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The Casimir-Polder interaction between an atom and a multilayered system composed of infinitely
thin planes is considered using the zeta-function regularization approach with zero-point energies
summation. As a prototype material, each plane is represented by a graphene sheet, an atomically
thin layer of Carbon atoms organized in a hexagonal lattice, whose optical response is described by
a constant conductivity or Drude-Lorentz model conductivity. Asymptotic expressions for various
separations are derived and compared to numerical calculations. We distinguish between large
atom/plane distance limit, where retardation effects are prominent, and small atom/plane distance
limit, where the typical van der Waals coefficient is found to be dependent on the number of
graphenes and characteristic separations. The calculated energies for different atoms and graphene
conductivity models brings forward the basic science of the Casimir-Polder effect and suggests ways
to manipulate this interaction experimentally.

PACS numbers: 03.70.+k, 03.50.De

I. INTRODUCTION

Interactions originating from electromagnetic fluctua-
tions between objects are of much interest from a fun-
damental point of view as well as for the development
of novel devices. Van der Waals (vdW), Casimir, and
Casimir-Polder forces are examples of such interactions.
Their common origin has been recognized in the early
works by Lifshitz and collaborators [1] and they have
been studied extensively in recent years [2] to advance
our understanding of light-matter interactions. The vdW
regime corresponds to small distance separation between
the objects, where the speed of light c is neglected. The
Casimir force, describing interactions between objects
with macrodimensions, and the Casimir-Polder force, de-
scribing interactions between polarizable particles and
objects with macrodimensions, on the other hand, cor-
respond to the retarded regime.

The Casimir-Polder force is of great relevance to novel
phenomena such as trapping cold atoms near surfaces,
Bose-Einstein condensates, and quantum reflection [3, 4].
Trapped atoms appear to be very sensitive to the electro-
magnetic characteristics of the nearby objects, which in
turn depend on their response characteristics, boundary
conditions, and even applied external fields. Therefore,
utilizing different materials and system arrangements can
be a powerful tool to gain insight and ultimately control
the atom-wall coupling. Recent studies have shown that
systems involving graphene give new perspectives into
this problem due to the graphene reduced dimensionality
and response properties determined by the Dirac-like en-
ergy band structure. Several reports have focused on the-
oretical calculations of atom/graphene Casimir-Polder
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interactions. These investigations typically use the Lif-
shitz theory, which expresses the energy in terms of the
atomic polarizability and frequency-dependent response
properties of the material. It was shown that the dielec-
tric function of graphene, described via the Dirac and
hydrodynamics models, leads to different magnitudes of
the Casimir-Polder energy [5]. The much reduced inter-
action captured via the Dirac model as compared to typi-
cal metallic surfaces, has also been suggested as means to
shield vacuum Casimir-Polder fluctuations [6]. Casimir-
Polder thermal effects involving graphene have also been
studied showing unusual distance asymptotics when com-
pared to atom/metal wall interactions [7]. Exploring the
extraordinary magneto-optical response of graphene, on
the other hand, was suggested as means to control the
Casimir-Polder interaction by an applied magnetic field
[8].

Although atom/single graphene and atom/graphene
covered substrates have been considered by several au-
thors, as discussed above, the Casimir-Polder interac-
tion in atom/multilayered graphenes is yet to be ex-
plored. Previous studies have shown that the Casimir
energy in multilayered systems with planar, cylindrical,
or spherical symmetries can significantly affect not only
the strength, but also the characteristic distance depen-
dences of the interaction [9]. Similarly, the effects of num-
ber of graphenes, graphene-graphene separations, and
atom-graphene distance are factors that will affect the
Casimir-Polder force. In addition, investigating different
models of describing the response properties of each con-
stituent layer will also influence the Casimir-Polder force
and lead to distinct asymptotic relations.

