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Multi-start spiral vortex patterns are predicted for the electron momentum distributions in the
polarization plane following ionization of the helium atom by two time-delayed circularly polar-
ized ultrashort laser pulses. For two ultraviolet (UV) pulses having the same frequency (such that
two photons are required for ionization), single-color two-photon interferometry with co-rotating
or counter-rotating time-delayed pulses is found to lead respectively to zero-start or four -start spi-
ral vortex patterns in the ionized electron momentum distributions in the polarization plane. In
contrast, two-color one-photon/two-photon interferometry with time-delayed co-rotating or counter-
rotating UV pulses is found to lead respectively to one-start or three-start spiral vortex patterns.
These predicted multi-start electron vortex patterns are found to be sensitive to the carrier frequen-
cies, handedness, time-delay, and relative phase of the two pulses. Our numerical predictions are
obtained by solving the six-dimensional two-electron time-dependent Schrödinger equation (TDSE).
They are explained analytically using perturbation theory (PT). Comparison of our TDSE and PT
results for single-color two-photon processes probes the role played by the time-delay-dependent
ionization cross channels in which one photon is absorbed from each pulse. Control of these cross
channels by means of the parameters of the fields and the ionized electron detection geometries is
discussed.

PACS numbers: 32.80.Fb, 03.75.-b, 02.70.Dh, 02.70.Hm

I. INTRODUCTION

Wave-particle duality [1] is one of the most fundamen-
tal aspects of quantum mechanics. Whereas the photo-
electric effect [2] introduced firm evidence of the parti-
cle nature of light, the deBroglie hypothesis [1] and the
subsequent electron diffraction experiments of Davisson
and Germer [3] established the wave nature of the elec-
tron. Dramatic evidence of the wave-like nature of the
electron has been provided by the experimental observa-
tion of Ramsey interference [4] of laser-produced electron
wave packets in both Rydberg states [5, 6] and in the con-
tinuum [7] using linearly-polarized lasers.

Recently an unusual kind of Ramsey interference be-
tween continuum photoelectron wave packets was pre-
dicted [8]. It was found that when the helium atom is
ionized by a pair of time-delayed oppositely circularly-
polarized attosecond laser pulses, the photoelectron wave
packets produced by each pulse interfere in such a way
that the photoelectron momentum distribution forms a
two-start Fermat spiral vortex pattern. Moreover the
matter wave (electron) vortices predicted in Ref. [8] have
a counterpart in optics: in Ref. [9] similar vortex patterns
were produced by superposing two optical vortex beams
having opposite helicities and different wavefront curva-
tures, with each beam having an orbital angular momen-
tum of unity (the first-order 01∗ doughnut mode). In
addition, four - and six -start spirals were also observed
by interfering optical beams of opposite helicities hav-
ing orbital angular momenta of two (the 02∗ mode) and
three (the 03∗ mode), respectively [9]. While even-start
spiral vortices were thus observed optically [9], odd -start

optical vortices were not reported. We note also that
photoelectron momentum distributions following strong-
field ionization of Ar (in the tunneling regime) [10] and
ionization of H (in the multiphoton regime) [11] by co-
rotating or counter-rotating two-color circularly polar-
ized fields were found to exhibit single-lobe or three-lobe
structures, respectively. Spiral vortex patterns, however,
were not reported in Refs. [10, 11].

In this paper we predict both analytically and numer-
ically the occurrence of higher order even-start and odd -
start spiral vortices. These vortices occur in the polariza-
tion plane momentum distributions of electrons ionized
from the helium atom by two time-delayed, ultrashort,
circularly polarized laser pulses having either the same
or opposite helicities. The higher order even-start spiral
vortices are produced by single-color two-photon inter-
ferometry [cf. Fig. 1(a)] while the odd -start spiral vor-
tices are produced by two-color one-photon/two-photon
interferometry [cf. Fig. 1(b)]. The intensities of our ultra-
violet (UV) laser pulses are such that all processes take
place in the perturbative multiphoton regime. We an-
alyze the cases of both co-rotating and counter-rotating
circularly-polarized time-delayed UV pulses. The ionized
electron momentum distributions are obtained by solv-
ing numerically the six-dimensional two-electron time-
dependent Schrödinger equation (TDSE). Perturbation
theory (PT) is used to analyze the patterns exhibited
by the momentum distributions. Within our PT formal-
ism, a connection between our electron matter-wave vor-
tices and vortices in a physical process associated with
zeros in the scattering wave function [12–20] has been
established [8]. In contrast to dynamical vortex pat-
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FIG. 1. (color online) Schematic energy level diagrams for
the cases of single ionization of He (with binding energy
Eb = 24.6 eV) by two circularly-polarized pulses delayed in
time by τ that are considered in this paper: (a) Two-photon
interferometry for a carrier frequency ω1 = 15 eV, which leads
to either zero-start (0-S) or four -start (4-S) vortex patterns
for equal or opposite helicity pulses; and (b) Two-color inter-
ferometry for carrier frequencies ω2 = 2ω1 = 30 eV, which
leads to either one-start (1-S) or three-start (3-S) vortex pat-
terns for equal or opposite helicity pulses. In each case, the
ionization pathways Γ1, Γ12 and/or Γ2 are shown.

terns, which depend upon the transition amplitudes of
the process considered, the vortex patterns in the ion-
ized electron momentum distributions we predict here
(and in Ref. [8]) stem from the ionized electron detection
geometry. They are thus kinematical vortex patterns.
Moreover, our predicted four -start electron matter-wave
vortices correspond to the optical ones found in Ref. [9],
providing thus another example of wave-particle duality.
Also, our odd -start vortices are consistent with recent
strong-field [10] and multiphoton [11] results.

Two-photon interferometry has recently been used as
a tool for investigation of various atomic photoionization
processes [21–23]. In Refs. [21, 22], double ionization of
the helium atom by a pair of time-delayed extreme UV
pulses by means of several different pathways was investi-
gated. In contrast to the present case of single ionization
of He, the photon energy ~ω in each of Refs. [21, 22] was
always greater than the He binding energy, Eb = 24.6 eV.
In Ref. [23], two-pathway interference between a funda-
mental UV pulse and its second harmonic with zero time
delay between the pulses was recently used to predict
forward-backward asymmetries in the photoelectron an-
gular distributions for the H atom. In all these interfer-
ometry studies the two pulses were linearly polarized.

The two circularly polarized pulse interferometric cases
we investigate in this paper for single ionization of He
are shown schematically in Fig. 1. The single-color two-
photon interferometric case is shown in Fig. 1(a), which
indicates that there are three pathways: Path Γ1 indi-
cates single ionization of He by two-photon absorption
from the first pulse; path Γ2 indicates single ionization
by two-photon absorption from the second pulse; and
path Γ12 indicates the cross path in which single ioniza-
tion occurs by absorption of one photon from each of the
two pulses, possibly with different helicities. For illustra-
tive purposes, Fig. 1(a) shows that the first pulse is right
circularly polarized, while the second pulse (delayed in

time by τ) can be either right or left circularly polarized.
As explained in Sec. IV below, in the former case the ion-
ized electron momentum distribution in the polarization
plane is not spiral and is designated as “zero-start” (or
“0-S”), while in the latter case we predict a four-start
Fermat spiral vortex pattern (or “4-S”). The two-color
one-photon/two-photon interferometric case is shown in
Fig. 1(b), which indicates that there are only two paths:
Path Γ1 indicates in this case single ionization of He by
absorption of a second harmonic photon from the first
pulse; and path Γ2 indicates single ionization by absorp-
tion of two fundamental photons from the second pulse.
As explained in Sec. V below, if the time-delayed cir-
cularly polarized pulses have the same handedness, the
ionized electron momentum distribution in the polariza-
tion plane exhibits a one-start Fermat spiral pattern (or
“1-S”), while if the pulses have opposite handedness a
three-start Fermat spiral pattern (or “3-S”) is realized.
This paper is organized as followed. In Sec. II, we de-

scribe briefly our computational methods. In Sec. III,
we provide some general considerations governing the re-
quirements for observing electron matter-wave vortices.
In Secs. IV and V we present our PT analyses and our
numerical results for the processes in Figs. 1(a) and 1(b)
respectively. In Sec. VI we summarize our results and
present some conclusions. In Appendix A, we present
a derivation of our PT parameterization of the second-
order amplitude for single ionization of an s-electron in
an atom such as He by a pair of arbitrarily-polarized
pulses. In Appendix B we describe our procedure for de-
termining from our TDSE results a key scalar dynamical
parameter on which our PT formulas depend. Atomic
units (a.u.) are used throughout this paper unless speci-
fied otherwise.

II. COMPUTATIONAL METHOD

To demonstrate numerically multi-start spiral vortex
patterns in photoelectron momentum distributions for
the illustrative case of He, we solve the six-dimensional
two-electron TDSE for the He atom interacting with a
pair of circularly polarized pulses. Within the length
gauge and the dipole approximation, the TDSE is:

i∂tΨ(r1, r2, t) = [−1

2
(∆r1 +∆r1)−

2

r1
− 2

r2
+

1

|r1 − r2|
+ F(t) · (r1 + r2)]Ψ(r1, r2, t), (1)

where r1 and r2 are the spatial coordinates of the two
electrons, and F(t) is the electric field of our pair of pulses
delayed in time by τ ,

F(t) = F1(t) + F2(t− τ) ≡ F
(1)
0 (t)Re [e1e

−i(ω(1)t+φ1)]

+ F
(2)
0 (t− τ)Re [e2e

−i(ω(2)(t−τ)+φ2)]. (2)

For the jth pulse (j = 1, 2) in Eq. (2), ω(j) is its car-
rier frequency [which can take the values ω1 = 15 eV
or ω2 = 2ω1 = 30 eV depending on the process con-
sidered; see Fig. 1(a,b)]; ej is its polarization vector
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(ej · e∗j = 1); φj is its carrier envelope phase (CEP); and

F
(j)
0 (t) = F

(j)
0 cos2(πt/Tj) is its smooth temporal enve-

lope (with F
(j)
0 the electric field amplitude), for which

−Tj/2 ≤ t ≤ Tj/2, where Tj = Nj(2π/ωj) gives its total
pulse duration, with Nj being the number of optical cy-
cles. It is useful to parameterize the polarization vector
of the jth pulse as:

ej ≡ (ǫ̂+ iηj ζ̂)/
√

1 + η2j , (3)

where ηj is the ellipticity (−1 ≤ ηj ≤ +1), ǫ̂ and ζ̂ ≡
k̂ × ǫ̂ are respectively the major and minor axes of the

polarization ellipse, and k̂ ‖ ẑ is the pulse propagation
direction. For the jth pulse, the degrees of linear and
circular polarization are respectively ℓj ≡ (ej ·ej) = (1−
η2j )/(1+η

