information
which can be used to cross-check the consistency of the phase reconstruction.

I. INTRODUCTION

Ultrafast optics allows for generation of laser pulses
with durations on the femtosecond time scale. The pulses
are shorter than the response time of any photodetector
but limited by the femtosecond period of optical light.
Methods to reconstruct laser pulses have been developed
using nonlinear optical effects and cross correlation [1].
In 2001 the femtosecond barrier was broken by the gen-
eration of attosecond pulses in the (extreme) ultraviolet
(UV) range in the form of isolated pulses [2] and pulse
trains [3]. This signaled the start of a new era of ultra-
fast experiments, known as attosecond physics [4].

Today, the use of attosecond pulses allows for direct
measurement of optical laser pulses on the femtosec-
ond time scale [5], but the generation and characteri-
zation of attosecond pulses remains an active field of re-
search [6]. Established techniques from ultra-fast non-
linear optics cannot be extended into the UV regime
due to two main reasons: (i) low photon fluxes as-
sociated with the UV pulses do not favor nonlinear
processes and (ii) high photon energies generally leads
to target-dependent complex-valued susceptibilities that
may obscure the field-reconstruction procedure. There-
fore, all current attosecond characterization techniques
instead rely on laser-dressed photoionization by near-
infrared (NIR) fields [7]. Indeed, this is the principle
of the FROG-CRAB-method [8], where the frequency-
resolved optical gating (FROG)-algorithm from nonlin-
ear optics [9, 10] is adapted as a phase gate given by the
laser dressed continuum. If the IR field that dresses the
continuum is weak then the signal can be analyzed in
term of the phase retrieval by omega oscillation filtering
(PROOF)-method [11].

In the above mentioned attosecond pulse characteriza-
tion techniques, the dipole phases of bound–continuum
and continuum–continuum transitions are neglected in
the spirit of the strong field approximation [12]. However,
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relative ionization delay measurements have now shown
that such atomic effects are important and can lead to de-
lays up to a hundred attoseconds in solid state targets [13]
and noble gas atoms [14–17]. The Wigner time delay
of the photoelectron wave packet, defined as the energy-
derivative of the bound–continuum dipole phase, depends
on the atomic structure and typically varies by several
as/eV [18]. The continuum–continuum transitions give
rise to a negative delay that approaches zero in the limit
of high photoelectron energy [19–21]. Hence, the total
atomic delay depends on the target system, state and
photon energy. If altogether neglected, these effects can
lead for already available 100 as pulses to errors in the
reconstructed pulse duration of 10%.

Corrections to the FROG-CRAB and PROOF meth-
ods have been proposed [22], and, for noble gas atoms,
detailed target-dependent atomic delays have been com-
puted [23–26]. Still, uncertainties remain regarding the
discrepancy between experiment and theory. A new
method that could measure the properties of attosecond
pulses independent of the complex atomic response would
improve the accuracy of attosecond pulse characteriza-
tion and open up for new types of precision experiments.

In this article, we propose a new scheme to measure
the spectral phase of attosecond pulses by ionization of
a bound electron wave packet. The key points are that:
(i) the pump and probe steps are sequential, (ii) the in-
termediate states are bound and (iii) the photoelectron
is measured over all detection angles. As we will demon-
strate, these three points result in an elimination of the
dependence on dipole phases.

The elimination is exact provided that the parent
cation is spherically symmetric and that correlation ef-
fects are negligible. Using Rydberg states as interme-
diate states is advantageous as they have single-particle
character and possess little correlation. Photoionization
cross sections are, however, small leading to weaker sig-
nal strengths. Alkali atoms would be ideal because they
fulfill perfectly the spherical symmetry condition. In ad-
dition, the preparation of Rydberg wave packets can be
performed using optical laser pulses.Noble gases are also
a possibility, even though the ionic state is generally not
spherically symmetric and excitation energies are in the
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UV regime making it less favorable.
We will also show that multi-level wave packets are use-

ful for analysis of pulses with complex spectral structure
and that they allow for intrinsic self-consistency checks
for the retrieved phases.

Rydberg states have been exploited before in attosec-
ond experiments, but mainly with the focus on character-
izing the bound electronic wave packet and not to char-
acterize UV pulses [27, 28]. Another source of inspiration
for our method is the recent work by You, Rohringer and
Dahlström, where it was proposed that non-sequential
two-photon hole transitions can be used as an alterna-
tive method for attosecond pulse characterization [29].
Nonetheless, we will demonstrate many advantages of se-
quential laser excitation using multiple electronic bound
states as intermediate states.

In Sec. II, we discuss the theory behind our proposed
method. In Sec. III A, we show examples how to re-
construct the spectral phase of an isolated attosecond
pulse and an attosecond pulse train by using a Ryd-
berg wave packet in potassium. The influence of elec-
tronic correlation effects are discussed in Sec. III B. We
show that the dipole phase dependence due to inner-shell
correlations and Fano resonances is much smaller in the
angle-integrated photoelectron spectrum than in the di-
rectional photoelectron spectrum. Atomic units are used:
h̵ = ∣e∣ = 4πε0 = 1 unless otherwise stated.

II. THEORY

A. The basic idea

In this article we propose a scheme for UV pulse char-
acterization that relies on photoionization of an electron
wave packet for direct interference of different UV com-
ponents. The basic idea is illustrated in Fig. 1.