In this paper, we consider the Casimir-Polder in-
teraction in atom/multilayered systems using the zeta-
regularization approach, which relies on the the zero-
point mode summation of the electromagnetic field. This
technique was used to study the Casimir energy in an
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infinitely thin spherical shell, two graphene sheets, and
multi-layered graphenes [2, 10] and here we expand its
applicability to atom/multilayered configurations. As a
prototype to the multilayers we take graphene sheets,
where each graphene can be taken into account via its
conductivity σ(ω), described with different models. Us-
ing media rarefication to obtain the atom/substrate cou-
pling, analytical expressions in various asymptotic lim-
its in terms of number of layers and distance separa-
tions are obtained. By utilizing the constant conductiv-
ity model and Drude-Lorentz approximation which re-
lies on first principles calculation results, we are able
to determine how graphene properties beyond the stan-
dard two-band Dirac-like energy band structure affects
the Casimir-Polder interaction.

We also note that throughout the paper we use ~ = c =
1, while in the final results the real units are restored.

II. THE CASIMIR-POLDER ENERGY

The zeta-regularization technique relies on finding
the zero-point energy as a regularized quantity for a
given configuration using the appropriate electromag-
netic boundary conditions, as outlined in [11]. The sys-
tem under consideration here consists of half of the space
z < 0 being occupied by a material with dielectric func-
tion ε(ω) and a stack of N equally spaced infinitely thin
layers positioned above it, as shown in Fig. 1. We dis-
tinguish between the plane-plane separation d and the
substrate-bottom plane separation a. The zero-point en-
ergy can be expressed as

E(N )(u) = −~cΛ2u cosπu

2π

∫∫
d2k⊥
(2π)2

∫ ∞
0

dλλ1−2u

× ∂

∂λ
ln ΨN (iλc), (1)

where ΨN defines the electromagnetic energy spectrum,
which can be found via the appropriate boundary con-
dition. Also, k⊥ is the 2D wave vector and λ = −iω/c.
The parameter Λ with a wavenumber dimension is in-
troduced to preserve the energy dimension of E(u). To
calculate the Casimir-Polder interaction, we take advan-
tage of the idea developed by Lifshitz [1] relying on media
rarefication. Specifically, we take that the half space at
z < 0 to be described as ε(ω) = 1 + 4πLα(ω), where L is
the amount of atoms and α is the polarizability of single
atom in this material. In the limit of L → 0 we obtain
the energy E(N ) per atom at a distance a:

E(N ) = − lim
L→0

1

L

∂E(N )

∂a
, (2)

where E(N ) = E(N )(L, u) is the zeta-regularized energy
with regularization parameter u for the configuration of
N planes and dielectric medium.

The zero-point energy E(N ) can be found from the
standard boundary conditions when applied to Maxwell’s

FIG. 1. The N parallel planes are located at points z =
a, a+d, a+ 2d, a+ 3d, . . . , a+ (N − 1)d. The half-space z ≤ 0
is filled by dielectric media with permeability ε(ω).

electromagnetic equations to the system in Fig. 1. The
energy is a summation of transverse electric (TE) and

transverse magnetic (TM) contributions E = E
(N )
TE +

E
(N )
TM , expressed as

E
(N )
TM =

∫ ∞
0

dy

∫ 1

0

dxα
(xy
d

)
ΓN

(
η
(xy
d

) 1

x

)
(2− x2),

E
(N )
TE =

∫ ∞
0

dy

∫ 1

0

dxα
(xy
d

)
ΓN

(
η
(xy
d

)
x
)
x2. (3)

The TE and TM terms are conveniently given in
terms of rescaled variables y = 2d

√
k2⊥ + λ2 and x =

λ/
√
k2⊥ + λ2. The two contributions have a common

function

ΓN (t) = −y
3te−

2a
d y

2πd4

(
1 + t− e−yf 1− f2(N−1)

1− f2N

)−1
,

f = cosh y + t sinh y +

√
(cosh y + t sinh y)

2 − 1.