2
j ) and ξj ≡ Im [e∗j ×ej ]z = 2ηj/(1+η

2
j ), where

ℓ2j + ξ2j = 1. Finally, the laser field F(t) in Eq. (2) turns
on at t = Ti = −T1/2 and ends at t = Tf = τ + T2/2.
To obtain the wave packet Ψ(r1, r2, t) solution of the

TDSE (1), we use the methods developed previously for
either an arbitrarily polarized attosecond single pulse [24]
or a pair of pulses [8]. In brief, we adopt the time-
dependent close-coupling expansion [25, 26] of the wave
packet Ψ(r1, r2, t) onto the orthonormal basis functions

of bipolar spherical harmonics ΛLML

l1,l2
(r̂1, r̂2), where L is

the total angular momentum of the two-electron system,
ML is its azimuthal quantum number, and l1, l2 are the
individual electron orbital angular momenta. For ioniza-
tion of the He atom interacting with a linearly polarized
pulse, one has [H,Lz] = 0, so that the magnetic quantum
number ML is conserved. Parity is also a good quantum
number. Thus, for the interaction of the 1Se ground state
(having ML = 0) with linearly-polarized photons, ML is
unchanged during the time propagation, reducing thus
the numerical complexity of the problem.
In contrast, for pulses with nonzero ellipticity,

[H,Lz] 6= 0, so thatML is not conserved, thus giving rise
to the so-called ML-mixing problem [27, 28]. To over-
come this problem, we adopt the basic ideas and princi-
ples of the method introduced in Ref. [27] and developed
intensively in Refs. [28–33]. It consists in the introduc-
tion of a rotational transformation between two frames:
(i) the atomic fixed frame in the laboratory coordinate
system and (ii) the rotating frame defined by the exter-
nal pulse polarization vector. The latter frame is rotated
with respect to the lab frame by the Euler angles (α, β, γ)
by using the Wigner rotation operator D(α, β, γ), whose
matrix elements are

〈L′M ′
L′ |D(α, β, γ)|LML〉 = eiM

′

L′αdLM ′

L′
,ML

(−β)eiMLγ

× δLL′, (4)

which is diagonal in L but not in ML. Thus the
matrix dLML,M ′

L′

(β) is block diagonal within the L-

representation. We then use the finite-element discrete-
variable representation combined with the real-space-
product algorithm (a split-operator method) [34] as well

as Wigner rotation transformations at each time step
from the laboratory frame to the frame of the instan-
taneous electric field [27, 28]. The key consequence of
this procedure [27, 28] is that the electric field seen by
an observer in the rotating frame is always linearly po-
larized, so that treating the laser-atom interaction in the
rotating frame simplifies its calculation. Moreover, this
procedure is quite accurate as long as the time step is
sufficiently small, which we ensure in all our numerical
TDSE calculations.
At the end of the two pulses, i.e., at t = Tf , we ex-

tract the triply differential probability (TDP) [35] for
single ionization of He to He+(1s) from the wave packet
Ψ(r1, r2, t) by projecting it onto correlated field-free Ja-

cobi matrix wave functions Θ
(−)
1s,p(r1, r2) [36]. The TDP,

d3W/d3p ≡ Wξ1
ξ2
(p), for single electron ionization to the

continuum with momentum p ≡ (p, θ, ϕ) is thus

d3W

d3p
≡ |〈Θ(−)

1s,p(r1, r2)|Ψ(r1, r2, eφ1 , eφ2 , Tf)〉|2, (5)

where eφj
≡ eje

−iφj , with j = 1, 2. We include four total
angular momenta (L = 0− 3), their azimuthal quantum
numbers |ML| ≤ L, all combinations of individual elec-
tron orbital angular momenta l1, l2 = 0 − 5, and their
azimuthal quantum numbers |m1| ≤ l1 and |m2| ≤ l2.

III. GENERAL CONSIDERATIONS

As the electron vortices we predict (for single ioniza-
tion of He by a pair of circularly polarized pulses, delayed
in time by τ) are essentially perturbative effects, their
observation requires that the laser pulse parameters are
such that PT is applicable [37]. For the laser frequencies
we employ (see below) and for experimentally accessible
intensities below 1014 W/cm2, this is the case. Moreover,
for these laser parameters the rotating wave approxima-
tion (RWA) is valid, i.e., it is legitimate to neglect photon
emission processes in our PT analysis.
Experimental observation of the multi-start spiral elec-

tron vortices we predict requires the large bandwidth ∆ω
characteristic of ultrashort pulses, as the bandwidth must
support several spiral fringes [8], i.e., 2π/τ < ∆ω. How-
ever, the carrier frequency, peak intensity and spectral
width of each pulse must be chosen such that single ion-
ization of He by a single pulse is possible via either only
one-photon absorption or only two-photon absorption.
This requires a pulse bandwidth that is not too large.
The binding energy of the He atom in its ground state is
Eb = 24.6 eV.
Choosing a laser pulse with an intensity of 1 TW/cm2

(i.e., 1012 W/cm2) and a carrier frequency ω2 greater
than Eb (e.g., ω2 = 30 eV) should thus result in single-
photon ionization, which according to PT must scale lin-
early with intensity. Likewise, for such weak peak pulse
intensities, a carrier frequency ω1 smaller than Eb, but
with 2ω1 > Eb should result in two-photon ionization,
which according to PT must scale quadratically with
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intensity. The latter expectation holds only when the
pulse bandwidth ∆ω1 does not favor single-photon sin-
gle ionization. This is guaranteed when using a pulse
having more than N = 5 optical cycles within its cosine
squared envelope. Throughout this work, for a carrier
frequency ω1 = 15 eV we choose N = 6 optical cy-
cles (to avoid populating singly-excited states by one-
photon transitions), which gives a pulse bandwidth of
∆ω1 = 1.44ω1/N = 3.6 eV. For all these processes, our
pulse intensities are too weak to induce higher-order non-
linear effects. Our focus is thus on the photoelectron en-
ergy spectrum (0 ≤ E ≤ 15 eV) around the first above
threshold ionization peak.
The TDP for ionization of He leading to an electron in

the continuum with momentum p with the residual ion
being in its ground state He+(1s), is

d3W

d3p
≡ Wξ1

ξ2
(p) = C|Aξ1ξ2(p)|

2, (6)

where Aξ1ξ2(p) is the PT ionization amplitude for our pair
of pulses, and C is a normalization factor independent
of the electron momentum p. In Sections IV and V be-

low, we parameterize the transition amplitudes Aξ1ξ2(p)

for the (2ω1 + 2ω1) and the (ω2 + 2ω1) ionization pro-
cesses in Figs. 1(a) and 1(b) respectively. For each pro-
cess, we present our analytic PT and numerical TDSE
results for the cases in which the two pulses are cir-
cularly polarized in the same direction, e1 = e2 (i.e.,
ξ1 = ξ2 = ξ), or in opposite directions, e1 = e∗2, (i.e.,
ξ1 = −ξ2 = ±1). For the single-color two-photon process
[Fig. 1(a)], electric dipole selection rules for the final state
(i.e., L = 0, 2 and ML = ±2, 0) produced by oppositely
circularly polarized pulses differ from those [i.e., L = 2,
ML = +2(−2)] produced respectively by two identical
right(left) circularly polarized pulses. For the two-color
one-photon/two-photon process [Fig. 1(b)], the electric
dipole selection rules for the final state give L = 1, 2
with ML = ±1,±2, where the sign +(−) corresponds
respectively to a right(left) circularly polarized pulse.

IV. SINGLE-COLOR TWO-PHOTON SINGLE

IONIZATION OF HELIUM BY A PAIR OF

CIRCULARLY POLARIZED PULSES

The second-order amplitude for single ionization of an
s-electron in the ground state of an atom (with energy
Ei) by two-photon absorption from a pair of arbitrarily-
polarized pulses, delayed in time by τ , can be parame-
terized as follows (see Appendix A for the derivation):

Aξ1ξ2(p) = e−2iφ1

{

[M(1)
d (p)(p̂ · e1)2 + ℓ1M(1)

ds (p)]

+e2iψ
[

M(2)
d (p)(p̂ · e2)2 + ℓ2M(2)

ds (p)
]

+eiψ
[

M(12)
d (p, τ)(p̂ · e1)(p̂ · e2) +M(12)

ds (p, τ)(e1 · e2)
]

}

,

(7)

where ℓj , the linear polarization degree for the j-th pulse,
j = 1, 2, is defined below Eq. (3). In accord with our PT

assumption in Sec. III, we have ignored photon emission
terms. In Eq. (7), the τ -dependent phase ψ is

ψ = ωτ + φ12, (8)

where φ12 ≡ φ1 − φ2 is the relative CEP and ω ≡ ω1

throughout this section. The τ -independent dynamical

radial parameter M(1)
d (p) ≡ M(1)

d in Eq. (7) corresponds
to a transition to a final D-state:

M(1)
d =

√
2i

4(2π)3/2
eiδ2

p

∫ ∞

−∞

F̂0(ǫ) F̂0(ωfi − 2ω − ǫ)

× 〈p2|dg1(Ef − ω − ǫ)d′|ni0〉 dǫ, (9)

where d is the electric dipole moment operator of the
two electrons, and ωfi ≡ Ef − Ei, where Ef is the final
state energy of the two-electron system. For single elec-
tron ionization of the He ground state, ωfi = E + Eb,
where E = p2/2 is the photoelectron kinetic energy and
Eb ≡ E1s −Ei = 0.9037 a.u. is the ground state binding
energy. In Eq. (9) (and in equations below), we employ a
simplified notation for the antisymmetrized two-electron
states in which we indicate explicitly only the state of
the active electron and suppress that of the spectator
electron in the He 1s-state; see Appendix A for a more
detailed discussion of our notation. Thus, |nl〉 and |pl′〉
define the bound and continuum states of the active elec-
tron respectively (with n indicating the principal quan-
tum number of the intermediate state, p indicating the
ionized electron’s momentum, and l and l′ indicating the
orbital angular momenta); |ni0〉 is the initial state of the
active electron. The continuum states have momentum
normalization, i.e., 〈pl′|p′l′〉 = δ(p − p′). In Eq. (9), the
superscript (1) indicates that both photons are absorbed
from the first pulse; δl is the l-th partial phase shift; gl(ǫ)
is the two-electron radial Green function

gl(ǫ) =
∑

n6=ni

|nl〉〈nl|
Enl − ǫ+ i0

, (10)

where Enl is the energy associated with the intermedi-
ate state |nlm〉; and F̂0 is the Fourier transform of the
envelope function