Step 1 is preparation (pump) of a coherent electron
wave packet

∣ψ(t)⟩ =∑
j

cj e
−iεjt

∣j⟩, (1)

where εj and cj are the energy and complex amplitude
of state j, respectively. The details of the preparation of
the bound wave packet are not important. However, the
pump process must be completed before the attosecond
pulse starts the ionization process (probe), so that pump
and probe steps are sequential. For characterization of
the UV pulse it is important that the wave packet states
have the same parity (in more detail the wave packet
states must be able to reach the same final state via
one-photon absorption). Populated states with opposite
parity, such as a partially depleted initial state, will not
interfere with photoelectrons from the wave packet when
detection in all angles is assumed. Preparation of wave
packet states with the same parity as the ground state
allows for interference of UV components that are several
eV apart and may be useful in special cases. However,

 (a)             (b)            (c)

FIG. 1. Sketch of the method to characterize an UV pulse
using a bound electron wave packet. (a) Preparation of the
wave packet with laser pulse. (b) Field-free propagation of
the electronic wave packet ψ for the duration τ . (c) Ioniza-
tion of the wave packet by the UV pulse. Due to the coherent
superposition of different electronic states, different spectral
components of the UV pulse are absorbed to reach the same
final continuum state with energy ε. The interferences be-
tween the different spectral components contain the spectral
phase information of the UV pulse that can be extracted by
varying the delay τ and repeating the experiment.

we will focus on wave packets with opposite parity to the
initial state.

Step 2 is field-free propagation of the wave packet for
a time duration τ . In step 3, the UV pulse arrives at the
target,

EX(ω, τ) = ∣EX(ω)∣ eiωτ+iφX(ω), (2)

and ionizes the wave packet, as illustrated in Fig. 1.
∣EX(ω)∣ and φX(ω) are the amplitude and phase of the
unshifted UV pulse, namely for τ = 0. In the time domain
the electric field is given by

ẼX(t, τ) =
1

2π
∫ dω EX(ω) e−iω(t−τ)+iφX(ω)

= ẼX(t − τ,0),

(3)

which shows that a pulse with a given τ corresponds to an
unshifted pulse delayed by τ . As step 3 is a one-photon
ionization process, the photoelectron amplitude is given
by first-order perturbation theory,

cf(τ) = lim
t′→∞

1

i
∑

j

cj dfj ∫
t′

dt ẼX(t, τ) eiωfjt

= −i∑
j

cj dfj ∣EX(ωfj)∣ e
iωfjτ+iφX(ωfj), (4)
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where dfj is the dipole transition moment from the bound
state ∣j⟩ to the continuum state ∣f⟩. The lower bound of
the time integral can be set to −∞ because the ionization
step of the wave packet is sequential and the cj ampli-
tudes can be treated as constants.

The jitter between the pump and the probe pulses may
lead to phase uncertainties. However, Rydberg states
in alkali atoms can be pumped with IR pulses that are
phase-locked to the UV field through the IR-driven high-
order harmonic generation process. In this case jitter
is removed as efficiently as for the FROG-CRAB and
PROOF methods.

Different UV energies, ωfj = εf − εj , are required to
reach the same final state from different bound states of
wave packet, as shown in Fig. 1(c). The interference of
the different ionization pathways make it possible to learn
about the phase relation between the different spectral
components of the UV pulse. The final photoelectron
spectrum reads

P (kf , τ) = ∣cf(τ)∣
2
=∑

j

⎛

⎝

Aj + ∑
j′>j

Bjj′ cos Θjj′
⎞

⎠

, (5)

where kf is the momentum of the photoelectron with
energy εf = kf /2. The variable Aj is the isolated contri-
bution from the wave packet state ∣j⟩ to ∣f⟩, while Bjj′
and Θjj′ are the amplitude and phase of quantum inter-
ference between different parts of the wave packet with
energies εj′ > εj . The explicit form of the coefficients in
Eq. (4) are

Aj = ∣cj ∣
2
∣dfj ∣

2
∣EX(ωfj)∣

2, (6a)

Bjj′ = 2 ∣cj cj′ ∣ ∣dfj dfj′ ∣ ∣EX(ωfj)EX(ωfj′)∣ (6b)

Θjj′ = arg[cj c
∗

j′ dfj d
∗

fj′ EX(ωfj , τ)E
∗

X(ωfj′ , τ)]. (6c)

The phase of the interference pattern can be rewritten to
clearly show the quantum beating of the probability, at
each energy difference ωj′j = ωfj − ωfj′ > 0, as

Θjj′ = ωj′j τ + φ
(jj′)
X (εf) + φ

(jj′)
D (εf) + φ

(jj′)
I , (7)

where the phase differences read

φ
(jj′)
X (εf) = φX(ωfj) − φX(ωfj′) (8a)

≈ τ
(GD)
X (ω̄

(f)
jj′ ) ωj′j ,

φ
(jj′)
D (εf) = arg[dfj] − arg[dfj′], (8b)

φ
(jj′)
I = arg[cj] − arg[cj′]. (8c)

Eq. (8a) defines the group delay τ
(GD)
X (ω̄

(f)
jj′ ) of the UV

pulse computed as a finite-difference derivative at the

mean photon energy, ω̄
(f)
jj′ = (ωfj + ωfj′)/2. The dipole

transition elements dfj are complex valued functions that
contribute energy-dependent dipole phases to the phase

difference φ
(jj′)
D (εf) in Eq. (8b). In contrast, φ

(jj′)
I in

Eq. (8c) is inherent to the preparation process of the

bound wave packet and independent of the final photo-
electron energy.

The main goal in characterizing the UV pulse is the

determination of τ
(GD)
X (ω). If this group delay is known

then the spectral phase φX(ω) can be fully reconstructed
(up to an absolute value) by numerical integration. How-
ever, the oscillations in the photoelectron spectrum de-

pend also on φ
(jj′)
I and φ

(jj′)
D (εf). The intrinsic phase

shift φ
(jj′)
I does not present an obstacle as it is energy

independent and corresponds to a constant shift of the

pump-probe delay by φ
(jj′)
I /ωj′j . However, the energy

dependence of the dipole phases φ
(jj′)
D (εf) may prevent

accurate determination of the group delay of the UV
pulse.

Before we continue our discussion, we discuss the im-
portance of higher-order effects that go beyond first-order
perturbation [cf. Eq (4)]. Pazourek et al. [28] have
pointed out that depopulation of the initial states re-
sults in an additional universal energy-dependent phase
contribution in Eq. (7) that varies by multiple of π across
the pulse spectrum. This is particularly an issue when
the probability of ionization is high. By using Rydberg
states, we reduce this phase dependence to a minimum as
UV pulses are weak and cross sections of Rydberg states
are two or more orders of magnitude smaller than for
bound states. In Sec. III A, we give explicit number for
this effect and show that it is indeed negligible.