Here η = 2πσ/c is the dimensional conductivity. We note
that the appearance of the argument of xy/d follows from
the frequency dependence in the response properties σ(ω)

and α(ω). Details in obtaining E
(N )
TM , E

(N )
TE , and ΓN (t)

can be found in Appendix A.
The expressions for the TE and TM contributions can

also be recast in a different form by further changing the
variables y = sd/a and z = xy/d = xs/a. One finds

E
(N )
TM =

∫ ∞
0

ds

∫ s
a

0

dzα(z)Γ̃N

(
sη(z)

za

)(
2s2 − (za)

2
)
,

E
(N )
TE =

∫ ∞
0

ds

∫ s
a

0

dzα(z)Γ̃N

(
zaη(z)

s

)
(az)

2
, (4)

where

Γ̃N (t) = − te
−2s

2πa3

(
1 + t− e− ds

a f̃
1− f̃2(N−1)

1− f̃2N

)−1
,
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f̃ = cosh
sd

a
+ t sinh

sd

a
+

√(
cosh

sd

a
+ t sinh

sd

a

)2

− 1.

It turns out that some analytical results may be obtained
in a more straight forward manner using either Eqs. (3)
or Eqs. (4) depending on the particular situation consid-
ered, as can be seen in what follows.

The response properties of the atoms and layers are
modeled as follows. The atomic polarizability is repre-
sented with an oscillator model

α(λ) =
α(0)

1 + λ2

λ2
a

, (5)

where α(0) is the static polaizability and λa is the char-
acteristic wavelength. Relevant parameters for several
atoms, including H, H2, He, He* (excited He atom), Na,
K, Rb, Cs and Fe, are given in Appendix B 2. Since
the prototype layer material is graphene, we consider the
situation when its conductivity is represented via its uni-
versal value σgr = e2/4~. This is expected to be a good
approximation when studying the Casimir-Polder inter-
action at large separations since σ0 is maintained over a
relatively large frequency range ~ω ≤ 3 eV . [12]. The
graphene conductivity is also described using a Drude-
Lorentz (DL) model. Taking into account that σ for a
single graphene is very similar to the one for graphite
in all frequency range except for small ω, the graphene
conductivity can be represented as a DL sum [13], as can
be seen in Appendix B 1. Infintely conducting planes or
planes described by any value of constant conductivity
are also investigated.

III. ASYMPTOTIC RELATIONS

Several asymptotic expressions for the energy of the
atom/multilayers system can be found when considering
small or large atom/layer separations and/or constant
graphene conductivity η0. In the calculations, both forms
in Eqs. (3) and (4) are utilized depending on the partic-
ular case considered.

A. N planes, a→∞

The Casimir-Polder energy for an atom interacting
with N planes when the separation a is large can be
found using Eq. (3). Making the substitution y = sd/a
and then taking the limit of a → ∞, it is found that
f → 1, while α → α(0), and η → η(0) = η0. Performing
the integration afterwards, one obtains the interaction
energy

E(N )
a→∞ = −3α(0)

8πa4
q(Nη0). (6)

This result is very similar to the standard Casimir-Polder
energy for an atom/perfect metal system (see, for exam-
ple, [11]), but with an additional factor q(Nη(0)), which

has the general expression

q(x) =
1

6
+

1

2x2
− 1

4x
+
x2

2
− x

4

− 1

2x3
ln(1 + x)− x(x2 − 2)

2
ln

(
1 +

1

x

)
. (7)
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FIG. 2. Left panel: the function q(x) as a function of x.

Right panel: the ratio E(N )/E
(N )
a→0 for Hydrogen atom and

for different number of planes N = 1, 2,∞ (from bottom to
top). We adopt the constant conductivity model with η = ηgr
and interplane distance d = 0.3354nm.

The explicit form of q(x) enables us to examine other
asymptotic behavior in terms of the magnitude of the
constant conductivity and number of planes. For exam-
ple, one finds q(x)x→∞ = 1. Therefore, for infinite num-
ber of planes, N → ∞, or perfectly conducting planes,
η0 → ∞, the standard Casimir-Polder energy is recov-
ered.