F̂0(ǫ) =

∫ ∞

−∞

F0(t) e
iǫtdt. (11)

Likewise, the τ -independent dynamical radial parameter

M(1)
s (p) ≡ M(1)

s corresponds to a transition to a final
S-state:

M(1)
s = −

√
2i

6(4π)3/2
eiδ0

p

∫ ∞

−∞

F̂0(ǫ) F̂0(ωfi − 2ω − ǫ)

× 〈p0|dg1(Ef − ω − ǫ)d′|ni0〉 dǫ. (12)

The parameter M(1)
ds (p) in Eq. (7) is defined by:

M(1)
ds (p) = M(1)

s (p)− 1

3
M(1)

d (p). (13)
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Note that the entire contribution of M(1)
s to Eq. (7) is

contained in the dynamical parameter M(1)
ds (p) ≡ M(1)

ds .
The corresponding τ -independent dynamical parame-

ters M(2)
d and M(2)

ds for the second pulse differ from M(1)
d

and M(1)
ds for the first pulse by only a time-delay depen-

dent phase factor [see Eq. (A12)],

M(2)
d,ds = ei(ωfi−2ω)τM(1)

d,ds ≡ ei(ωfi−2ω)τMd,ds. (14)

The τ -dependent parameters M(12)
d,ds(p, τ) ≡ M(12)

d,ds in

Eq. (7) correspond to the two cross channels when pho-
tons are absorbed from different pulses. The dynamical

parameters M(12)
d (p, τ) leading to final D-states are

M(12)
d (p, τ) =

√
2i

4(2π)3/2
eiδ2

p

∫ ∞

−∞

F(ǫ, τ)

× 〈p2|dg1(Ef − ω − ǫ)d′|ni0〉dǫ (15)

and the dynamical parameters M(12)
s (p, τ) leading to fi-

nal S-states are

M(12)
s (p, τ) = −

√
2i

6(4π)3/2
eiδ0

p

∫ ∞

−∞

F(ǫ, τ)

× 〈p0|dg1(Ef − ω − ǫ)d′|ni0〉dǫ. (16)

Finally, the parameters M(12)
ds (p, τ) are defined by

M(12)
ds (p, τ) = M(12)

s (p, τ) − 1

3
M(12)

d (p, τ). (17)

The τ -dependence of the cross channel parameters in
Eqs. (15)–(17) enters explicitly through the function

F(ǫ, τ) = 2ei(ωfi/2−ω)τ F̂0(ǫ)F̂0(ωfi − 2ω − ǫ)

× cos[(ǫ+ ω − ωfi/2)τ ], (18)

which oscillates rapidly as τ increases. This behavior of
the function F(ǫ, τ) kills the contribution of the ioniza-
tion cross channel parameters (15) and (17), i.e., they
only contribute in cases of short pulse delays.
Using Eq. (14), the second-order PT amplitude (7)

takes the form:

Aξ1ξ2(p) = e−2iφ1
{

Md(p)
[

(p̂ · e1)2 + eiΦ(p̂ · e2)2
]

+Mds(p)
(

ℓ1 + eiΦℓ2
)

+ eiψ
[

M(12)
d (p, τ)(p̂ · e1)(p̂ · e2)

+M(12)
ds (p, τ)(e1 · e2)

]

}

, (19)

where the relative phase

Φ = (E+Eb)τ+2(φ1−φ2) ≡
(

p2/2 + Eb
)

τ+2φ12, (20)

is comprised of two terms: (E+Eb)τ , the difference in the
phase accumulation during the temporal evolution of the
two electronic wave packets produced by the pathways Γ1

and Γ2 [cf. Fig. 1(a)]; and 2φ12, twice the relative CEP.
Clearly all these dynamical parameters [in Eqs. (9), (13),
and (14)–(17)] scale linearly with the peak pulse inten-
sity. In what follows, we investigate, first, the case of a
pair of identical circularly polarized pulses and, second,
the case of oppositely circularly polarized pulses.

A. Two-photon single ionization by two identical,

time-delayed circularly polarized pulses, including

pulse overlap effects

For two identical circularly polarized pulses, e1 = e2 =
e, ℓ1 = ℓ2 = ℓ = 0 and ξ1 = ξ2 = ξ = ±1. Thus,
from Eq. (3) and PT formula (19) the second-order PT

amplitude Aξξ(p) for single ionization by our two identical
pulses is

Aξξ(p) = e−2iφ1(e · p̂)2[Md(1 + eiΦ) + eiψM(12)
d ], (21)

where the geometric factor (e · p̂)2 is

(e · p̂)2 =
1

2
sin2 θe±2iϕ ≡

√

8π/15Y2,ML
(θ, ϕ), (22)

with the azimuthal quantum number ML = +2(−2) for

right(left) circular polarization; M(1)
d (p) ≡ Md(p) cor-

responds to the path Γ1 [cf. Fig. 1(a)] that describes

two-photon absorption from the first pulse; M(2)
d (p) ≃

M(1)
d (p) corresponds to the path Γ2 [cf. Fig. 1(a)] that

describes two-photon absorption from the second pulse,
which is delayed by a time τ relative to the first pulse;

and M(12)
d (p, τ) ≡ M(12)

d corresponds to the two path-
ways Γ12 [cf. Fig. 1(a)] that describe one-photon absorp-
tion from each pulse (in the case that the pulses over-
lap). Clearly, the geometric factor (22) shows that all
four pathways lead to the same final state, defined by
L = 2 with ML = +2(ML = −2) for right(left) circularly
polarized pulses respectively.
Substituting Eqs. (21) and (22) into Eq. (6), the TDP

for single ionization by two identical circularly polarized
pulses becomes explicitly:

Wξ
ξ (p) =

C
2

{

2|Md(p)|2 cos2(Φ/2) +
1

2
|M(12)

d (p, τ)|2

+Re (M∗
d(p)M

(12)
d (p, τ))[cosψ + cos(ψ − Φ)]

+ Im(M∗
d(p)M

(12)
d (p, τ))[sinψ + sin(ψ − Φ)]

}

sin4 θ.

(23)

Note that only the dynamical parameterM(12)
d (p, τ) (15)

depends on the time delay. Also, while all dynamical pa-
rameters in Eq. (23) depend upon the electron energy,
E = p2/2, they are independent of the momentum di-
rection, p̂, and the pulse parameters e1, e2, and φ12.
Consequently, the TDP (23) is independent of ϕ and its
polar angle plots in the polarization plane (θ = π/2) have
circularly symmetric patterns, as shown in Fig. 2 for mo-
mentum distributions (obtained by ab initio TDSE cal-
culations) produced by two right-circularly polarized six-
cycle pulses with zero CEPs for two time delays: τ = 0
and τ = 1.65 fs. Owing to the τ - and p-dependence of
the relative phase Φ [cf. Eq. (20)] and the τ -dependence
of the phase ψ [cf. Eq. (8)], for τ = 0 there is no struc-
ture in the momentum distribution [cf. Fig. 2(a)]. For
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FIG. 2. (Color online). Triply differential probability (TDP)
d3W/d3p [see Eqs. (5), (23), (8), and (20)] in the polariza-
tion plane for single ionization of He by two right-circularly-
polarized pulses delayed in time by (a) τ = 0, and (b) τ =
1.65 fs. Each cosine-squared pulse has a carrier frequency
ω1 = 15 eV, N = 6 optical cycles, total duration T = 1.65 fs,
and peak intensity I = 1012 W/cm2. The CEPs are φ1 = 0
and φ2 = 0. The magnitudes of the TDPs (in units of
10−7 a.u.) are indicated by the color scales in panels (a,b).

τ = T = 1.65 fs, however, the contributions of the ion-
ization cross channels Γ12 are already negligible accord-
ing to our discussion following PT formula (18). Hence,
Ramsey interference of the electronic wave packets pro-
duced by transitions Γ1 and Γ2 has a form similar to
Newton’s rings, i.e., bright and dark fringes along the ra-
dial direction in momentum space. The interference pat-
tern in Fig. 2(b) is similar to that found in interference of
two identical optical beams [9]. The zero-start circularly-
symmetric patterns, or Newton’s rings, in Figs. 2(a,b)
are also similar to the photoelectron momentum distri-
butions produced by single photon ionization of He by
two identical circularly polarized attosecond pulses [8].
For a quantitative comparison, numerical results us-

ing PT formula (23) can also be obtained. This requires
accurate dynamical parameters Md(p) [see Eq. (9)]

and M(12)
d (p, τ) [see Eq. (15)]. Analytical calculations

of Md(p) and M(12)
d (p, τ) are nontrivial as they in-

volve Green’s functions and summations over the en-
ergies of intermediate states. The parameter Md(p)
can be extracted numerically by means of ab initio

TDSE calculations for a single right-circularly polar-
ized pulse that includes only the L = 2,ML = +2
amplitude (see Appendix B). The dynamical parameter

M(12)
d (p, τ) cannot be obtained that way as its calcu-

lation requires two pulses. However, for zero time de-
lay between the two pulses, the dynamical parameter

M(12)
d (p, 0) [see Eqs. (15) and (18)] is twice that of the dy-

namical parameter Md(p). Hence, for τ = 0 and φ12 = 0
as in Figs. 2(a) and 3(a), the TDP using PT formula (23)
reduces to

Wξ
ξ (p, θ, ϕ) = 4C|Md(p)|2 sin4 θ. (24)

Thus, when the two pulses have zero time delay, the mo-
mentum distributions [see Fig. 2(a)], the energy distribu-
tions [see Fig. 3(a)], and the angular distributions (not
shown) from either a TDSE calculation or by using the
PT formula (24) are in excellent quantitative agreement.
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FIG. 3. (Color online). Energy distributions in the polariza-
tion plane for electrons ejected at the angle ϕ = 0 following
two-photon single ionization of He by two right-circularly-
polarized pulses delayed in time by (a) τ = 0, (b) τ = 500 as;
(c) τ = 800 as, (d) τ = 1.102 fs, (e) τ = 1.378 fs, and
(f) τ = 1.654 fs. Results are obtained by ab initio TDSE cal-
culations using Eq. (5). For comparison, we also show results
using PT formula (24) [see panel (a)] or (25) [see panels (b-
f)], in which the dynamical parameter Md(p) is extracted nu-
merically from ab initio TDSE calculations for a single pulse
including only the L = 2,ML = +2 amplitude; see Appendix
B. The pulse parameters are the same as in Fig. 2.