Similarly, a differential AC Stark shift between the Ry-
dberg states due to the ionizing UV pulse is a third-order
effect and can lead to phase corrections. Furthermore,
the AC Stark shifts of neighboring Rydberg at UV fre-
quencies become more similar and approach quickly the
ponderomotive potential, Up = E

2
/(4ω2

), as the principle
quantum number n increases. For an 1012 W/cm2 pulse
with ω = 50 eV, the ponderomotive potential is less than
0.1 meV and the differential AC Stark shift between Ry-
dberg states is even smaller allowing us to safely neglect
AC Stark effects.

B. Uncorrelated spherically symmetric systems

For spherically symmetric systems, and more specif-
ically for spherically symmetric cations without corre-
lation effects, the radial dipole moment to any energy
eigenstate (continuum or bound) can be chosen to be
real [30]. As a result, the angle-integrated photoelectron

spectrum does not have an energy-dependent φ
(jj′)
D -phase

anymore. To see this, we start with a partial wave ex-
pansion of the final momentum state,

ψ−k(r) =
1

k1/2

∞

∑

L=0

L

∑

M=−L

iLe−iηLY ∗

LM(k̂)YLM(r̂)RεL(r),

(9)

where k = k k̂ is the momentum of the photoelectron
and its energy is given by εf = k2/2 [31]. Note that ψ−k
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is momentum normalized, ⟨ ψ−k ∣ ψ−k′ ⟩ = δ(k − k′), while
the real radial wave functions are chosen to be energy
normalized, ⟨ RεL ∣ Rε′L ⟩ = δ(ε − ε′). Inserting Eq. (9)
for the final state, f , in Eq. (4) leads to the following
expression for the photoelectron spectrum,

P (k, τ) = ∣ck(τ)∣
2 (10)

=

1

k
∑

j

∑

j′
cjc

∗

j′ ∑

L,M

∑

L′,M ′

iL−L
′

YL′M ′(k̂)Y ∗

LM(k̂)

× e−iηL+iηL′ dfj d
∗

f ′j′ EX(ωfj , τ)E
∗

X(ωfj′ , τ),

where we used the partial-wave basis ∣f⟩ = ∣εfLM⟩ and

dfj = ⟨f ∣d̂∣j⟩ = ⟨εfL∥r∥njLj⟩ C
LM
LjMj ;1µ

√

2L + 1
−1

with

µ being the polarization of the ionizing UV pulse. In
Eq. (10) the sums on j and j′ run over all excited
states of the prepared wave packet. Since the radial
part of the continuum states and the bound state are
chosen to be real functions, the reduced matrix element,
⟨εfL∥r∥njLj⟩, and the dipole, dfj , are real and do not
contribute to a phase difference in the photoelectron
spectrum.

However, Eq. (10) depends on the scattering phase dif-
ferences between all final partial waves states resulting in
non-trivial angle and energy dependencies. By perform-
ing an angle-integrated measurement, the dependencies
on the dipole phase can be eliminated,

P (ε, τ) = ∫ dΩk ∣ck(τ)∣
2 (11)

= ∑

Lf ,j′,j

cjc
∗

j′dfjdfj′ EX(ωfj , τ)E
∗

X(ωfj′ , τ),

where the orthogonality of spherical harmonics reduces
for each (j, j‘) pair to a sum over all final angular mo-
menta Lf . Rewriting Eq. (11) by grouping contributions
form the same (j = j′) and different electronic states
(j ≠ j′) together, we obtain

P (ε, τ) =∑
j

⎛

⎝

Āj + ∑
j′>j

B̄jj′ cos Θ̄jj′
⎞

⎠

(12)

where the variables read

Āj =∑
Lf

∣cj ∣
2
∣dfj ∣

2
∣EX(ωfj)∣

2
/k, (13a)

B̄jj′ , =∑
Lf

dfjdfj′ ∣cjcj′ ∣ ∣EX(ωfj)EX(ωfj′)∣ /k, (13b)

Θ̄jj′ = ωj′j τ + φ
(jj′)
X (εf) + φ

(jj′)
I , (13c)

where we write the index f explicitly on Lf for clarity.
The phase term, Θjj′ , is independent of atomic scatter-
ing (or dipole) phases and of Lf . As the dipoles can be
positive or negative, there should be no absolute mag-
nitude around dfjdfj′ in Eq. (13b). Consequently, the
phase modulation depends on the properties of the wave

packet preparation, φ
(jj′)
I and on the phases of the UV

field, φ
(jj′)
X (εf), but not on the final scattering phases

ηLf
(k) — exactly what we wanted.

When N states are involved in the electron wave
packet, ψ(t), we obtain (

N
2
) different ωjj′ oscillations

with their corresponding phase differences φ
(j1j2)
X . It

turns out there exist groups of three phase differences
that obey the relation

φ
(j1j3)
X (εf) = φX(ωfj1) − φX(ωfj3) (14)

= φX(ωfj1) − φX(ωfj2) + φX(ωfj2) − φX(ωfj3)

= φ
(j1j2)
X (εf) + φ

(j2j3)
X (εf).

Eq. (14) holds also true for the retrieved phase differ-

ences, φ
(jj′)
X (εf)+φ

(jj′)
I , up to a constant, because φ

(j1j2)
I

does not need to fulfill any special relation. This connec-
tion can be used to cross-reference the extracted phases
and to check the consistency of the retrieved phases. To
our knowledge, no other ultrafast pulse reconstruction
method (for femtosecond or attosecond pulses) possess
such a feature.

Our scheme to characterize UV pulses has several ad-
vantages that can be summarized as follows:

• Angle-integrated detection increases the total sig-
nal and ensures that ionization pathways to differ-
ent final angular momenta of the photoelectron do
not affect the phase reconstruction.