The opposite limit can also be examined. Using Eq.
(7), the small argument expansion gives

q(x)|x→0 = −
(

1

8
+ lnx

)
x+O(x2). (8)

The above expression covers situations of small constant
conductivity, which includes the case of graphene with
estimated universal value ηgr ≈ 0.0114. For example,
the Casimir-Polder energy for an atom/single graphene

is E
(1)
a→∞,gr = − 3α(0)

8πa4 0.05. Thus the interaction is about
20 times smaller than the one involving a perfect metallic
surface.

Eqs. (6) and (7) are also useful in understanding bet-
ter how the energy of the atom/multilayers system can
be manipulated. Increasing N , while η0 is constant re-
sults in the same outcome when η0 is increased and N is
constant. Fig. 2 (left panel) displays q(x) as a function
of x, which essentially traces the Casimir-Polder interac-
tion energy when the atom is at a larger distance (a� d)
from the N stack of planes.

B. N planes, a→ 0

In the case of small atom/plane separations, the
Casimir-Polder energy is mainly determined by the TM
mode, while the TE contribution is negligible, as can be
seen from Eq. (4) after numerical calculations. Taking
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FIG. 3. The Casimir-Polder energy of a Hydrogen atom, nor-
malized by the Casimir-Polder energy atom/ideal metal, near
a stack of graphene planes with conductivity described us-
ing DL model for a = 10n, n = 0, 1, 2, 3,∞. The interplane
graphene separation is the equilibrium distance for graphite
d = 0.3345nm

the limit of a → 0 in the TM contribution in Eq. (4)
when a� η(0)/λj , η(0)/λa (λj are the DL characteristic
frequencies as defined in Appendix B 1), one finds

Ea→0 = − 1

4πa3

∫ ∞
0

α(z)dz. (9)

This result was obtained in Ref. [9], where the authors
have considered the vdW limit of atom interacting with
a perfect metal. It is interesting that the same result is
obtained for the atom/multilayer configuration consid-
ered here. In addition to the energy being independent
of N , there is no dependence on the magnitude of the
conductivity providing the above discussed conditions,
(a� η(0)/λj , η(0)/λa), are fulfilled.

Fig. 2 (right panel) shows how EN /Ea→0 changes as a
function of a, where EN is calculated numerically using
Eq. 3. It is evident that the interaction does not depend
strongly on the number of planes involved. Also, Fig.
2 (right panel) displays that EN /Ea→0 does not change
significantly as a is increased showing that the a → ∞
limit is quickly approached (after a few nm-s).

C. Large (d→∞) and small (d→ 0) interplane
distances

Asymptotic expressions can also be obtained by con-
sidering different limits of the interplane distance sepa-
ration. Taking d → ∞ while a is finite in Eq. (4) the
energy for a single plane (N = 1) is recovered, E(1) =

E
(1)
TM + E

(1)
TE . In addition, the limit of d → 0 (d � a) in

Eq. (4) is equivalent to the limit of a→∞ as we obtain

that E
(N )
d→0 = E

(N )
a→∞. It is noted that these asymptotic

limits hold for both models of the graphene conductivity
providing that d� max(a, λ−1j , λ−1a ) if σ is described via

the DL model and d � max(a, λ−1a ) if σ is taken to be
constant.
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FIG. 4. The Casimir-Polder energy multiplied by a4 for sev-
eral atoms as a function of number of graphene planesN . The
conductivity for each graphene plane is taken into account us-
ing the DL model and the interplane distance is d = 0.3345nm
while a = 100nm.

IV. NUMERICAL SIMULATIONS

Analyzing the Casimir-Polder energy when the
graphene sheets are described via the DL model (param-
eters are given in Appendix B 1) requires numerical cal-
culations. Such calculations are also needed when eval-
uating the interaction beyond the asymptotic limits for
η = η0 discussed previously. Taking the parameters for
several atoms (Appendix B 2) E(N ) can be calculated as a
function of the a and d separations and number of planes
N using Eq. (3).