According to our discussion following PT formula (18),
for time delays τ equal to or longer than the total pulse
duration T , the TDP reduces to the following form:

Wξ
ξ (p, θ, ϕ) = C|Md(p)|2 sin4 θ cos2(Φ/2). (25)

Equation (25) excludes contributions from the ionization
cross channels Γ12. It should nevertheless provide accu-
rate results for the TDP because when the two pulses
do not overlap, the cross channel transitions cannot take
place. This PT prediction is confirmed in Fig. 3(f) in
which results for the ionized electron energy distribu-
tions calculated by solving the TDSE or by using PT
formula (25) are shown to coincide.
For time delays τ < T in which the two pulses overlap

in time, the ionization cross channels can play a signifi-
cant role. However, owing to the cosine term in Eq. (18),
PT predicts that their contribution to the TDP decreases
as the time-delay increases. It is useful to define a critical
time delay, τc, beyond which the cross channels do not
contribute to TDP. For the case of N = 6 optical cycles,
Figs. 3(b,c,d,e) show energy distributions for four time
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delays τ shorter than the total pulse duration T = 1.65 fs.
One sees that results obtained by solving the TDSE and
by using PT formula (25) coincide for 1.1 fs ≤ τ < T [see
Figs. 3(d, e)] but differ for 0 < τ < 1.1 fs [see Figs. 3(b,
c)]. The discrepancies for shorter time delays are due to
the ionization cross channels that are taken into account
in the TDSE results. Thus, for this case, τc = 1.1 fs.
The τ -dependent ionization cross channels are also sen-

sitive to the bandwidth of the pulses. For N = 5 opti-
cal cycles, which corresponds to a pulse bandwidth of
∆ω1 = 4.3 eV and a total pulse duration of T = 1.378 fs,
the critical time delay beyond which the ionization cross
channels Γ12 do not contribute significantly to the TDP is
once again τc ≃ 1.1 fs, as found in Fig. 3 forN = 6 optical
cycles. However, for N = 7 optical cycles, which corre-
sponds to a smaller pulse bandwidth of ∆ω1 = 3.08 eV
and a total pulse duration of T = 1.93 fs, the critical
time delay is τc = 1.378 fs. Moreover, the critical time
delay τc appears to be insensitive to the relative CEP
φ12 = φ1 − φ2 of the two pulses. Specifically, for our six-
cycle pair of pulses, we carried out numerical calculations
for φ12 = 0 and φ12 = π/2 (not shown) and found that
the critical time delay τc was the same for both cases.
These results indicate that the CEP-invariant effect of
the ionization cross channels on the TDP can provide
precise information on the overlap of the two pulses.
For longer time delays τ ≥ τc, the energy spectra

displayed in Figs. 3(d,e,f) permit one to directly mea-
sure the time delay between the two pulses by measuring
the energy separation between two consecutive dark (in-
terference minimum) or bright (interference maximum)
fringes. According to the PT analysis, this difference
equals 2π/τ owing to the dependence of the TDP (25)
on the phase Φ (20).

B. Single-color two-photon single ionization by two

oppositely circularly polarized pulses, including

pulse overlap effects

For two oppositely circularly polarized pulses, e∗1 = e2,
ℓ1 = ℓ2 = 0, and ξ1 = −ξ2 = ±1. The PT amplitude

Aξ1ξ2(p) in Eq. (19) for single ionization by two oppositely
circularly polarized pulses delayed in time by τ is

Aξ1ξ2(p) = e−2iφ1
{

Md(p)
[

(p̂ · e1)2 + eiΦ(p̂ · e2)2
]

+eiψ
[

M(12)
d (p, τ)|p̂ · e1|2 +M(12)

ds (p, τ)
]

}

, (26)

where the geometric factor |p̂ · e1|2 is

|e1 · p̂|2 =
1

2
sin2 θ =

1

6

[

2−
√

16π/5 Y2,0(θ, ϕ)
]

. (27)

From the geometric factor (e · p̂)2 (22), where e = e1, e2,
one sees that the ionization channel Γ1(Γ2) for the first
(second) pulse is described by the parameter Md(p)

(M(2)
d (p) ≃ Md(p)). These channels lead to final states

defined by L = 2 with MΓ1

L = −MΓ2

L = ±2, where +(−)
indicates right(left) circular polarization. According to
the geometric factor |e1 · p̂|2 (27), the cross channels

M(12)
d (p, τ) correspond to transitions to final states with

L = 2,ML = 0. Finally, M(12)
ds (p, τ) in Eq. (26) describes

transitions to final states with L = 0, 2, ML = 0.
Using Eqs. (6) and (26) together with the geometric

factors (22) and (27), the TDP for a pair of oppositely
circularly polarized pulses takes the form:

Wξ1
ξ2
(p) = C

{

|Md(p)|2 sin4 θ cos2(Φ/2− 2ξ1ϕ)

+|Γ(12)(p, θ, τ)|2 + |M∗
d(p)Γ

(12)(p, θ, τ)| sin2 θ

×[cos(Θ + ψ − 2ξ1ϕ) + cos(Θ + ψ + 2ξ1ϕ+Φ)]} ,
(28)

where ξ1 = −ξ2 = ±1 corresponds to a right- and left-
(+) or a left- and right-(−) circularly-polarized pair of
pulses. Note that the first term in Eq. (28) results from
the squared modulus of the sum of the first term (path
Γ1) and the second term (path Γ2) in Eq. (26). In the
TDP (28), the newly introduced dynamical parameter
Γ(12)(p, θ, τ) associated with the paths Γ12 is defined as

Γ(12)(p, θ, τ) ≡ M(12)
d (p, τ)|p̂ · e1|2 +M(12)

ds (p, τ), (29)

and the φ12-independent dynamical angle Θ(p, θ, τ)
(which depends upon the photoelectron energyE = p2/2,
its polar angle θ, and the time delay τ) is defined as

tanΘ(p, θ, τ) =
Im [M∗

d(p) Γ
(12)(p, θ, τ)]

Re [M∗
d(p) Γ

(12)(p, θ, τ)]
. (30)

Perturbatively, the TDP (28) is expected to be domi-
nated by the amplitudes for the paths Γ1 and Γ2. This

contribution, denoted by Wξ1(Γ1,Γ2)
ξ2

(p), is given by the

first term in the TDP (28):

Wξ1(Γ1,Γ2)
ξ2

(p) = C|Md(p)|2 sin4 θ cos2(Φ/2− 2ξ1ϕ).

(31)
In the polarization plane (θ = π/2), the leading term (31)
of the TDP (28) has the form of a four -start spiral
structure, as can be seen from the following consider-

ations. The leading term, Wξ1(Γ1,Γ2)
ξ2

(p) (31), is max-

imal for Φ/2 − 2ξ1ϕ = Φ/2 + 2ξ2ϕ = πn and zero
for Φ/2 − 2ξ1ϕ = Φ/2 + 2ξ2ϕ = (2n + 1)π/2, where
n = 0,±1,±2 . . ., and 0 ≤ ϕ ≤ 2π. Using Eq. (20), the
p dependences of the polar angles ϕ at these maximum

and zero values of Wξ1(Γ1,Γ2)
ξ2

(p) are:

ϕmaxn (p) = ξ2
[

πn− (τEb + 2φ12)/2− τ p2/4
]

/2,

ϕzeron (p) = ξ2
[

π/2 + πn− (τEb + 2φ12)/2− τ p2/4
]

/2.

(32)

Equations (32) define Fermat (or Archimedean) spirals
(or helixes) in the (p, ϕ) plane. As ϕmaxn (p) and ϕzeron (p),
shifted by the angle π/4 with respect to each other, vary
with energy p2/2 (through possibly many 2π cycles, de-
pending upon τ), they trace out the maxima and the ze-

ros of the TDP Wξ1(Γ1,Γ2)
ξ2

. Since |ξ2| = 1, the pattern is
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FIG. 4. (Color online). Four -start spiral vortex patterns
in the photoelectron momentum distributions d3W/d3p [see
Eq. (5)] in the polarization plane following ionization of he-
lium by right- and left-circularly-polarized pulses delayed in
time by (a,b) τ = 0; (c) τ = 500 as; (d) τ = 800 as,
(e) τ = 1.1 fs, and (f) τ = 1.65 fs. In (a),(c-f), φ1 = φ2 = 0;
in (b), φ1 = 0, φ2 = π/2. Each pulse has: ω1 = 15 eV, N = 6
cycles, and I = 1012 W/cm2. The magnitudes of the TDPs
(in units of 10−7 a.u.) are indicated by the color scales. In
all panels, the numerical projections (5) include L = 0, 2 with
ML = 0,±2.

a four-arm helical spiral, corresponding to n = 0, 1, 2, 3,
as other values of n replicate the same lines. However,
depending on the relative strength of interferences be-
tween the pathways Γ12 and the pathways Γ1 and Γ2 [see
the last term in the TDP (28)], the four -start vortices
may be modified by such interferences.

Our numerical results for these PT predictions for two
oppositely circularly polarized six-cycle pulses are shown
in Fig. 4, where we plot the ionized-electron momen-
tum distributions in the polarization plane (θ = π/2) for
an intensity of 1 TW/cm2 and various CEPs and time-
delays. Regardless of the time delay between the two
pulses, the four spots or arms seen in Figs. 4(a-f) indicate
that the leading term in the ionized electron momentum
distributions stems from the amplitudes for the paths Γ1

and Γ2. The formula (31) for the TDP, which excludes
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FIG. 5. (Color online). Same as Fig. 4 but the numerical
results are obtained using the PT formulas (31) and (20) with
the dynamical parameter Md(p) extracted numerically from
ab initio TDSE calculations for a single pulse including only

L = 2;ML = ±2 amplitudes (see Appendix B). Note that
Eq. (31) excludes cross channel contributions.

the cross-channel amplitudes, does capture the essential
physics. Our numerical results for the formula (31) (in
which only L = 2,ML = ±2 amplitudes are included) are
shown in Fig. 5. In Eq. (31) the assumed equal dynamical

parameters M(1)
d (p) ≃ M(2)

d (p) ≡ Md(p) are extracted
numerically from an ab initio TDSE calculation for a sin-
gle pulse (as described in Appendix B). Thus, comparing
Figs. 4 and 5 probes qualitatively the contribution of the
pathways Γ12 relative to the direct pathways Γ1 and Γ2.