• Rydberg states make it possible to probe spectral
phase differences bridging small energy distances as
the energy difference between Rydberg states goes
like n−3.

• A combination of small and large energy differ-
ences, ωj′j , makes it possible to probe phase differ-
ences between close-by and distance spectral phase
components. This is especially useful if certain
spectral regions have negligible intensity and need
to be bridged, as is the case for pulse trains.

• There is no constraint on the polarization of the
UV pulse. It works for linearly, circularly, and el-
liptically polarized pulses.

• Wave packets withN electron states (with the same

angular momentum) leads to (
N
2
) beating frequen-

cies in the photoelectron spectrum providing redun-
dant information [Eq. (14)] to cross-check the con-
sistency of the reconstruction.

In more detail, electron correlation results in complex-
valued dipole moments that may affect the pulse recon-
struction, even if photoelectron is detected over all an-
gles. As we will show in Sec. III B for the case of Ry-
dberg wave packets, these effects are surprisingly small
even in correlated energy regions close to autoionizing
resonances.

III. RESULTS

In this section, we first use Rydberg wave packets
to characterize a single attosecond pulse (Secs. III A 1
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and III A 2) and an attosecond pulse train (Sec. III A 3).
We then use photoionization of Rydberg wave packets
to study electronic structure properties of angle-resolved
photoelectrons (Sec. III B 1). Finally, we study the influ-
ence of electron correlation in the case of potassium in a
resonance free region (Sec. III B 1) and in neon near the
2s−13s Fano resonance (Sec. III B 4).

We choose potassium as our main system of interest.
Atomic alkali metals possess several advantages and have
been used for ultrafast experiments [32, 33]: (1) After re-
moval of the the outermost s electron, alkali cations are
closed-shell systems with relatively small amount of cor-
relation. (2) The mean-field potential of alkali cations
is spherically symmetric fulfilling exactly the conditions
for real reduced dipole matrix elements. (3) The exci-
tation energies of the Rydberg states in all alkali metals
lie within 1.4 eV and 5.4 eV [34]. This is a convenient
energy range as it is easily accessible with common laser
systems and standard nonlinear optics that make it possi-
ble to transfer up to 100% of the population into Rydberg
states.

A practical question that arises when using Rydberg
states is the signal strength because Rydberg states have
much lower photoionization cross sections (∝ n−3) than
valence shells [35]. To characterize attosecond pulses,
low-lying Rydberg state with n < 10 are sufficient. Their
cross section is roughly 100 times weaker than the outer-
most valence shell. Given common gas parameters (1017

atoms/cm3, 1 mm gas jet diameter [36]) and attosecond
pulse parameters (1011 photons/s, 1 kHz–1 MHz repeti-
tion rate [4]), we estimate a total number of 103–106 elec-
trons/s to get ionized for photon energies up to 100 eV.

Dipole-dipole interactions between Rydberg states can
lead to corrections to the energy level and the Rydberg
wavefunction. The energy corrections are on the 1 meV
scale for the Rydberg states considered here (n < 10) and
gas densities up to 1017 atoms/cm3. Rydberg states up
to n < 10 have periods in the tens of femtosecond regime,
which are hundred times faster than the picosecond-scale
corrections corresponding to 1 meV changes. Conse-
quently, the interaction between Rydberg states or neigh-
boring atoms is negligible for this type of measurement.

All results obtained by explicit time propagation [37]
utilize the xcid program [38] with the following nu-
merical parameters [39] and the wavefunction splitting
method to analyze the photoelectron spectrum as de-
scribed in Ref. [40]. This method has been successfully
used to analyze photoelectron spectra in the multipho-
ton regime [41, 42]. In this work we are staying in the
one-photon regime. Correlation effects for potassium are
studies by means of the random phase approximation
with exchange (RPAE) by adapting existing numerical
codes [43] with the initial state being a given np vir-
tual orbital obtained by the Hartree-Fock (HF) equation
of the K+ core [44, 45]. TDCIS is also used to study
correlation effects in neon, as it has been shown to de-
scribe well many-body physics in the attosecond [46] and
strong-field regime [47].

A. Pulse characterization

1. Single Pulse + 2-level wave packet

As Rydberg wave packets can be easily prepared with
common laser systems, we omit the description of its
preparation. In our first example, we choose the wave
packet in potassium (K) to be a coherent superposition
between the 3p64p and 3p65p Rydberg states,

∣Ψ(t)⟩ =
1

√

2
∑

n=4,5

e−i εnp t
∣np⟩. (15)

We omit reference to the inner-shell configuration as
we are only interested in the Rydberg electron and as-
sume that the ionic configuration will not change (see
Sec. III B 4 for a more general discussion and the in-
fluence of interchannel coupling). Potassium is treated
within the HF level, where the HF procedure is done for
K+. The valence electron interacts with a mean-field po-
tential of K+ and interchannel correlation is neglected.

In the probe step, the 4p–5p Rydberg wave packet is
ionized by the attosecond pulse. We consider an isolated
attosecond pulse with constant spectral phase: φX(ω) =
0, with a quadratic spectral phase: φX(ω) = 100 (ω−ω0)

2

and with a cubic spectral phase: φX(ω) = 100 (ω −ω0)
3.

Each attosecond pulse has a central photon energy of
ω0 = 74 eV (= 2.72 a.u.) and a full-width-half-maximum
(FWHM) spectral intensity width of 7.4 eV (= 0.27 a.u.)
corresponding to a pulse duration of 247 as for a Fourier-
limited pulse. The pulse with linear chirp (quadratic
phase) is symmetrically stretched in time increasing the
pulse duration, while the pulse with quadratic chirp
(third-order phase) experiences an asymmetric pulse de-
formation.