In Fig. 3, the Casimir-Polder energy for a Hydro-
gen atom is shown as a function of the number of
graphene planes N for different distances a = 10n

nm, n = 0, 1, 2, 3,∞ where the graphene conductivity
is taken using the DL model and ηgr. Here the equilib-
rium for graphite interplane distance is used such that
d = 0.3345nm [14].
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FIG. 5. The Casimir-Polder energy for Hydrogen (solid lines)
and Rb (dashed lines) atom near a stack of graphene planes
with DL (upper two curves) and ηgr (lower two curves) con-
ductivities. Here d = 0.3345nm and a = 100nm.

Fig. 3 shows that for all a the normalized E(N )/ECP
increases up to a certain N , after which there is
no change. Depending on a, reaching the constant
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E(N )/ECP happens at different N . Specifically, for
smaller atom/plane separations, the constant E(N )/ECP
is achieved at much smaller values of N as opposed to
larger a, where the constant behavior is achieved when
there are many planes in the stack.

We also consider how different types of atoms affect
the interaction in terms of their characteristics, specified
in Appendix B 2. Fig. 4 shows that all atoms affect the
energy in a similar way as a function of N . The rescaled
EN increases as N increases until a plateau is reached,
which corresponds to the asymptotic limit of large N in
Eq. (6) (q(Nη0) → 1 due to the large argument). The
magnitude of the plateau region is essentially determined
by α(0). Therefore, we see that atoms with larger α(0),
such as Cs, have bigger energy, as opposed to the ones
with smaller α(0), such as Na.

Is is also interesting to compare how the different
models for the graphene conductivity affect the Casimir-
Polder interaction. Fig. 5 shows the energy for a Hydro-
gen atom at a distance a = 100nm when each graphene
plane is described using both models. Although the char-
acteristic behavior as a function of N is the same, the
EN /ECP is smaller when η = ηgr. In addition, the
constant region is achieved faster for the DL model as
compared to constant conductivity.

The Casimir-Polder interaction for the considered sys-
tem here can further be analyzed by separating the re-
tarded and non-retarded regimes. This can be achieved
by casting the total energy from Eqs. (3) via y = sd/a
in the form

E(N ) = −C3(a,N )

a3
, (10)

where C3(a,N ) is the vdW coefficient, which depends
on the number of planes and the atom/plane separation
a. The 1/a3 dependence and C3 being a constant are
characteristic for the non-retarded vdW regime, typically
for a < 5 nm. For larger a however, retardation effects
become important and the 1/a3 behavior is no longer
valid.

Investigating C3(a,N ) dependence on a is instructive
for the understanding of the importance of the relativistic
effects, while the N dependence is indicative of how the
size of the planar stack influences the interaction. In Figs.
6 and 7, we show the vdW coefficient for several atoms
as a function of a for the two models of the graphene
conductivity. One notes that in both cases, C3(a,N ) de-
creases as a grows, however, this decay is stronger for
η = ηgr, which is the reason for the smaller vdW coeffi-
cient when compared with the one found with η = ηDL.
The strength of the atomic polarizability and number of
planes determine the overall value of the vdW coefficient.
For larger α0 (Na, K, Rb, CS), C3 has bigger magnitude
when compared to the C3 for H, H2, He. Similarly, larger
N results in larger vdW coefficients.

Examining the large a behavior in Figs. 6 and 7 shows
that C3(a,N ) ∼ 1/a. Therefore, the overall behavior of
the interaction energy is E ∼ 1/a4, which coincides with
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FIG. 6. The vdW coefficient C3(a,N ) for several light atoms
and for two models of the conductivity. Solid lines: N = 1
and dashed lines: N =∞. The insert is the relative difference
given by Eq. (11) as a function of a separation.

the asymptotic limit discussed in Sec. III. Figs. 6 and 7
show that the 1/a behavior becomes apparent for shorter
separations when the number of planes is small and for
the constant graphene conductivity model.