Results shown in Figs. 4(a,b) or in Figs. 5(a,b) are
for zero time delay between the two pulses and two
values of the relative CEP φ12. For τ = 0, super-
posing two oppositely circularly-polarized pulses gives
a linearly-polarized pulse. We observe in Fig. 5(a) the
expected symmetric quadrupole pattern [∝ cos2(2ξ1ϕ),
see Eq. (31)] of the ionized electron momenta along
both the linear polarization axis, which for φ12 = 0 is
the px-axis (ϕ = 0, π), and the perpendicular py-axis
(ϕ = −π/2, π/2). A similar result is shown in Fig. 5(b)
except that here φ12 = −π/2 so that the linear polar-
ization axis is rotated clockwise by ϕ = π/4, giving an
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FIG. 6. (Color online) Energy distributions in the polar-
ization plane for electrons detected at the angle ϕ = 0 fol-
lowing two-photon single ionization of He by two oppositely-
circularly polarized pulses delayed in time by (a) τ = 0 as,
(b) τ = 500 as, (c) τ = 800 as, and (d) τ = 1.1 fs. Parameters
of the two pulses are the same as in Fig. 4. Results are ob-
tained from TDSE calculations for the following final states:
(i) L = 0, 2 with ML = 0,±2 (solid black lines), (ii) L = 2
with ML = ±2 (dashed red lines); and from the formula (31),
in which the dynamical parameter Md(p) is extracted numer-
ically (as described in Appendix B) from an ab initio TDSE
calculation for a single pulse including only L = 2;ML = ±2
amplitudes (dash-dotted blue lines).

angular distribution ∝ cos2(φ12/2− 2ξ1ϕ) from Eq. (31).
For φ12 6= 0, a change in sign of ξ1 will change the angu-
lar distribution, unlike when φ12 = 0. This sensitivity to
the helicity of ξ1 is essential for producing vortices when
the time delay is non-zero.

For zero time delay and any relative phase φ12 the four
peaks in the quadrupole patterns have the same intensity
in Figs. 5(a,b), as expected by formula (31). However,
in Figs. 4(a,b) whereas the two spots along the linear
polarization axis have the same brightness, those along
its perpendicular axis are less bright. This difference in
the brightness of the quadrupole pattern, is due to the
interferences between the paths Γ12 with the paths Γ1

and Γ2, as the last term in the TDP (28) for ϕ = 0, π
and that for ϕ = −π/2, π/2 have opposite signs.

For nonzero time delay between the two pulses, we ob-
tain the vortex patterns shown in Figs. 4(c,d,e,f) and
Figs. 5(c,d,e,f) for right- and left-circularly-polarized
pulses. As discussed above, these are four -start Fermat
spiral patterns with a counterclockwise handedness. As
predicted by Eqs. (32), the number and locations of the
maxima and minima of the TDP in the polarization plane
depend on the time delay, as shown in Figs. 4(c,d,e,f) and
Figs. 5(c,d,e,f). For our pair of pulses, each having six
optical cycles, the pulse duration is about 1.65 fs. Fig-
ures 4(c,d,e,f) show that several hundred attoseconds are
necessary to observe well-defined vortex patterns. The
matter-wave vortex patterns in the electron momentum
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FIG. 7. (color online) Angular distributions d3W/d3p (in
units of 10−7 a.u.) in the polarization plane for a fixed ionized
electron energy of E = 2ω1 − Eb following two-photon single
ionization of He by two oppositely circularly polarized pulses
delayed in time by (a) τ = 0 as, (b) τ = 500 as, (c) τ = 800 as,
and (d) τ = 1.1 fs. Parameters of the two pulses are the same
as in Fig. 4. Results are obtained from TDSE calculations for
the following final states: (i) L = 0, 2 with ML = 0,±2 (solid
black lines), (ii) L = 2 with ML = ±2 (dashed red lines); and
from the formula (31) as described in the caption of Fig. 6
(dash-dotted blue lines).

distributions shown in Figs. 4(c,d,e,f) for four time delays
are similar to the interference fringes of optical beams of
opposite helicities carrying orbital angular momentum of
two [9]. In both cases the interference patterns are four -
start Fermat spirals whose orientation is determined by
the relative phase difference. In our case, this phase dif-
ference Φ is determined by the energy (p2/2 + Eb), the
time delay τ , and φ12, while in the optical case the rela-
tive phase is determined by the wavefront curvature dif-
ference [9]. In neither case is the appearance of helical
fringes caused by the polarization of either the optical or
electronic waves. Indeed, in the optical case both light
beams were linearly-polarized [9], and in our electronic
case, the electron states with Lz = ±2 are dominant and
populated equally upon ionization by the pair of oppo-
sitely circularly polarized pulses.
Note that for nonzero time delays τ shorter than about

800 as, the above-mentioned difference in the brightness
in the quadrupole pattern persists [see Figs. 4(c,d) and
Figs. 5(c,d)], which is a signature of the cross channels
Γ12. However, for time delays τ greater than 1.1 fs, both
the ab initio TDSE results in Figs. 4(e,f) and the PT
results in Figs. 5(e,f) are in very good agreement.
To better understand the sensitivity of the τ -

dependent ionization cross channels to the handedness of
the two pulses, we present in Figs. 6 and 7 respectively
the ionized-electron energy and angular distributions in
the polarization plane for four values of the time delay.
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In Fig. 6 the ionized electrons are detected at the angles
θ = π/2, ϕ = 0, whereas in Fig. 7 the final electron ki-
netic energy is E = 2ω1−Eb. Plotted in these two figures
are (i) TDSE results for final states L = 0, 2;ML = 0,±2,
(ii) TDSE results for final states L = 2;ML = ±2, and
(iii) numerical results using formula (31) for final states
L = 2;ML = ±2. For shorter time delays 0 ≤ τ < 1.1 fs
[see Figs. 7(a,b,c)], the angular distributions obtained
from the results (ii) and (iii) exhibit a fourfold symmet-
ric quadrupole-like shape, while those from the results
(i) exhibit a twofold symmetric quadrupole-like shape.
All these angular distribution shapes are consistent with
those of the spherical harmonic YL,ML

(p̂). Both Fig. 6
and Fig. 7 show that the TDSE results (ii) and the results
using Eq. (31) are in good agreement regardless of the
time delay. Moreover, whereas these two results and the
TDSE results (i) differ significantly for zero time delay
and for time delays shorter than 1.1 fs [see Figs. 6(a,b,c)
and Figs. 7(a,b,c)] owing to the role played by the path
Γ12, they coincide for a time delay equal to τc = 1.1 fs
[see Fig. 6(d) and Fig. 7(d)] or longer (not shown). Since
the τc found for two identical circularly polarized six-
cycle pulses is also 1.1 fs, one can conclude that this
critical time delay τc is at most only weakly sensitive to
the handedness of the two circularly polarized pulses. Re-
markably, for time delays longer than τc, the formula (31)
(in which the ionization cross channels are omitted) be-
comes fully valid for reproducing the rather challenging
six-dimensional TDSE results.

A substantial consequence of the validity of the for-
mula (31) is that the time-delay periodicity of the angu-
lar distributions in the polarization plane is valid only for
longer time delays (i.e., for τ ≥ τc). Figure 8 shows the
time-delay periodicity of the ionized-electron angular dis-
tributions in the polarization plane produced by our pair
of oppositely circularly polarized six-cycle pulses for time
delays longer than τc = 1.1 fs. Results of our numerical
solutions of the TDSE in Fig. 8(a) are compared with
the results using Eq. (31) in Fig. 8(b) for a fixed electron
kinetic energy, E = 2ω1 − Eb. For fixed relative CEP
φ12 between the two pulses, the angular distribution is
unchanged for time delays of τn = 2nπ/(E + Eb) with n
an integer, as expected from the PT Eqs. (31) and (20).
Figure 8(b) shows that Eq. (31) is valid: the angular
distributions for τ8 = 1.1 fs and τ12 = 1.65 fs are identi-
cal. Our numerical results in Fig. 8(a) for these two time
delays are exactly the same, indicating that for longer τ
and for intensities ∼ 1 TW/cm2 the second pulse sees the
same initial state as the first pulse (i.e., the He ground
state instead of the state resulting from interaction of
the He ground state with the first attosecond pulse). For
longer time delays τn with half odd integer n, the PT
Eqs. (31) and (20) predict the angular distributions to
be shifted by π/4 with respect to those for integer n, as
shown in Figs. 8(a,b). This sensitivity of the angular dis-
tributions to the time delay implies the ability to control
the ionized electron direction by adjusting the time delay
between the two UV pulses.
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FIG. 8. (Color online) Time-delay periodicity of electron an-
gular distributions d3W/d3p (in units of 10−7 a.u.) in the
polarization plane produced by two-photon single ionization
of the He ground state by two oppositely circularly polar-
ized UV pulses. The ionized-electron energy is fixed to be
E = 2ω1 − Eb. Parameters of the two pulses are the same
as in Fig. 4. Results in panel (a) are obtained by ab initio

TDSE calculations for L = 0, 2 with ML = 0,±2 final states;
results in panel (b) are obtained using PT formula (31) cal-
culated as described in the caption of Fig. 6. In each panel,
results are shown for three time delays: τ8, τ12, and τ14.5,
where τn = nπ/ω1.

For τ < τc, the ionization cross channels Γ12 (in which
one photon is absorbed from each pulse) destroy the time-
delay periodicity of the angular distributions (28) for two
oppositely circularly polarized pulses. However, the pa-
rameterization (19) allows one to predict cases for which
the τ -periodicity of the TDP should be preserved even
for τ < τc. Namely, let us consider the situation when
one photon, say e2, is linearly polarized (i.e., ℓ2 = 1)
in a direction perpendicular to the polarization plane of
the first photon e1. In such cases, e1 · e2 = 0. Further,
suppose that the electrons are detected in the polariza-
tion plane of the first photon, so that one has p̂ · e2 = 0.

Consequently, Eq. (19) for the amplitude Aξ1ξ2(p) becomes

Aξ1ξ2(p) = e−2iφ1
[

Md(p̂ · e1)2 +Mds

(

ℓ1 + eiΦ
)]

. (33)

The time delay τ enters this equation only through the
phase Φ [see Eq. (20)], which means that the correspond-
ing TDP should be periodic in τ as long as PT is valid. To
demonstrate numerically this PT prediction for any time
delay, we consider the case of two time-delayed orthogo-
nal pulses that are linearly-polarized along the x-axis and
y-axis, respectively. Figure 9(a) shows the numerically
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FIG. 9. (Color online) Cross channel path (Γ12) effects for two
time-delayed linearly polarized pulses. (a) Angular distribu-
tions d3W/d3p (in units of 10−3 a.u.) in the (pz, px) plane for
two-photon single ionization of the He ground state by two
time-delayed orthogonal pulses linearly-polarized along the x-
axis and y-axis, respectively. Results for time delays τ0 and
τ6 are shown, where τn = nπ/ω1. (b) Angular distributions
d3W/d3p (in units of 10−2 a.u.) in the (px, py) plane for two-
photon single ionization of the He ground state by two time-
delayed pulses linearly-polarized along the x-axis. Results for
four time delays are shown, namely, τ0, τ6, τ8, and τ12. In
both (a) and (b), the ionized electron energy is E = 2ω1−Eb;
each cos2 pulse has a carrier frequency ω1 = 15 eV, N = 6
cycles, an intensity of I = 5× 1013 W/cm2, and a zero CEP.

calculated angular distributions for electrons detected in
the (pz, px) plane. One sees that results for the time de-
lays τ = 0 and τ6 = T/2 = 827 as (where τ6 < τc) do
coincide. The same observation holds for any time delays
τn = nπ/ω1, where n is an integer.