In Figs. 2(a-c) the photoelectron spectra, P (ε, τ), are
shown for the attosecond pulse with (a) no chirp, (b) lin-
ear chirp and (c) quadratic chirp. In accordance with
Eqs. (8a) and (13c), the chirps are directly visible as a
constant, linear and quadratic shift of the beating pat-
terns in Figs. 2(a-c), respectively.

In Figs. 2(d-f) the photoelectron spectra, P (ε, ν), are
shown where the delay axis is Fourier transformed. In all
three cases a static signal and an oscillating signal with
the beating frequency corresponding to ε5p−ε4p = 1.36 eV
is visible. The discreteness in the data is defined by the
the length of the delay range used in the calculations,
which is 500 a.u. (12.1 fs).

In Figs. 2(g-i) the retrieved phases of the 1.36 eV beat-
ing signal for the different attosecond pulses are shown.
According to Eq. (13c), these phase differences corre-

spond to φ
(jj′)
X (εf) + φ

(jj′)
I , where j = 4p and j′ = 5p.

The intrinsic phases of the Rydberg wave packet φ
(jj′)
I

are subtracted in Figs. 2(g-i) such that the retrieved
phase at the spectral peak of the beating signal is 0.

The phase φ
(jj′)
I does not affect the reconstruction of the

spectral chirp of the pulse (see Sec. II). The analytic so-

lutions of the phase differences, φjj
′

X (εf), are plotted as
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FIG. 2. (a-c) Photoelectron spectra of the 4p–5p Rydberg
wave packet ionized by an attosecond pulse with (a) no chirp,
(b) a linear chirp, and (c) a quadratic chirp ionizing as a func-
tion of the pulse delay. (d-f) Photoelectron spectra where the
delay axis is Fourier transformed. The spectrum contains
a static signal and an oscillating component with frequency
1.36 eV. (g-i) Retrieved phase differences of the 1.36 eV com-
ponent. Analytic results are shown as black dashed lines. The
corresponding group delay of the phase differences is shown
on the right.

black-dashed lines, and agree perfectly with the retrieved
phases.

2. Single Pulse + multi-level wave packet

The Rydberg wave packet is not limited to be a su-
perposition of two Rydberg states for characterization of
UV pulses. Involving N > 2 states (with the same an-
gular momentum l) in the Rydberg wave packet is even

more beneficial as (
N
2
) beating frequencies occur in the

photoelectron spectra—all containing spectral informa-
tion about the pulse.

We consider the 3-level Rydberg wave packet,

∣Ψ(t)⟩ =
1

√

3
∑

n=4,7,8

e−i εnp (t−t0)
∣np⟩, (16)

which provides two high frequency beatings, ω84 = ε8p −
ε4p = 2.26 eV and ω74 = ε7p − ε4p = 2.12 eV, and one low
frequency beating ω87 = ε8p−ε7p = 0.14 eV. The reference
time, where all phases of the wave packet are the same,
is arbitrarily chosen to be t0 = −600 a.u. In Fig. 3(a),
the pulse spectrum shifted by the ionization potentials is
shown to indicate where the corresponding photoelectron
distributions are expected.

Fig. 3(b) shows the photoelectron spectrum, P (ε, τ),
for ionization of the 3-level Rydberg wave packet with
the quadratic chirped pulse from Sec. III A 1. The pho-
toelectron spectra, P (ε, ν), for the three frequencies ν =
ω47, ω48, ω78 are shown in Fig. 3(c).

The retrieved phases and the analytic result match per-
fectly for the three beating patterns [see Fig. 3(d)]. All
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FIG. 3. (a) Spectra of the attosecond pulse, EX(ωfj), shifted
by the Rydberg binding energies ε4p, ε7p, and ε8p (indicated
by arrows). (b) Photoelectron spectrum of the 4p–7p–8p Ry-
dberg wave packet ionized by a quadratic-chirped single at-
tosecond pulse. (c) The static and the 0.14 eV, 2.12 eV, and
2.26 eV oscillating signals of the photoelectron spectrum. (d)
Retrieved phases of the three frequency components. The
analytic results are shown as black dashed lines.

three curves are parabolas with curvatures 3β ωj′j de-
pending on the quadratic chirp, β = 100, and on the
energy difference between the states, ωj′j . Also the re-

lations between φ
(jj′)
X [see Eq. (14)] hold for all combi-

nations. This demonstrates that our method provides
an internal mechanism to confirm the consistency of the
retrieved phases.

3. Pulse train + multi-level wave packet

We will now demonstrate that the 4p–7p–8p three-level
Rydberg wave packet from Sec. III A 2 can be applied to
probe the phase of pulse trains on the attosecond and
femtosecond time scales simultaneously. We choose a
pulse train that consists of the 48th, 49th and 50th har-
monic of 800 nm with some rather complicated phase
relations: The 48th harmonic has no spectral chirp but
a phase constant of π/4. The 49th harmonic has a linear
chirp, φX(ω) = −0.5/δω2

(ω−ν55)
2. Finally, the 50th har-

monic has a quadratic chirp, φX(ω) = 0.5/δω3
(ω−ν56)

3
+

π/3. Each harmonic has a spectral intensity FWHM
width of δω = 400 meV.

The 3-level Rydberg wave packet allows for interfer-
ence of spectral components within an individual har-
monic and between adjacent harmonics. This is visual-
ized in Fig. 4(a) where the UV spectrum is shifted by the
three different binding energies. The energy difference
ω7p,8p is smaller than the spectral width of the harmon-
ics and it, therefore, allows for probing the phase relation
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FIG. 4. (a) Spectra of the attosecond pulse train, EX(ωfj),
shifted by the Rydberg binding energies ε4p, ε7p, and ε8p (indi-
cated by arrows). (b) Photoelectron spectrum of the 4p–7p–8p
Rydberg wave packet ionized by the attosecond pulse train.
(c) The static and the 0.14 eV, 2.12 eV, and 2.26 eV oscillat-
ing components of the photoelectron spectrum. (d) Retrieved
phases of the three frequency components. The analytic re-
sults are shown as black dashed lines. The highlighted phases
(red circles) at 73.7 eV and 75.3 eV for the 4p–7p beating are
used to determined the relative phases between harmonics.

within each harmonic individually [by overlap of red and
blue in Fig. 4(a)]. The energy differences ω74 and ω84 are
comparable to the spectral separation between harmon-
ics and allow for probing of the phase relation between
adjacent harmonics [by overlap of the brown curve with
the blue or red curves in Fig. 4(a)].