The comparison of the vdW coefficients for the dif-
ferent atoms calculated with the two models for the
graphene conductivity can further be examined by cal-
culating the following difference

δ(a) =
C3(a,∞)− C3(a, 1)

C3(0, 1)
100%. (11)

The above expression gives means to obtain how the dif-
ference between the vdW coefficients for N = 1 and
N = ∞ normalized to the coefficient at a = 0 for one
graphene plane changes as a function of a. The insert
in Figs. 6 and 7 shows that δ(a) has non-monotonic
behavior. It experiences a maximum point at a certain
separation a. For atoms with smaller polarizability δmax
is found at shorter separations. For atoms with larger
polarizability δmax is fairly insensitive to the a separa-
tion.

V. CONCLUSION

The Casimir-Polder interaction is a ubiquitous force
in any atom/substrate system. Due to recent ex-
perimental advances in materials at the nanoscale,
atom/multilayered systems composed of graphene sheets
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are of particular interest. In this work we present a per-
spective of Casimir-Polder effects using summation of
zero-point energies via the zeta-function regularization
technique. The zero-point energies are found by solving
the boundary conditions of the electromagnetic spectrum
which allows the utilization of different models for the re-
sponse properties of the atoms and layers.

The asymptotic derivation for large separations be-
tween the atom and the graphene stack shows that the
Casimir-Polder energy takes a form similar to the one for
atom/single graphene and a numerical factor q(Nσ(0)).
Thus the interaction can be increased, for example, ei-
ther by increasing σ(0) or the number of graphenes in
the stack N . The small separation limit between the
atom and the graphenes recovers the expression for the
atom/single graphene configuration. The large and small
inter-graphene distances are also considered. The de-
rived asymptotic relations compare well with the numeri-
cal calculations of the derived Casimir-Polder expression.
The numerical calculations also show that the constant
conductivity description results in a smaller magnitude
interaction as opposed to the Drude-Lorentz model for
σ(ω).

We also consider the non-retarded regime by calcu-
lating the vdW coefficient C3(a,N ), which depends on
the atomic separation and the number of planes. Again,
it is found that C3(a,N ) is strongly dependent on the
model for σ(ω) as σgr results in a smaller coefficient when
compared to the calculations with the DL model. The

atomic polarizability also affects the interaction showing
that atoms with larger α(0) have stronger Casimir-Polder
interaction.

This work shows that the applicability of the
zeta-regularization technique can be expanded to
atom/multilayer systems. The asymptotic expressions
help us gain insight into the basic science of the Casimir-
Polder interaction. The calculations for the various
atoms and models for the graphene conductivity are also
useful to find ways how to manipulate this interaction.
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Appendix A: The energy of an atom near the stack
of N conductive planes

Due to the planar symmetry of the system in Fig. 1,
the electric (E) and magnetic (H) fields are represented
by the following

E = e(z)eikxx+ikyy−iωt, H = h(z)eikxx+ikyy−iωt. (A1)

Taking into account that Ohm’s law is satisfied on each
conductive surface, the boundary conditions can be writ-
ten in a decoupled form for the TE and TM contributions.

a. TM mode, Hz = 0

The TM electromagnetic modes are found by solving
the Maxwell equations with E and H for the system
in Fig. 1. The dielectric medium at z < 0 is consid-
ered to have frequency dependent response properties
ε = ε(ω), µ = µ(ω) and each 2D layer has the same
conductivity σ(ω), while the domains between z = 0 and
z = a + (N − 1)d are with ε = 1, µ = 1. The respective
boundary conditions are

[e′z]z=a+jd = 0,

[ez]z=a+jd = −4πiσ

ω
e′z = −2πσ

cκ
e′z,

[e′z]z=0 = 0 , [εez]z=0 = 0, (A2)

where [f ]z = f(z − 0)− f(z + 0).