Concerning the sensitivity to the pulse ellipticity of the
ionization cross channels, we note that the formula (18)
predicts a decreasing contribution of the cross channels
as the time delay τ increases not only for circularly-
polarized pulses, but also for any two ellipticities of the
two pulses. A numerical confirmation of this PT pre-
diction is shown in Fig. 9(b) for the case of two pulses
linearly-polarized along the x-axis with electrons de-
tected in the (px, py) plane. Results shown are for four
time delays: τ0, τ6 = T/2, τ8 = 2T/3, and τ12 = T ,
where τn = nπ/ω1. Once again, one sees in Fig. 9(b)
that the TDP is maximal for τ = 0 and then decreases
as τ increases (as shown by the results for τ6 = 827 as
and τ8 = τc = 1.1 fs). However, the angular distributions
for τ8 and τ12 coincide, which confirms the time-delay pe-
riodicity prescribed by PT for τ ≥ τc.

So far, the contributions of the ionization cross chan-
nels Γ12, which are difficult to calcuate, have been in-
vestigated by comparing results obtained by solving the
TDSE to those obtained from PT formulas that include
contributions from only the pathways Γ1 and Γ2. The
question thus arises, can relevant information on the
dynamical parameters describing the cross-channels be
obtained by other means? First, we note that in con-
trast to co-rotating fields, a virtue of counter-rotating
circularly-polarized fields is that electric dipole selec-
tion rules naturally separate the three ionization path-
ways. Thus, counter-rotating circularly polarized fields
seems to be the most suitable scheme for extracting
the dynamical parameters Γ(12)(p, θ, τ) describing the
cross channel contributions to the TDP. Second, although

calculating the dynamical parameters M(12)
d (p, τ) and

M(12)
ds (p, τ) on which Γ(12)(p, τ) depends [see Eq. (29)]

is not an easy task, by choosing a special detection ge-
ometry one can isolate the effect of the dynamical pa-

rameters M(12)
ds (p, τ), which correspond to transitions to

final states L = 0, 2 with ML = 0. This can be done by
using counter-rotating fields and by detecting electrons
along the pulse propagation direction (i.e., θ = 0). In
this case, p̂ ·e1 = p̂ ·e2 = 0, so that the TDP in Eq. (26)

only depends upon M(12)
ds (p, τ).

V. SINGLE IONIZATION BY TWO-COLOR

CIRCULARLY-POLARIZED PULSES

In this section we consider the (ω2 + 2ω1) process,
i.e., the process of single ionization of He by interfer-
ing one-photon and two-photon ionization amplitudes in
which the He atom can either absorb one ω2 photon from
the first pulse or two ω1 photons from the second pulse
[cf. Fig. 1(b)]. By focusing on the near-threshold ionized-
electron energy range, 0 ≤ E ≤ 15 eV, we only consider
the ionization pathways Γ1 and Γ2 [Fig. 1(b)]. We thus
neglect the contributions of the Γ12 pathways [not shown
in Fig. 1(b)], which produce ionized electrons in the con-
tinuum with higher kinetic energies.
Within the dipole approximation [37], the PT ampli-

tude Aξ1ξ2(p) for one-photon/two-photon ionization by a
pair of arbitrarily polarized pulses is

Aξ1ξ2(p) = e−iφ1 [α(p)(e1 · p̂) +Md(p)(e2 · p̂)2eiΦ̃], (34)

where Φ̃ ≡ Φ − φ1, with the relative phase Φ given
by Eq. (20); and the p-dependent dynamical parameter
α(p) [8] is the product of the dipole moment of the target

and F̂0(E +Eb − ω2), the Fourier transform of the pulse
envelope [cf. Eq. (11)]. According to electric dipole selec-
tion rules, the dynamical parameter α(p) corresponding
to the path Γ1 describes a one-photon absorption transi-
tion from the initial S-state to final P -states. Likewise,
the p-dependent dynamical parameterMd(p) [cf. Eq. (9)]
corresponding to the path Γ2 describes a two-photon ab-
sorption transition to finalD-states. Since the final states
reached by these two interfering pathways have opposite



12

parities, the photoelectron angular distributions are ex-
pected to be asymmetric.
For two circularly polarized pulses with the same hand-

edness, e1 = e2 = e, ℓ1 = ℓ2 = ℓ = 0 and ξ1 = ξ2 = ξ =
±1, so that the PT amplitude (34) takes the form

Aξξ(p) = e−iφ1(e · p̂)[α(p) +Md(e · p̂)ei(Φ−φ1)], (35)

where the geometric factor (e · p̂) is

(e · p̂) = (1/
√
2) sin θe±iϕ ∝ Y1,M1(θ, ϕ). (36)

According to the geometric factors (36) and (22), such a
pair of pulses produces final states defined by L = 1, 2,
with M1 = +1,M2 = +2 (M1 = −1,M2 = −2) for two
right- (left-) circularly-polarized pulses.
Likewise, for two oppositely circularly polarized two-

color pulses, e1 = e∗2, ℓ1 = ℓ2 = 0 and ξ1 = −ξ2 = ±1.
Thus, the PT amplitude (34) in this case takes the form

Aξ1ξ2(p) = e−iφ1 [α(p)(e1 · p̂) +Md(p)(e
∗
1 · p̂)2eiΦ̃], (37)

where the final states defined by L = 1, 2, with M1 =
+1,M2 = −2 (M1 = −1,M2 = +2) are produced
by right- and left- (left- and right-) circularly-polarized
pulses.
Substituting the geometric factors (22) and (36) into

the PT amplitudes in Eqs. (35) and (37), the TDP (6)
for single ionization by our two-color pulses circularly
polarized in the same or opposite directions is

Wξ1
ξ2
(p, θ, ϕ) =

C
2
sin2 θ

{

|α(p)|2 + 1

2
sin2 θ|Md(p)|2

+
√
2 sin θ|K12|(2 cos2[(Φ− φ1 + Θ12 + ξ12ϕ)/2]− 1)

}

,

(38)

where Φ is defined in Eq. (20), ξ12 = +1(−1) for
two right- (left-) circularly polarized pulses, and ξ12 =
−3(+3) for right- and left- (left- and right-) circularly-
polarized pulses; the modulus of the dynamical parame-
ter K12(p) ≡ |K12(p)|eiΘ12(p) is

|K12(p)| =
√

[ Re (α∗(p)Md(p))]2 + [ Im (α∗(p)Md(p))]2,
(39)

and its argument is defined by

tanΘ12(p) =
Im [α∗(p)Md(p)]

Re [α∗(p)Md(p)]
. (40)

The ionized-electron angular distribution (38) in the po-
larization plane (θ = π/2) has the form of a one-start or
three-start spiral structure depending upon the handed-
ness of each of the two pulses, as may be seen from the

following considerations. From Eq. (38), the TDP Wξ1
ξ2

is

maximal for (Φ−φ1 +Θ12)/2+ ξ12ϕ/2 = πn and is min-
imal for (Φ−φ1+Θ12)/2+ ξ12ϕ/2 = (2n+1)π/2, where
n = 0,±1,±2 . . ., and 0 ≤ ϕ ≤ 2π. Using Eq. (20), the

p dependences of the polar angles ϕ at these maximum

and minimum values of Wξ1
ξ2
(p, θ, ϕ) are:

ϕmaxn (p) = [2πn− (τEb + Θ̃12)− τ p2/2]/ξ12,

ϕminn (p) = [π + 2πn− (τEb + Θ̃12)− τ p2/2]/ξ12,
(41)

where Θ̃12(p, φ1, φ2) is given by:

Θ̃12(p, φ1, φ2) = φ1 − 2φ2 +Θ12(p). (42)

Equations (41) define Fermat (or Archimedean) spirals
(or helixes) in the (p, ϕ) plane, which are modified by the

CEP- and p-dependences of the phase Θ̃12(p, φ1, φ2). As
ϕmaxn (p) and ϕminn (p), shifted by the angle π or π/3 with
respect to each other, vary with energy p2/2 (through
possibly many 2π cycles, depending upon τ), they trace
out the maxima and the minima of the TDP. When
|ξ12| = 1 (|ξ12| = 3), the pattern is a one-arm (three-
arm) helical spiral, corresponding to n = 0 (n = 0, 1, 2),
as other values of n replicate the same lines. Pulses with
ξ12 = ±1 (ξ12 = ±3) correspond to counter clockwise
(+) or clockwise (−) spirals. The Fermat spirals become
wound more densely as τ increases.
For our calculations of the odd -start electron vortices,

we consider that the first (second) six-cycle pulse has a
carrier frequency ω2 = 30 eV (ω1 = 15 eV), an intensity
I2 = 1013 W/cm2 (I1 = 1014 W/cm2), and a total dura-
tion of 827 as (1.65 fs). The intensity of each pulse is cho-
sen such that one-photon absorption from the first pulse
and two-photon absorption from the second pulse pho-
toionize the He atom with comparable magnitudes and
produce photoelectrons with the same kinetic energy.
For our two-color circularly polarized pulses having the

same or opposite handedness and zero CEPs, our numeri-
cal results for these PT predictions of one-start and three-
start electron vortices [cf. Eqs. (38) and (41)] are shown
in Figs. 10 and 11, respectively, for several time delays.
We consider first the case of zero time delay. For co-
rotating pulses, the calculated momentum distribution in
the polarization plane (θ = π/2) is shown in Fig. 10(a).
The TDP exhibits a broad single crescent-shaped lobe
along the px-axis but shifted counterclockwise by a cer-
tain angle. For counter-rotating pulses, the correspond-
ing momentum distribution is shown in Fig. 11(a). The
TDP exhibits three lobes separated by 2π/3. These two
findings are consistent with our PT formula (38) as the
TDP is ∝ cos2[(Θ12(p) + ξ12ϕ)/2], in which ξ12 = +1
for two right-circularly polarized pulses and ξ12 = −3 for
right- and left-circularly-polarized pulses. A change in
sign of ξ12 will change the angular distribution, unlike
when φ12 = 0 for the case of single-color two-photon in-
terferometry. This unusual sensitivity to the helicity of
ξ12, which leads to a circular dichroic effect, is caused by
the dynamical phase Θ12(p) [cf. Eq. (40)] involving in-
terference between the one-photon path Γ1 and the two-
photon path Γ2. To reproduce numerically these TDSE
results, using the PT Eq. (38), requires an accurate cal-
culation of both the phase and the modulus of the dy-
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FIG. 10. (Color online) One-start spiral vortex patterns in
the electron momentum distribution d3W/d3p [see Eq. (5)]
in the polarization plane following one-photon/two-photon
single ionization of He by two identical circularly polarized
pulses for three time delays: (a) τ = 0, (b,d) τ = 500 as, and
(c) τ = 1 fs. In (a,b,c), the two pulses are both right circularly
polarized, whereas in (d) they are both left circularly polar-
ized. The carrier frequency and intensity of the earlier (later)
pulse is ω2 = 30 eV (ω1 = 15 eV) and I2 = 10 TWcm−2

(I1 = 100 TWcm−2). The magnitudes of the TDPs (in units
of 10−3 a.u.) are indicated by the color scales.

namical parameter K12(p), which includes pulse overlap
effects.