Figure 4(b) shows the photoelectron spectrum P (ε, τ)
from the 3-level Rydberg wave packet ionized by the at-
tosecond pulse train. The three main delay-independent
peaks correspond to the ionization of the 4p electron by
the three harmonics. The contributions of 7p and 8p can-
not be spectrally distinguished, but their interference re-
sults in three distinct low-frequency beatings in Fig. 4(b).

The ω4p,7p and ω4p,8p modulations are located at ki-
netic energies 73.7 eV and 75.3 eV in Fig. 4(b), corre-
sponding to interference of harmonic 48 with 49 and har-
monic 49 with 50, respectively. The extracted phases
from all three modulations, shown in Fig. 4(d), agree
perfectly with the analytic predictions and Eq. (14) hold
for kinetic energies where all three beating patterns have
a non-vanishing signal. In this way, we can reconstruct
the phase within each harmonic (up to a constant) us-
ing the 7p–8p beating signal. This shown by the violet
curve in Fig. 4(d), which displays that harmonic 48 has
no chirp, harmonic 49 has a linear chirp while harmonic
50 has a quadratic chirp. To determine the phase between
two neighboring harmonics, the phase at one specific ki-
netic energy of the 4p–7p or 4p–8p oscillations needs to be
found. At 73.7 eV and 75.3 eV, the phase differences of
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FIG. 5. (a) Dipole phases ϕz
4p/5p(ε) = arg[⟨ε, e⃗z ∣z∣4p/5p⟩] for

ionizing an electron in z-direction with kinetic energy ε. (b)
Delay of the directional dipole phase ϕz

4p(ε) (red dashed line)

and the relative delay between 4p and 5p, φ
(4p,5p)
D (ε), entering

the directional (blue dashed line) and angle-integrated (blue
solid line) photoelectron spectra. Data is produced by static
HF calculations.

the 4p–7p modulation are −0.34π and 0.49π, respectively
[red dot markings in Fig. 4(d)]. Using our knowledge
about the spectral phase within each harmonics, which
we just determined, we find that the constant phase dif-
ference between harmonic 48 and 49 is −π/4, and between
harmonic 49 and 50 is π/3. Hence, we have fully recon-
structed the spectral phases of the pulse train up to a
constant global phase. This shows that our method is
useful for characterization of pulse trains (on both at-
tosecond and femtosecond time scales) and that it can
be used to benchmark the accuracy of the RABBITT-
method [3].

B. Electronic structure

1. Directional dipole phases

As we discussed in Sec. II and showed in Sec. III A,
the dipole phase drops out when studying the angle-
integrated photoelectron spectrum. In this section, we
analyze the dipole phase dependence of the directional
photoelectron spectrum for an electron ionized along the
field polarization ẑ.

In Fig. 5(a) we show the dipole phases ϕz4p/5p(ε) =

arg[⟨ε, ẑ∣z∣4p/5p⟩] for ionization of an electron in ẑ-
direction with kinetic energy ε. The dipole phases vary
non-monotonically by π/2 over an energy region from 20–
90 eV. This behavior can be attributed to a Cooper min-
imum in the photoionization cross-section of K from the
np states. The dipole phase of the Rydberg states 4p and
5p of K are almost exactly the same. What enters in our
scheme is the phase differences between the two dipoles
phases.

In Fig. 5(b), we compare the delay due to the dipole

phase difference of 4p and 5p, φ
(j,j′)
D (ε)/ωj′j = [ϕz4p(ε) −

ϕz5p(ε)]/(ε5p − ε4p), that enters in our proposed method
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(blue dashed line) with the Wigner delay, ∂εφ
(4p,5p)
D (ε),

that enters in the FROG-CRAB, PROOF, and RABITT
(red dotted-dashed line) [in addition to an IR-induced
delay—not considered here]. The Wigner delay is an or-
der of magnitude larger than the delay of our directed
method. This shows that even without angle-integration,
the influence of the dipole phase is strongly reduced
thanks to the similarity between neighboring Rydberg
states. The delay due to the angle-integrated phase dif-

ference, φ
(4p,5p)
D (ε), is exactly zero (blue solid line), as

expected from our discussion in Sec. II.

2. Critical pulse duration

The curvature (second spectral derivative) of the
dipole phase is important for the pulse characterization
because it leads an energy dependent Wigner delay and,
thus, artificial deformations in the reconstructed pulse.
The curvature is around 3 as/eV for directed photo-
electrons at photon energies up to 50 eV in potassium
from 4p or 5p (a value that is reasonable to assume also
for noble gas atoms). Given a Gaussian Fourier-limited
pulse with FWHM-pulse duration δt, a constant dipole
phase curvature c, implies that the reconstructed phase
becomes φ =

c
2
(ω − ω0)

2 (plus unknown constant). The
reconstructed FWHM-pulse duration becomes

δtrecon = δt
√

1 + 16 ln2
(2) c2/δt4 = δt

√

1 + (δtcrit/δt)4,

(17)

where we have defined a critical pulse duration, δtcrit =√

4 ln(2) c. Expressed in commonly used units, the criti-

cal pulse duration is: τcrit[as] = 42.7
√

c[as/eV].

If we use c ∼ 3 as/eV, the critical pulse duration is
74 as. This shows that not just for the characteriza-
tion of the shortest attosecond pulses or zeptosecond
pulses [48, 49], the dipole phase cannot be ignored. Al-
ready for a 100 as Fourier-limited pulse the error is 14%.
In our approach, the dipole phase curvature that enters
(without angle-integration) is 40 times smaller, reduc-
ing the critical pulse duration to 11 as. With angle-
integration, c = 0 and no critical duration exist.