Thus there are 2N + 2 coupled equations, whose main
determinant can be written on the imaginary axis ω = iλ
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according to Eq. (1),

4TM =

∣∣∣∣∣∣∣∣∣∣∣∣

Z1 B0 0 . . . 0 0
0 A0 B1 . . . 0 0
0 0 A1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . AN−2 BN−1
Z2 0 0 . . . 0 AN−1

∣∣∣∣∣∣∣∣∣∣∣∣
, (A3)

This (N +1)×(N +1) determinant is in a block-diagonal
form with elements

Bl =

(
e(l−1)p −e−(l−1)p
e(l−1)p e−(l−1)p

)
, B0 =

(
e−ap −eap
e−ap eap

)
,

Aj =

(
−ejp e−jp

(− 2πσ
c − 1)ejp ( 2πσ

c − 1)e−jp

)
,

Z1 =

(
−κε

κ 0
−ε 0

)
, Z2 =

(
0 −e−(N−1)p
0 e−(N−1)p

)
, (A4)

where l = (1,N − 1), j = (0,N − 1). Also, p = dκ, a =

a/d, κε =
√
k2⊥ + εµλ2, and κ =

√
k2⊥ + λ2.

The diagonalization of the matrix yields

4TM = det
[
Z1 + (−1)NC(ap)C(N−1)(p)Z2

]
, (A5)

where

C(x) = BlA
−1
l =

(
− coshx− 2πσ

c sinhx sinhx
2πσ
c coshx+ sinhx − coshx

)
.

To calculate the (N − 1) power of the matrix C, we rep-
resent it in Jordan form C = TJT−1, where

T =

( − sinh p
cosh p−f−1

− sinh p
cosh p−f

1 1

)
, J = −

(
f 0
0 f−1

)
, (A6)

and f =
√

(cosh p+ b1 sinh p)2 − 1 + (cosh p+ ηκ
λ sinh p).

For the calculation of the Casimir-Polder force one
needs the renormalized spectrum, which requires find-
ing 4∞TM at the limit of a → ∞ and d → ∞(p → ∞).
Thus the renormalized determinant reads

4TM

4∞TM
= − e−p(N−1)

fN−2(1 + ηκ
λ )N

{
e−p

1− f2(N−1)

1− f2

− 1− f2N

f(1− f2)

(
1 +

ηκ

λ
+
ηκ

λ
e−2ap

κε − εκ
κε + εκ

)}
. (A7)

One notes that for ε = µ = 1, we obtain the result for N
planes, as found in [10].

Finally, after changing variables in Eq. (1) to spheri-
cal coordinates kx = κ sin θ cosϕ, ky = κ sin θ sinϕ, λ =

κ cos θ (κ =
√
k2x + k2y + λ2), y = 2p = 2dκ, λ = κx, x =

cos θ, the Casimir-Polder energy can be written as

E(N )
TM =

Q
(N )
TM

d3
, (A8)

where

Q
(N )
TM =

∫ ∞
0

y2dy

∫ 1

0

dx ln Φ
(N )
TM

(η
x

)
,

Φ
(N )
TM (t) =

−e−p(N−1)

32π2fN−2(1 + t)N

{
e−p

1− f2(N−1)

1− f2

− 1− f2N

f(1− f2)

(
1 + t+ te−2ap

κε − εκ
κε + εκ

)}
,

f =
√

(cosh p+ t sinh p)2 − 1 + cosh p+ t sinh p. (A9)

Rarefying the media ε(ω) = 1 + 4πLα(ω) and µ(ω) =
1+4πLβ(ω) (α(ω) – atomic polarizability; β(ω) – atomic
dynamic magnetic susceptibility) leads to the Casimir-
Polder energy. For an atom with trivial magnetic prop-
erties such as µ = 1, the media rarefication is only for
ε(ω). Below we provide both situations

E
(N )
TM =

∫ ∞
0

dy

∫ 1

0

dxα
(xy

2d

)
(2− x2)ΓN

(η
x

)
, (A10)