For nonzero time delay between the two co-rotating
pulses, one obtains the vortex patterns in the ionized
electron momentum distributions shown in Figs. 10(b,c)
for two-color right-circularly-polarized pulses, and in
Fig. 10(d) for two-color left-circularly-polarized pulses.
For counter-rotating pulses, we obtain the vortex pat-
terns shown in Figs. 11(b,c) for two-color right- and left-
circularly-polarized pulses, and in Fig. 11(d) for two-color
left- and right-circularly-polarized pulses. As discussed
above, for co-rotating pulses these are one-start Fer-
mat spiral patterns with opposite handedness, i.e., clock-
wise in Figs. 10(b,c) and counterclockwise in Fig. 10(d).
Likewise, for counter-rotating pulses, these are three-
start Fermat spiral patterns with opposite handedness,
i.e., counterclockwise in Figs. 11(b,c) and clockwise in
Fig. 11(d). As predicted by the helix equation (41), for
both co-rotating and counter-rotating pulses the numbers
and locations of the maxima and minima of the TDP in
the polarization plane depend on the time delay, as shown
in Figs. 10(b,c,d) and 11(b,c,d). For our two-color pulses
with time delays of 827 as and 1.65 fs, we show that time
delays of several hundred attoseconds are necessary to
produce a complete revolution of the odd -start spirals.
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FIG. 11. (Color online) Three-start spiral vortex patterns in
the electron momentum distribution d3W/d3p [see Eq. (5)] in
the polarization plane following one-photon/two-photon sin-
gle ionization of He by two oppositely circularly polarized
pulses for three time delays: (a) τ = 0, (b,d) τ = 500 as, and
(c) τ = 1 fs. In (a,b,c), pulses are right- and left-circularly
polarized, whereas in (d) they are left- and right-circularly po-
larized. The pulse parameters are the same as in Fig. 10. The
magnitudes of the TDPs (in units of 10−3 a.u.) are indicated
by the color scales.

VI. SUMMARY AND CONCLUSIONS

By both an analytic PT analysis and numerical solu-
tions of the six-dimensional TDSE for single ionization of
the He atom by a pair of time-delayed circularly polarized
ultrashort laser pulses, we have investigated the condi-
tions under which the photoelectron momentum distribu-
tions in the laser pulse polarization plane have the form of
multi-start electron vortices. For single-color two-photon
interferometry, we have shown that the ionized-electron
momentum distributions in the polarization plane ex-
hibit zero-start or four -start spiral vortex patterns for
the cases respectively of co-rotating or counter-rotating
pulses. Regardless of the ellipticity or handedness of the
two pulses, the contributions of the ionization cross chan-
nels Γ12 were found to decrease as the time delay τ in-
creases, in agreement with perturbation theory (PT). For
short time delays τ such that there is strong overlap be-
tween the two pulses, these cross channels were found
to be as important as the leading ionization channels, Γ1

and Γ2. However, for longer time delays the cross channel
contributions are very small and, consequently, Eq. (31)
(in which their contributions are excluded) becomes an
excellent tool for describing accurately the ultrafast pro-
cess of two-photon single ionization of helium. For the
two-color process we investigated, we have shown that co-
rotating or counter-rotating time-delayed fields produce



14

one-start or three-start spiral vortex patterns in the pho-
toelectron momentum distributions in the polarization
plane. We emphasize that in this case even co-rotating
time-delayed circularly polarized pulses lead to vortices
in the ionized electron momentum distribution. For both
fundamental ultrafast atomic processes considered in this
paper, our analytic PT analysis provided an invaluable
means of interpreting our numerical TDSE results.
Experimental observation of these multi-arm spiral

vortex patterns in the ionized-electron momentum dis-
tributions requires single-color and two-color circularly-
polarized pulses with low intensity but with full control
of the relative CEP and the time delay between the two
pulses. The production of chiral attosecond pulses is a
very active field of research [41–44]. Existing velocity-
map-imaging or reaction microscope techniques provide
the means for measuring ionized-electron momentum dis-
tributions.
Note that the analysis presented in this paper can be

applied also for other atoms in which the ionized elec-
tron is initially in an s-state, including, e.g., the H atom.
We have presented our results for the He atom because
it is the simplest atom to investigate experimentally and
because we are able to treat all electron correlation ef-
fects essentially exactly by solving the 6-dimensional,
two-electron TDSE. Our predictions should hold also for
theoretical calculations employing a single active electron
(SAE) approximation, although in that case agreement
with experimental results will depend upon the strength
of electron correlation effects for the particular atom cho-
sen for study. More generally, as noted in the Introduc-
tion above as well as in Ref. [8] (including its Supplemen-
tal Material), the vortices we predict stem from zeros in
a kinematical factor of the TDP that is determined by
the detection geometry. The form of this kinematical fac-
tor is invariant to any specific initial state of the active
electron in a target atom (or molecule); it only depends
on the binding energy. Hence, vortex patterns in the ion-
ized electron momentum distributions should be observed
quite generally for any initial angular momentum of the
active electron. However, if the bandwidth of the laser
pulses allows ionization from multiple atomic subshells,
then the observation of the vortices will depend upon the
relative magnitudes of the subshell cross sections (as the
vortex pattern for one subshell may be obscured by the
momentum distributions of the other subshells).
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Appendix A: Derivation of the second-order PT

amplitude in Eq. (7)

The second-order amplitude for single ionization of He
by a pair of arbitrarily polarized pulses [see Fig. 1(a)] is
given by [38]:

A2 = −
∑

q 6=i

∫ ∞

−∞

〈νp|d ·F(t)|q〉 eiωfq t

×
∫ t

−∞

〈q|d · F(t′)|i〉 eiωqit
′

dt′dt, (A1)

where we have set the upper limit of the time variable
to infinity since the pulse is short. In Eq. (A1) |i〉 is
the two-electron initial state with energy Ei; |νp〉 is the
two-electron final state (satisfying incoming wave bound-
ary conditions and comprising the bound state |ν〉 of
the residual ion, with energy Eν , and the continuum
state |p〉 of the electron, with momentum p and energy
E = p2/2 [39, 40]); |q〉 is a two-electron intermediate
state with energy Eq; ωfq ≡ E+Eν −Eq; ωqi ≡ Eq−Ei;
d is the electric dipole moment operator of the two elec-
trons; and F(t) is the electric field (2), where ω(1,2) ≡ ω
for the process in Fig. 1(a). Equation (A1) involves inte-
grals over time and space that are evaluated below.
The structure of the integrals over time in Eq. (A1) is

I =

∫ ∞

−∞

(a1 ·F(t))eiωfq t

∫ t

−∞

(a2 ·F(t′))eiωqit
′

dt′dt, (A2)

where a1 = 〈νp|d|q〉, a2 = 〈q|d|i〉. Inserting Eq. (2) into
Eq. (A1) we obtain four integrals over time

I = I11 + I12(τ) + I21(τ) + I22(τ), (A3)

where the subscripts indicate the pulses that contribute
to the two-photon transition (e.g., I11 indicates that both
photons originate from the first pulse, while I12 indicates
that one photon originates from the first pulse and the
other originates from the second pulse, etc.). Let us con-
sider first the integral I11:

I11 =

∫ ∞

−∞

F0(t)
(

a1 · Re [e1e−i(ωt+φ1)]
)

eiωfqtdt

×
∫ t

−∞

F0(t
′)
(

a2 · Re [e1e−i(ωt
′+φ1)]

)

eiωqit
′

dt′. (A4)

By extracting the vector dependence of Eq. (A4), one
has:

I11 = e−2iφ1 (a1 · e1)(a2 · e1)J++
11 + (a1 · e1)(a2 · e∗1)J+−

11

+ (a1 · e∗1)(a2 · e1)J−+
11 + e2iφ1 (a1 · e∗1)(a2 · e∗1)J−−

11 ,
(A5)
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where the parameters J±±
11 describing two-photon ab-

sorption (++) and two-photon emission (−−) are

J±±
11 =

1

4

∫ ∞

−∞

F0(t) e
i(ωfq∓ω)t

∫ t

−∞

F0(t
′) ei(ωqi∓ω)t

′

dt′dt,

(A6)

whereas the parameters J±∓
11 describing one-photon

absorption/one-photon emission (+−) and one-photon
emission/one-photon absorption (−+) are

J±∓
11 =

1

4

∫ ∞

−∞

F0(t) e
i(ωfq∓ω)t

∫ t

−∞

F0(t
′) ei(ωqi±ω)t

′

dt′dt.

(A7)

Based on our PT assumption [cf. Sec. III], the terms in-
volving photon emission, i.e., J−−

11 and J±∓
11 , in Eq. (A5)

are negligible. Thus, Eq. (A5) becomes

I11 = e−2iφ1 (a1 · e1)(a2 · e1)J++
11 . (A8)

To evaluate the two-photon absorption term J++
11 [cf.