As mentioned in Sec. II, depopulation introduces a uni-
versal energy dependent phase. The small cross sections
and weak UV intensity lead to small depopulations and
consequently to small phase effects. For K 4p ionized by
an 100 as pulse (1012 W/cm2 peak intensity and 70 eV
photon energy) leads to relative depopulation of 10−4

and a negligible depopulation-induced phase curvature
of c < 2 × 10−4 as/eV.

Next, we estimate how much c is affected by electron
correlation effects.
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FIG. 6. Dipole-induced delay for the directional (dashed
lines) and for the angle-integrated (solid lines) photoelectron
spectra of potassium treated in the HF approximation (blue
lines) and RPAE (yellow lines).

3. Residual correlation effects

Once electronic correlations are considered, the dipole
phase affects the photoelectron spectrum even after an-
gle integration. Photoionization of alkali atoms is a
prototypical test-case for correlation effects for close-to-
threshold photoionization [50]. In this work we consider
larger photon energies where, in general, correlation ef-
fects are expected to be smaller. In Fig. 6, we compare
the retrieved phases of the ω4p,5p oscillations of the di-
rectional (dashed lines) and angle-integrated (solid lines)
photoelectron spectra of potassium treated within the
Hartree-Fock approximation (HF; blue lines). This cal-
culation builds on the perturbation diagram shown in
Fig. 7 (a), where j = 4p, 5p are the excited Rydberg states
and f = ks, kd are the final photoelectron states, both
computed within HF. This type of calculation contains no
correlation effects by definition and the corresponding de-
lay of the angle-integrated calculation is zero, as expected
from Sec. II. In Fig. 6 we also show the random-phase ap-
proximation with exchange (RPAE; yellow lines), which
includes additionally correlation effects with the electrons
from the Ar+ core c = 3s, 3p, as illustrated by the per-
turbation diagrams in Fig. 7 (b)–(e). More details about
RPAE are found in Ref. [45].

The direction of the photoelectron is chosen to be par-
allel to the laser polarization direction (θ = 0). The en-
ergy range of 70–80 eV is chosen to avoid on-shell exci-
tation of autoionizing resonances in the continuum (see
Sec. III B 4) and to focus on the residual effect (virtual
coupling) to other particle-hole excitations.

When correlation effects are included, the reduced
dipole moments become complex-valued even in spher-
ically symmetric systems resulting in a dipole phase
dependence in the angle-integrated photoelectron spec-
trum. In Fig. 6, the RPAE results, which include corre-
lation, show a weak energy dependence. The correlation
induced delay in the angle-integrated spectrum (solid yel-
low line) is centered around 6 as. A constant delay dif-
ference is, however, not of interest and does not influence
the determination of the spectral chirp. The energy de-
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forward RPAE (c) direct-backward RPAE (d) exchange-
forward RPAE and (e) exchange-backward RPAE. Up (down)
arrows label electron (hole) states. Further details are given
in the main text.

pendence is thanks to the Rydberg states again quite
weak.

The average slope is -0.052 as/eV in the 70–80 eV range
resulting in a critical pulse duration of τcrit = 9 as. The
influence of correlation on the directional photoelectron
(dashed yellow line) is with an average slope of 0.12 as/eV
more than twice stronger than in the angle-integrated
case. It shows also in the presence of correlations, the
dipole phase dependency is reduced when studying the
angle-integrated photoelectron spectrum.

The influence of correlation can be further reduced
when going to higher Rydberg states, or when going to
lighter atoms (e.g. sodium with neon-like core), which
generally contain less electronic correlation.

4. Autoionizing resonances

When the ionizing test pulse is resonant with au-
toionizing inner-shell excitations, Fano resonances be-
come visible in the photoelectron spectrum, which are
spectrally highly localized around the autoionizing reso-
nance energy (in contrast to the residual effects discussed
in Sec. III B 3). Since autoionization is a correlated pro-
cess, the dipole phase dependence will survive in the pho-
toelectron spectrum after angle integration in the form
of amplitude and phase modulations in the beating pat-
terns.

To demonstrate the influence of an autoionizing state,
we choose neon and we target the lower 2s−1ns autoion-
izing states, which are even-parity states and can only be
reached with an even number of photons. First, we pre-
pare a Rydberg wave packet between 2p−13s and 2p−14s
with two 4.8 fs (= 200 a.u.) Gaussian pulses with center
frequencies 16.8 eV and 19.7 eV. After the wave packet is
prepared, we ionize it with a 508 as (= 21 a.u.) Fourier-
limited Gaussian pulse with a center frequency of 25.9 eV
(= 0.95 Eh), which ionizes the Rydberg electron but also
drives the ionic transition between 2p−1 and 2s−1 lead-
ing to population of the autoionizing 2s−1ns states. The
calculations [51] are based on TDCIS, which accurately
describes the 2s−1np Fano resonances in neon [52].

Phase modulations in the beating pattern will only

be due to φjj
′

D (εf) because Φjj
′

X (εf) = 0 in Eq. (7). In
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FIG. 8. (a) Angle-integrated photoelectron spectrum of the
2p−13s–2s−14s wave packet ionized by an isolated attosecond
pulse. (b) The static (black dashed line) and the oscillat-
ing components (solid red line) of the angle-integrated pho-
toelectron spectrum. (c) Retrieved phase of the oscillating
components of the angle-integrated (red solid line) and direc-
tional (green dashed-dotted line) photoelectron spectrum for
the full TDCIS model. The intrachannel TDCIS results for
the angle-integrated photoelectron spectrum is shown as ref-
erence (blue dashed line). The corresponding group delay of
the phase differences is shown on the right.

