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Using the convergent close-coupling theory we study the threshold behavior of cross sections for
positronium (Ps) of energy E scattering on antiprotons. In the case of Ps(1s) elastic scattering,
simple power laws are observed for all partial waves studied. The partial-wave summed cross section
is nearly constant, and dominates the antihydrogen formation cross section at all considered energies,
even though the latter is exothermic and behaves as 1/E1/2. For Ps(2s), oscillations spanning orders
of magnitude on top of the 1/E behavior are found in the elastic and quasielastic cross sections.
The antihydrogen formation is influenced by dipole-supported resonances below the threshold of
inelastic processes. Resonance energies form a geometric progression relative to the threshold. The
exothermic antihydrogen formation cross sections behave as 1/E at low energies, but are oscillation-
free. We demonstrate that all these rich features are reproduced by the threshold theory developed
by Gailitis [J. Phys. B 15, 3423 (1982)].

PACS numbers:

I. INTRODUCTION

Antihydrogen formation is presently an active exper-
imental program with the aim of performing gravita-
tional and spectroscopic measurements [1]. Using the
two-center convergent close-coupling (CCC) method [2]
the cross sections for antihydrogen formation via positro-
nium (Ps) scattering on antiprotons have been calculated
at low energies for various initial Ps(nl) states [3, 4]. Sim-
ple power laws for near-threshold behavior were identi-
fied. Here we study the threshold behavior of the under-
lying partial-wave cross sections utilising the most gen-
eral treatment of such collision processes given by Gaili-
tis [5]. In addition to the antihydrogen formation, the
elastic and quasielastic (l-changing for same n) cross sec-
tions are considered. We demonstrate that all of the re-
markably rich near-threshold behavior can be reproduced
using the Gailitis theory.

Hydrogen and hydrogen-like atoms in excited states
possess nonzero dipole moment due to the degeneracy of
nl states, l = 0, 1, ..., n − 1. This leads to the thresh-
old behavior of the scattering cross sections which differs
from the well-known Wigner threshold law [6]. In partic-
ular the electron-impact excitation cross sections for the
hydrogen atom are finite at the excitation threshold and
all cross sections oscillate below and above the threshold
[7, 8]. Oscillations below the threshold are interpreted as
resonances due to dipole-supported states. A similar situ-
ation occurs when an electron is scattered by a stationary
dipole [9] that is relevant to electron scattering by polar
molecules. These features are observed as long as split-
ting between the states interacting by the dipole interac-

tion can be neglected. In the case of electron-hydrogen
scattering this means that electron energy should be large
compared to the Lamb shift.
Gailitis [5] developed a more general theory relevant

to interaction of a charged particle with a hydrogen-like
system, of which Ps+p is an example. In the present
application of this theory we are interested in collision
processes involving Ps atom in the first excited state

Ps(2l) + p → Ps(2l′) + p (1)

and

Ps(2l) + p → H(nl′) + e+. (2)

The process (2) has the same cross section as the charge-
conjugated reaction

Ps(2l) + p̄ → H̄(nl′) + e−. (3)

Here, we shall derive the threshold behavior of the
above collision processes from the general theory of Gaili-
tis [5], and compare it with the results of the convergent
close-coupling calculations. We utilize atomic units (a.u.)
throughout unless stated otherwise.

II. THRESHOLD THEORY

The S-matrix for collision of a charged particle with a
hydrogen-like system is given by [5, 10]

S = exp(iπl/2)A exp(−iπλ/2)S′ exp(−iπλ/2)
×A−1 exp(iπl/2), (4)
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where l is the diagonal matrix of electron orbital angular
momenta,

λ = −
1

2
+

(

1

4
+ Λ

)1/2

,

and where Λ, A are eigenvalues and eigenvectors of the
equation

[l(l+ 1) + 2m1d]A = ΛA. (5)

Here m1 is the reduced mass of the projectile-target sys-
tem, and d is the dipole moment matrix which couples
degenerate channels in the hydrogen-like atom, in our
case Ps. The dipole moment matrix scales as d = dH/m2,
where m2 is the reduced mass of the hydrogen-like sys-
tem, and dH is the dipole-moment matrix for interaction
of electron with hydrogen. In the case of Ps, m2 = 1/2.
If we neglect the electron mass compared to the proton
mass, we obtain m1 = 2 and m1d = 4dH. The expression
for the matrix dH was given by Seaton [11].
The matrix S′ in Eq. (4) is given by