Eq. (A6)] in Eq. (A8), we express the envelope function,
F0(t), as the inverse of its Fourier transform [Eq. (11)]:

F0(t) =
1

2π

∫ ∞

−∞

F̂0(ǫ) e
−iǫtdǫ. (A9)

Inserting this equation into Eq. (A6), the two time inte-
grals reduce to a single integral over ǫ:

J++
11 = − i

8π

∫ ∞

−∞

F̂0(ǫ)F̂0(ωfi − 2ω − ǫ)

Eq + ǫ− (Ef − ω) + i0
dǫ. (A10)

One obtains similar analytical forms for I12(τ), I21(τ),
and I22(τ) by using the procedure employed [i.e.,
Eqs. (A4)-(A10)] for evaluating I11. The time inte-
gral (A3) thus becomes:

I = e−2iφ1 (a1 · e1)(a2 · e1)J++
11 + e−iχ(a1 · e1)(a2 · e2)

× J++
12 (τ) + e−iχ(a1 · e2)(a2 · e1)J++

21 (τ)

+ e−2i(φ2−ωτ)(a1 · e2)(a2 · e2)J++
22 (τ), (A11)

where χ = φ1 + φ2 − ωτ . Note that

J++
22 (τ) = ei(ωfi−2ω)τJ++

11 , (A12)

i.e., the last term in Eq. (A11) describing two-photon ab-
sorption from the 2nd pulse acquires an additional phase
eiωfiτ . The τ -dependent parameter J++

12 in Eq. (A11) de-
scribing one-photon absorption from the first pulse and
one-photon absorption from the second pulse is

J++
12 (τ) = − i

8π
ei(ωfi−2ω)τ

×
∫ ∞

−∞

F̂0(ǫ) F̂0(ωfi − 2ω − ǫ)

Eq + ǫ − (Ef − ω) + i0
e−iǫτ dǫ, (A13)

whereas the τ -dependent parameter J++
21 describing one-

photon absorption from the second pulse and one-photon
absorption from the first pulse is

J++
21 (τ) = − i

8π

∫ ∞

−∞

F̂0(ǫ) F̂0(ωfi − 2ω − ǫ)

Eq + ǫ− (Ef − ω) + i0
eiǫτ dǫ.

(A14)
We focus now on the integration over angular vari-

ables of the second-order amplitude (A1). Within the
PT approach, the first-order amplitude for one-photon
absorption from a single pulse is defined by the matrix
element

T (1) = 〈νp|e · d|i〉, (A15)

where e is the polarization vector of the pulse, d is the
dipole moment of the two electrons, |i〉 is the initial 1Se

state with zero total orbital momentum, and the final sin-
glet state |νp〉 is an antisymmetrized product of the un-
relaxed 1s-bound state of the He+ ion, |ν〉, and the pho-
toelectron Coulomb state, |p〉, satisfying asymptotically
incoming spherical wave boundary conditions [39, 40]. Its
multipole expansion is (see Eq. (44b) of Ref. [37]),

〈νp| = A
[

1

p

∑

l′m′

(−i)l′eiδl′Yl′m′(p̂)Y ∗
l′m′(r̂2)〈νpl′|r1, r2〉

]

,

(A16)
where δl′ is the l′-th partial phase shift; |νpl′〉 is the ra-
dial part of the final state wave function normalized on
the momentum scale, so that 〈νpl′|νp′l′〉 = δ(p − p′);

A = (1 + P12)/
√
2 is the normalized antisymmetrization

operator, where the operator P12 exchanges the electron
coordinates r1 and r2 in order to satisfy the Pauli exclu-
sion principle. For simplicity of notation, both below and
in the main text, we use a notation for the two-electron
states that denotes the quantum numbers of the active
electron and suppresses those of the spectator 1s elec-
tron, i.e., |νpl′〉 ≡ |pl′〉 and |i〉 ≡ |ni0〉.
The second-order amplitude (A1) is defined as a sum

over intermediate states |q〉 ≡ |nlm〉 of the product of
dipole matrix elements,

T (2)
q = 〈νp|(e1 · d)|nlm〉 〈nlm|(e2 · d′)|ni0〉. (A17)

The angular part of the matrix elements in Eq. (A17)
can be easily evaluated using Eq. (A16) to obtain

T (2)
q =

√
2

p

∑

l′

(−i)l′ eiδl′√
2l′ + 1

Cl
′0
10 10 (Yl′ (p̂) · {e1 ⊗ e2}l′)

× 〈pl′|d|n1〉〈n1|d′|ni0〉. (A18)

From the properties of the Clebsch-Gordan coefficients,
it follows that l′ = 0, 2 in Eq. (A18). As a result we have

T (2)
q = (e1 · e2)

1

3
√
2π

eiδ0

p
〈p0|d|n1〉〈n1|d′|ni0〉

− 1√
π

eiδ2

p

(

(p̂ · e1)(p̂ · e2)−
1

3
(e1 · e2)

)

× 〈p2|d|n1〉〈n1|d′|ni0〉. (A19)
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The first term on the right hand side of Eq. (A19) cor-
responds to a transition to a final s-state of the ionized
electron, while the second term corresponds to a transi-
tion to a final d-state.

Thus, for the case when both photons are absorbed
from the first pulse, e2 = e1, using Eqs. (A1) and (A19)
we obtain the following structure for this term in A2:

A2(e1, e1) = e−2iφ1
[

M(1)
d (p̂ · e1)2 +M(1)

ds (e1 · e1)
]

,
(A20)

where (e1 ·e1) ≡ ℓ1 and the dynamical radial parameters

M(1)
s andM(1)

d , obtained after integration over both time
and angular variables, are given respectively by Eqs. (12)
and (9). Note that A2(e1, e1) in Eq. (A20) corresponds
to Eq.(46) in Ref. [37] when emission terms are neglected.
Other terms in the second-order PT amplitude [namely,
A2(e2, e2), A2(e1, e2), and A2(e2, e1)] can be written in
a similar form. Using results similar to Eq. (A19) for
the other three pathways in Eq. (A11), one arrives at the
expression (7) for the second-order PT amplitude, where

the parameters M(12)
d (p, τ) and M(12)

ds (p, τ) are given by

Eqs. (15)-(17) and the parameter M(2)
d by Eq. (14).

Appendix B: Procedure for extraction of the

dynamical parameter |Md(p)|
2 from TDSE results

The PT results for the TDPs shown in Figs. 3 and 5–
8 are obtained using Eqs. (24), (25) and (31), each of
which depends on the squared modulus of the second-
order dynamical parameter Md(p). The calculation of
the dynamical parameter Md(p) [cf. Eq. (9)] can be car-
ried out analytically; however, it is nontrivial as it in-
volves Green’s functions (10) and summations over the
energies of intermediate states.
Instead of calculating |Md(p)|2 analytically, we have

determined this parameter numerically by means of ab
initio TDSE calculations, as follows. We first solve
(in the dipole approximation) the six-dimensional, two-
electron TDSE for a single pulse that is right circularly
polarized. After the end of the pulse, we project the
wave packet solution of the TDSE (produced by this
single pulse) onto field-free correlated multichannel scat-
tering wave functions. The latter functions (describing
the e−+He+(1s) singly-ionized continuum) can be gen-
erated accurately using the so-called Jacobi- or J-matrix
method [36]. In this projection, only the L = 2,M = +2
amplitude is included, in accord with dipole selection
rules. The squared modulus of this projection equals
the TDP given in Eq. (6) in which the amplitude for a
single right circularly polarized pulse is given by the first
term in Eq. (A20), where the geometric factor (p̂ · e1)2
is given by Eq. (22). Thus, the absolute square of this
projection equals (C/4) sin4 θ|Md(p)|2, where C is a nor-
malization factor and θ = π/2 for electrons detected in
the polarization plane.
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[2] A. Einstein, “Über einen die Erzeugung und Verwand-
lung des Lichtes betreffenden heuristischen Gesicht-
spunkt,” Annalen der Physik 17, 132-148 (1905).

[3] C. Davisson and L.H. Germer, “Diffraction of Electrons
by a Crystal of Nickel,” Phys. Rev. 30, 705 (1927).

[4] N. F. Ramsey, “A Molecular Beam Resonance Method
with Separated Oscillating Fields,” Phys. Rev. 78, 695
(1950).

[5] L. D. Noordam, D. I. Duncan, and T. F. Gallagher,
“Ramsey fringes in atomic Rydberg wave packets,” Phys.
Rev. A 45, 4734 (1992).

[6] M. Strehle, U. Weichmann, and G. Gerber, “Femtosec-
ond time-resolved Rydberg wave-packet dynamics in the
two-electron system calcium,” Phys. Rev. A 58, 450
(1998).

[7] M. Wollenhaupt, A. Assion, D. Liese, Ch. Sarpe-
Tudoran, T. Baumert, S. Zamith, M. A. Bouchene, B.
Girard, A. Flettner, U. Weichmann, and G. Gerber, “In-
terferences of Ultrashort Free Electron Wave Packets,”
Phys. Rev. Lett. 89, 173001 (2002).

[8] J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Man-
akov, A.V. Meremianin, and A. F. Starace, “Electron
Vortices in Photoionization by Circularly Polarized At-
tosecond Pulses,” Phys. Rev. Lett. 115, 113004 (2015).

[9] M. Harris, C.A. Hill, and J.M. Vaughan, “Optical Helices
and Spiral Interference Fringes,” Opt. Commun. 106, 161
(1994).

[10] C. A. Mancuso, D.D. Hickstein, P. Grychtol, R. Knut,
O. Kfir, X.-M. Tong, F. Dollar, D. Zusin, M. Gopalakr-
ishnan, C. Gentry, E. Turgut, J. L. Ellis, M.-C. Chen, A.
Fleischer, O. Cohen, H. C. Kapteyn, and M. M. Murnane,
“Strong-field ionization with two-color circularly polar-
ized laser fields,” Phys. Rev. A 91, 031402(R) (2015).

[11] N. Douguet, A.N. Grum-Grzhimailo, E.V. Gryzlova, E.I.
Staroselskaya, J. Venzke, and K. Bartschat, “Photoelec-
tron angular distributions in bichromatic atomic ioniza-
tion induced by circularly polarized VUV femtosecond
pulses,” Phys. Rev. A 93, 033402 (2016).

[12] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa,
“Motion of vortex lines in quantum mechanics,” Phys.
Rev. A 61, 032110 (2000).

[13] S.J. Ward and J.H. Macek, “Effect of a vortex in the
triply differential cross section for electron-impact K-shell
ionization of carbon,” Phys. Rev. A 90, 062709 (2014).

[14] J. H. Macek, J. B. Sternberg, S. Y. Ovchinnikov, and J. S.
Briggs, “Theory of Deep Minima in (e, 2e) Measurements
of Triply Differential Cross Sections,” Phys. Rev. Lett.
104, 033201 (2010).

[15] J. M. Feagin, “Vortex kinematics of a continuum electron
pair,” J. Phys. B 44, 011001 (2011).



17

[16] J. H. Macek, J. B. Sternberg, S. Y. Ovchinnikov, T.-G.
Lee, and D. R. Schultz, “Origin, Evolution, and Imaging
of Vortices in Atomic Processes,” Phys. Rev. Lett. 102,
143201 (2009).

[17] F. Navarrete, R. Della Picca, J. Fiol, and R. O. Bar-
rachina, “Vortices in ionization collisions by positron im-
pact,” J. Phys. B 46, 115203 (2013).

[18] L. Ph. H. Schmidt, C. Goihl, D. Metz, H. Schmidt-
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