Fig. 8(a), the angle-integrated photoelectron spectrum
around the 2s−13s is shown and Fig. 8(b) shows the am-
plitude of the static and oscillating contributions. The
2s−13s and higher Fano-resonances are visible in the
static and especially in the oscillating amplitudes. The
static signal increases beyond 25 eV [see Fig. 8(b)] to two-
photon absorption of the attosecond pulse. This process
is not delay-dependent and contributes only to the static
background.

The retrieved phases are shown in Fig. 8(c) where the
energy position of the 2s−1ns resonances are highlighted
by vertical dashed lines. Also the intrachannel TDCIS
result for the angle-integrated photoelectron spectrum is
shown (blue dashed line), where the interchannel interac-
tions are responsible for the autoionization of all 2s−1nl
states are not included. Ignoring interchannel effects
eliminates correlation effects, and as a result no phase
modulations around the resonance energies are seen. The
phase changes due to the 2s−13s Fano resonance is small
for the angle-integrated photoelectron spectrum. The in-
duced delay does not exceed ±3 as.

For the directional photoelectron spectrum, the corre-
lation induced delay is with up to -30 as an order of mag-
nitude larger than for the angle-integrated result as we
have already found in Sec. III B 3 for residual correlation
effects. In both cases (directional or angle-integrated),
the delay is relatively small compared to the 2p−13s res-
onance lifetime of 6.4 fs (Γ = 0.1 eV within TDCIS).
The derivative of the absolute dipole phase, measured in
FROG-CRAB, reflects the lifetime of the resonance. In
our method, we measure the difference in the influence
of the 2s−13s autoionizing state on the Rydberg states
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2p−13s and 2p−14s , which is two orders of magnitude
smaller than the absolute dipole phase.

IV. CONCLUSION AND OUTLOOK

We have proposed a new method to characterize at-
tosecond UV pulses with the help of bound electron wave
packets. Different spectral components of the UV pulse
interfere as an electron can be ionized from different en-
ergy levels. This leads to quantum beats (an oscillating
photoelectron signal) as function of the pulse delay. We
showed that angle integration eliminates the influence of
the dipole phase in the photoelectron spectrum, which
becomes critical for pulses with duration below 100 as.

Rydberg wave packets have favorable properties for
the proposed method. The energy spacing between elec-
tronic states decreases with 1/n3 offering high spectral
energy resolution and the possibility to bridge energy re-
gions with no spectral weights (as in the case of pulse
trains). The downside of using Rydberg state is the
small photoionization cross section leading to weak sig-
nal strengths. Multi-level wave packets open up the pos-
sibility for consistency checks of the retrieved phases—a
feature that does not exist in other pulse reconstruction
techniques.

We studied the role of correlation effects. We found the
dipole phase cannot be completely eliminated by angle-
integration. The effect is, however, much weaker than
the changes in the Wigner delay and the IR-induced
continuum–continuum delay. Particularly Rydberg wave
packets minimize correlation effects. We have shown in
potassium and neon correlation effects result indeed in
negligible phase corrections.

When vibrational Rydberg-like wave packets instead of

electronic ones are used and the pulse spectrum is fully
known, this approach can be turned around and be used
to probe non-Born-Oppenheimer dynamics. Correlated
electronic-vibrational motions results in an extra phase
contribution, which is equivalent to the dipole phase de-
pendence in atoms due to electronic correlations.

We believe ionizing Rydberg wave packets is a versa-
tile approach to determine the spectral phases of complex
pulses, e.g. generated by table-top attosecond laborato-
ries or FEL facilities. We have focused here on pulses in
the UV regime. This technique can be easily extended to
x-rays with shorter wavelengths and into the optical and
near-infrared domains with longer wavelengths.

As pulses durations approach the zeptosecond
regime [53], ionization from different inner shells cannot
be distinguished anymore making established attosec-
ond pulse characterization techniques more prone to er-
ror [54]. Our method is not affected by inner-shell ioniza-
tion. Together with the spectral phase accuracy and the
applicability to a very broad spectral ranges, we believe
this approach offers several key properties for character-
izing the next generation of attosecond pulses.
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E. Benedetti, F. Ferrari, G. Sansone, and M. Nisoli,
“Attosecond electron spectroscopy using a novel interfer-
ometric pump-probe technique,” Phys. Rev. Lett. 105,
053001 (2010).

[28] Renate Pazourek, Maurizio Reduzzi, Paolo A. Carpeg-
giani, Giuseppe Sansone, Mette Gaarde, and Kenneth
Schafer, “Ionization delays in few-cycle-pulse multipho-
ton quantum-beat spectroscopy in helium,” Phys. Rev.
A 93, 023420 (2016).

[29] Jhih-An You, Nina Rohringer, and Jan Marcus
Dahlström, “Attosecond photoionization dynamics with
stimulated core-valence transitions,” Phys. Rev. A 93,
033413 (2016).

[30] Harald Friedrich, Theoretical Atomic Physics, 3rd ed.
(Springer-Verlag, Berlin, 2006).

[31] Anthony F. Starace, in Encyclopedia of Physics, Vol.
31: Corpuscles and Radiation in Matter I, edited by
W. Mehlhorn (Springer, Berlin, 1982) Chap. Theory of
Atomic Photoionization, pp. 1–121.

[32] V.O. Lorenz and S.T. Cundiff, “Ultrafast spectroscopy of
a dense potassium vapor,” Chemical Physics 341, 106 –
112 (2007), ultrafast Dynamics of Molecules in the Con-
densed Phase: Photon Echoes and Coupled ExcitationsA
Tribute to Douwe A. Wiersma.

[33] V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cun-
diff, “Ultrafast optical spectroscopy of spectral fluctua-
tions in a dense atomic vapor,” Phys. Rev. Lett. 100,
013603 (2008).

[34] National Institute of Standards and Technology, http:

//www.nist.gov/pml/data/atomspec.cfm.
[35] Edwin E. Salpeter Hans A. Bethe, Quantum Mechanics

of One- and Two-Electron Atoms (Springer US) iSBN:
978-0-306-20022-9 (Print) 978-1-4613-4104-8 (Online).

[36] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C.
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