S′ = 1+ 2ikλ+1/2[M − (tanπλ+ i)k2λ+1]−1kλ+1/2, (6)

where k is the diagonal matrix of the channel wave num-
bers, and M is a symmetric matrix which is a meromor-
phic function of energy. Typically, if there are no near-
threshold resonances caused by the short-range interac-
tion, this matrix can be expanded in powers of energy
E. It is kept constant in the first approximation of the
threshold theory.
The threshold behavior depends critically on the spec-

trum of the eigenvalue problem (5). If the lowest Λ is
greater than −1/4, all λ are real and the elements of S′

behave as

S′
ij = δij + 2ik

λi+1/2
i (M−1)ijk

λj+1/2
j . (7)

In this case the elastic and quasielastic (that is, corre-
sponding to transitions between channels with degener-
ate energies) cross sections behave as k4λ1 , and the in-
elastic cross section is proportional to k2λ1+1 for an en-
dothermic process, and to k2λ1−1 for an exothermic pro-
cess. The lowest eigenvalue λ1 varies between 0 and −1/2
and k = [2m(E − Et)]

1/2, where Et is the threshold en-
ergy (Et = 0 for exothermic processes). If the lowest Λ
is less than −1/4, λ1 is complex,

λ1 = −
1

2
+ iµ. (8)

For elastic and quasielastic processes, the most important
matrix element of S′ is given by the expression

S′
11 =

1 + eiφ−πµk2iµ

1 + eiφ+πµk2iµ
, (9)

where φ is an energy-independent phase depending on
the short-range interaction. All other elements of S′ are

given by δij , but they do contribute to the cross section
since, according to Eq. (4),

S2l,2l′ = exp[iπ(l+ l′)/2]
∑

i

AliAl′iS
′
ii exp[−iπλi]. (10)

Each term in this sum gives an essential contribution,
even if S′

ii = 1. As a result, elastic and quasielastic cross
sections oscillate and diverge as 1/E. The oscillations in
the cross sections are described by the factor cos(2µ ln k+
φ).
In the case of processes (1) and (2) λ1 is complex for

L ≤ 4, where L is the total angular momentum of the
system. The corresponding values of µ are 4.772, 4.576,
4.155, 3.428 and 2.093 for L = 0, 1, 2, 3, and 4 respec-
tively.
Note that the discussed features, oscillations and 1/E

divergence of the cross section, are observed only for the
“favorable” parity P = (−1)L since only in this case we
have 2s − 2p coupling producing the dipole interaction.
However, for scattering from Ps states with higher n the
features can appear for the “unfavorable” parity P =
(−1)L+1 as well.
The situation with inelastic processes is different. The

most important S-matrix element for an inelastic process
above the threshold is given by

S01 =
ckiµ

1 + eiφ+πµk2iµ
, (11)

where c is a complex constant and 0 denotes a channel
with a different energy, not belonging to the degenerate
manifold. The phase φ is not real in this case, but could
be close to real, if the interchannel coupling is weak. The
oscillations in the cross section are suppressed in this
case by the factor exp(−πµ). Even in the case L = 4,
we obtain exp(−πµ) = 0.0014, an insignificant number.
However, if we are interested in the cross section below

the threshold, for example in Ps(1s)−p elastic scattering
just below the n = 2 threshold, the corresponding cross
section will exhibit pronounced resonances related to the
dipole-supported bound states of the Ps−p system.
For our studies the most important feature of the cross

section for an endothermic process is the finite value at
the threshold, since |S01|

2 6= 0 at the threshold. For
example, the cross section for the reaction (2) with n = 3

Ps(2l) + p → H(3l′) + e+

is finite at the threshold Eth = 0.5/(2×22)−1/(2×32) =
1/144 a.u.=0.189 eV. The cross section for an exothermic
process, for example the process (2) for n ≤ 2 diverges
as 1/E when E → 0.

III. CONVERGENT CLOSE-COUPLING

THEORY

To test the above threshold theory we compare with
the corresponding Ps(nl) − p convergent close-coupling
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(CCC) calculations. Due to the H and Ps centers in the
problem we require the two-centre CCC formalism [2]. A
review of the CCC method for two-center collision sys-
tems has been recently given by Kadyrov and Bray [12].
Briefly, Ps-formation channels are explicitly included by
adding a second Laguerre-based expansion around the
Ps center of mass. Convergence in the calculations are
obtained by increasing the Laguerre basis sizes NH

l for
l ≤ lHmax and NPs

l for l ≤ lPs
max. The other free pa-

rameters of the Laguerre basis are the exponential fall-
offs λl. To reduce the number of free parameters we
typically take λl = λ to be optimal for the ground or
the first excited state. Furthermore, we typically take
Nl = N0 − l. Given that the Laguerre basis is com-
plete, its usage with two non-orthogonal expansions is
potentially problematic. In practice, the unitarity of the
close-coupling theory ensures that there are no double-
counting problems, though the numerical equations to be
solved become particularly ill-conditioned with increas-
ing Nl, requiring very accurate numerical methods. How-
ever, a major strength of the approach is that its internal
consistency with the one-center expansion approach can
be readily checked [13, 14]. The latter is much more
numerically stable, but is unable to distinguish between
explicit Ps-formation and breakup cross sections. When
both methods agree for their sum we can be very confi-
dent in all of the two-center CCC results, which do con-
tain explicit Ps-formation processes.
The CCC parameters used here are the same as those

presented earlier [4], except performed on a sufficiently
dense energy mesh to elucidate the underlying struc-
tures, and extended to partial waves L ≤ 80. The
latter is necessary to yield convergent integrated elas-
tic cross sections. The Laguerre basis parameters are
NH

l = NPs
l = 12 − l with λH

l = 1.0 and λPs
l = 0.5. We

set lHmax = 3 and lPs
max = 2, which allowed the CCC cal-

culations to yield convergent results for Ps(n ≤ 3) to
H(n ≤ 4) states [4].
Though N0 = 12 is not a particularly large basis size

the resulting close-coupling equations are sufficiently ill-
conditioned that yielding stable results in individual par-
tial waves in the vicinity of resonances required a different
numerical approach. The recently developed analytical
treatment of the Green’s function in the solution of the
coupled Lippmann-Schwinger equations [15, 16] was nec-
essary to yield the required numerical stability. In fact,
the new numerical approach shows promise of being able
to solve the larger set of coupled equations arising from
NH

l = NPs
l = 15 − l, yielding accurate cross sections for

Ps(n ≤ 4) to H(n ≤ 5) transitions [16].

IV. RESULTS

A. Approximation of 2s-2p degeneracy

We will first present the results obtained with the as-
sumption that the 2s and 2p states are completely de-

generate.
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FIG. 1: Partial-wave and partial-wave summed cross sections
for Ps(2s) + p elastic scattering and H(2s) production cal-
culated using the convergent close-coupling method (circles)
and the threshold theory (TT, lines).

In Fig. 1 we present partial-wave and partial-wave
summed cross sections for elastic Ps(2s) + p scattering
calculated using Eqs. (9) and (10), and compare them
with the corresponding results of the ab initio CCC cal-
culations. The phase φ in Eq. (9) has been adjusted for
visual fit of the threshold theory cross sections to those
of CCC, yielding excellent agreement for the massively
oscillating cross sections on top of the 1/E behavior. To
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FIG. 2: Partial-wave cross sections for Ps(2s)+p → Ps(2p)+p
quasielastic scattering calculated using the convergent close-
coupling method (circles) and the threshold theory (TT,
lines).

the best of our knowledge such extraordinary cross sec-
tion behavior has never been seen before in an ab initio

calculation. In contrast, the H-formation cross section
has only the 1/E functional form near threshold, and
of a substantially lower magnitude than the elastic cross
section.

In Fig. 2 we present partial cross sections for Ps(2s)+
p →Ps(2p)+p quasielastic collisions exhibiting even more
pronounced oscillations. In the approximation of the 2s−

2p degeneracy the total (summed over all L) cross section
is divergent. This problem is addressed in the following
subsection.
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FIG. 3: The same as for Fig. 1, except for Ps(1s)+ p scatter-
ing.

In Fig. 3 we show Ps(1s)+p scattering cross sections,
where the dipole interaction does not play a role at low
energies, contrasting them with the Ps(2s) case. Elastic
scattering is controlled by the polarization interaction
−α/2r4, and, according to the theory of O’Malley et al.

[22], the partial cross section is constant for L = 0, and
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behaves as CLE for L ≥ 1, where

CL =
8πα2

(2L− 1)2(2L+ 1)(2L+ 3)2
, (12)

and where α = 36 a.u. is the polarizability of Ps in the
ground state. Remarkably, even at the lowest considered
energy, the H-formation cross section, despite the Wigner
1/E1/2 divergence, remains well below the elastic cross
section, with the latter being nearly constant due the
dominant zeroth partial wave.

B. The influence of the 2s-2p splitting

If the Ps 2s and 2p states are completely degenerate (as
assumed in the present CCC calculations), then on the
log energy scale oscillations would extend to −∞. How-
ever, because of the relativistic splitting between the 2s
and 2p states, the oscillations are limited from below. For
example, the splitting between 23P1 and 23S1 states in
ortho-Ps is about 13 GHz= 5.4 × 10−5 eV [17, 18], and
this means that the oscillations stop at log10E < −4.
Moreover, the Wigner threshold law should be restored
in this energy range meaning that the cross section be-
haves as k4l for pure elastic scattering, where l is the
lowest electron angular momentum allowed for a given
symmetry. The quasielastic cross section in this region

behaves as k2li−1
i k

2lf+1
f , where ki, kf are the initial and

final wave numbers, and li, lf are corresponding angular
momenta.
From the high-energy side the oscillations are limited

by the condition of the validity of the threshold theory.
This can be estimated as k < 1/R, where R is the radius
of the short-range interaction (about the size of the Ps
atom).
The relativistic splitting also affects the convergence of

the partial-wave summed cross sections. For their calcu-
lation higher angular momenta should be included. The
T -matrix at large L depends only on the dipole interac-
tion and was given by Gailitis [19] for electron scattering
by the excited hydrogen atom. For Ps-p scattering it
should be multiplied by the factor m1/m2 = 4. Accord-
ingly,

T2sL→2sL = 24
3

L(L+ 1)
,

T2sL→2pL−1 = 24
i

[L(2L+ 1)]1/2
, (13)

T2sL→2pL+1 = 24
−i

[(L+ 1)(2L+ 1)]1/2
,

and

T2pL∓1→2pL∓1 =

= 24





3
2L+1

(

−iπ
2L−1 + 1

L

)

−3
(2L+1)[L(L+1)]1/2

−3
(2L+1)[L(L+1)]1/2

3
2L+1

(

iπ
2L+3 − 1

L+1

)



 ,

(14)

where, for example, the top right element corresponds to
the L− 1 → L+ 1 transition.
It follows from these expressions that the partial-wave

expansion for the 2s → 2s and 2p → 2p cross sections
(σL ∝ (2L+1)|TL|

2) converges as 1/L3, whereas the cross
section for the quasielastic transition 2s → 2p diverges as
a 1/L harmonic series. This is all assuming that the rela-
tivistic splitting between 2s and 2p is neglected, and is a
well-known result for scattering in the presence of dipole
coupling between degenerate states. The same situation
also occurs in scattering by a stationary dipole [20]. To
remedy this situation, scattering by a rotating dipole in
the Born approximation for higher partial waves is in-
cluded [21]. As a result, the harmonic series is replaced
by the factor ln(4E/∆E), where ∆E is the splitting be-
tween the dipole-coupled states. This factor is related to
an effective cut-off in L beyond which scattering becomes
insignificant. Indeed, the collision time can be estimated
as t ∼ ρ/v = L/2E, where ρ is the impact parameter
and v is the projectile velocity. The collision is efficient
if t < 1/∆E, and this leads to the effective cut-off in L

Lcut =
2E

∆E
. (15)

This estimate is valid up to a numerical factor of the or-
der of 1. However, its exact value is not really important
because of the fast convergence of the elastic cross sec-
tion and the logarithmic divergence of the quasielastic
cross section. We can now use this estimate to calcu-
late Ps(2l)+p cross section by summing partial waves up
to Lcut. Naturally, the whole procedure is valid only
for E ≫ ∆E. For energies comparable to the relativis-
tic splitting numerical solution of coupled equations with
the account of the splitting is necessary.
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FIG. 4: Partial wave summed to Lcut cross sections multiplied
by collision energy E for Ps(2l)+p → Ps(2l′)+p scattering, see
text.

Calculations according to this scheme are presented in
Fig. 4, where we plot the product σE for all three partial-
wave summed cross sections. Here, the available L ≤ 80
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CCC-calculated partial cross sections were summed up to
Lcut, which ranges from 3 at 10−4 eV to 40000 at 1 eV,
with the L > 80 partial cross sections coming from the
use of Eqs. 13 and 14. The oscillations in the partial-
wave summed cross sections, seen in Figs. 1 and 2 for
low partial waves, almost completely disappear because
of a significant background due to L > 4. However, a
remnant of oscillatory behavior is still seen in the elastic
cross sections. Additionally, these oscillations should be
observable in the differential cross sections as a function
of energy at large scattering angles. At energies below
0.001 eV the wiggling structures are an artifact of Lcut

being an integer. The purpose of showing the low energy
results here is solely to demonstrate that the threshold
behavior changes if ∆E 6= 0. The uncertainties become
negligible in the energy range above 10−3 eV. In the re-
gion between 0.003 and 1 eV elastic cross sections behave
as A/E, where A is a slowly varying function of energy
whose typical values, say, at E = 0.01 eV, are 6707 eVa20
for scattering in the 2s state, and 11219 eVa20 for scatter-
ing in the 2p state. For the quasielastic 2s → 2p transi-
tion the cross section behaves asB lnE/E, whereB is an-
other slowly varying function of E, with B lnE = 55173
eVa20 at E = 0.01 eV. The conclusion important for ex-
periments is that all cross sections are very large, and the
2s → 2p cross section dominates above 0.001 eV.

C. Reaction cross sections

The cross section for an endothermic process involving
excited Ps should be finite at the threshold, and diverge
as 1/E in the exothermic case, if the dipole coupling is
present. In addition, resonances due to dipole-supported
states should be observed below higher-energy thresh-
olds.
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e+ for L = 3 calculated using the convergent close-coupling
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As an example, consider the exothermic reaction

Ps(2p) + p → H(2l) + e+

in the vicinity of the H(3l) formation threshold energy
0.189 eV. In Fig. 5 we show the L = 3 partial cross
sections. Formation of H(2p) can occur for two parities:
P = +1 (“unfavorable” parity) and P = −1 (“favorable”
parity). The low-energy behavior is influenced by the
dipole coupling in the H(2s) and H(2p) P = −1 cases,
and therefore the cross section diverges as 1/E. In con-
trast, for the H(2p) P = +1 case the dipole coupling is
absent, and the threshold behavior is instead given by the
Wigner law σ ∝ E2.5. As follows from the general theory,
the low-energy oscillations are suppressed. Instead, the
P = −1 cross section exhibits two dipole-supported res-
onances just below the H(3l) + e+ threshold. According
to the general theory [5], the dipole coupling is sufficient
to produce resonances only in the P = −1 case. In the
approximation of the 3s− 3p− 3d degeneracy, the posi-
tion of these resonances relative to the threshold form an
infinite geometric progression with the common ratio

1/R = exp

[

−
2π

µ

]

, (16)

where µ is determined from the solution of the eigenvalue
problem, Eq. (5), and Eq. (8). For the H(3l) + e+

threshold for L = 3 we have R = 9.3227 [5]. From the
calculations presented in Fig. 5 we estimate the distances
of the first and second resonances to the n = 3 threshold
to be 0.029 eV and 0.003 eV, respectively, yielding R ≈
9.67 in good agreement with the above prediction. In
reality the number of resonances is limited because of
the relativistic splitting. Similar, but less pronounced,
resonances are observed in the Ps(2p) + p → H(2s) + e+

process. Their relative weakness is due to the weaker
coupling between the n = 3 dipole-supported state and
the H(2s) state.

V. CONCLUSIONS

In conclusion, we have demonstrated several remark-
able features in Ps−p and equivalently Ps−p̄ collisions
near-threshold cross sections. Using the CCC method,
very large oscillations, not previously seen in ab initio

calculations, were found for low partial waves in elas-
tic and quasi-elastic scattering for Ps(2s) initial states.
According to the threshold theory of Gailitis, these are
due to the dipole coupling between degenerate states in
excited Ps and excited (anti)hydrogen. Below-threshold
dipole-supported resonances in inelastic processes, and
1/E divergences of the cross sections for elastic and some
inelastic processes were also found, as predicted by Gaili-
tis. The CCC-calculated elastic cross sections were found
to be particularly large, around three orders of magnitude
bigger than the corresponding (anti)hydrogen formation
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cross sections. The implication of this for the antihydro-
gen formation experimental program will be discussed
elsewhere [23].
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