Ê
(N )
TM = −

∫ ∞
0

dy

∫ 1

0

dxβ
(xy

2d

)
x2ΓN

(η
x

)
, (A11)

where

ΓN (t) = −y
3te−

a
d y

32πd4

(
1 + t− e−

y
2 f

1− f2(N−1)

1− f2N

)−1
.

b. TE mode, Ez = 0

Obtaining the electromagnetic spectrum for the TE
modes follows a similar procedure for the appropriate
boundary conditions

[hz]z=jd = 0,

[h′z]z=jd = 4πiσωhz = −2ηλ

κ
κhz,

[h′z]z=0 = 0, [µhz]z=0 = 0. (A12)

The determinant of the coupled equations has the same
form as in Eq. (A3) and

B0 =

(
e−ap eap

e−ap −eap
)
, Z1 =

(
−κε

κ 0
−µ 0

)
. (A13)

Executing the variable change to spherical coordinates,
the energy is found as

E(N )
TE =

Q
(N )
TE

d3
, (A14)

where

Q
(N )
TE =

∫ ∞
0

y2dy

∫ 1

0

dx ln Φ
(N )
TE (ηx) , (A15)
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and

Φ
(N )
TE (t) = − e−p(N−1)

32π2fN−2(1 + t)N

{
e−p

1− f2(N−1)

1− f2

− 1− f2N

f(1− f2)

(
1 + t+ te−2ap

µκ− κε
µκ+ κε

)}
. (A16)

Rarefying the dielectric medium yields

Ê
(N )
TE = −

∫ ∞
0

dy

∫ 1

0

dxβ
(xy

2d

)
(2− x2)ΓN (ηx) ,

E
(N )
TE =

∫ ∞
0

dy

∫ 1

0

dxα
(xy

2d

)
x2ΓN (ηx) , (A17)

where we marked by hat the magnetic contributions.
We finally note that there is a simple relation between

the ΓN function and the reflection coefficients rTM,TE of
the atom/multilayered system as follows,

ΓN

(η
x
, y
)

= rTM, ΓN (ηx, y) = −rTE. (A18)

Thus the total Casimir-Polder energy can be expressed
as

E(N ) =

∫ ∞
0

dy

∫ 1

0

dx {2 [αrTM + βrTE]

− x2 [α+ β] [rTM + rTE]
}
, (A19)

which has the same structure as the energy obtained via
the Lifshitz approach for an atom/substrate system (Eq.
(16.91) in [11].

Appendix B: Dielectric Response Properties

1. The Drude-Lorentz model of conductivity

Several reports have shown that the optical conduc-
tivity of graphene is very similar to the in-plane opti-
cal conductivity of graphite over a wide frequency range
(∼ 0.1−40 eV) [15]. Results from first principles calcula-
tions for graphite have been mapped to a Drude-Lorentz
model consisting of a Drude term and seven Lorentz os-
cillators according to [13]

σDL(ω) =
f0ω

2
p

γ0 − iω
+

7∑
j=1

iωfjω
2
p

ω2 − ω2
j + iωγj

. (B1)

Thus a viable approach for this study is to use the above
representation for graphite and adapt it to graphene.
Specifically, the graphene DL conductivity is obtained
from Eq. (B1) for the 3D graphite by multiplying it with
2πa/c (a is a characteristic distance typically taken as
the interplanar distance of graphite). The expression is
given on the imaginary axis ω = iλc (k = iλ) as follows:

ηDL(λ) =
η0γ̃0
γ̃0 + λ

+

7∑
k=1

ληkγ̃k
λ2 + λ2k + λγ̃k

. (B2)

Here, γk is the relaxation time and ωk is the characteristic
frequency for the k-th term. Also, γ̃k = γk/c, λk =
ωk/c, and ηk = 2πafkω

2
p/cγk. In Table I we show the

parameters using the calculated values for graphite [13].

ηk γk eV ωk eV

η0 0.01712 γ0 6.365 - -

η1 0.13855 γ1 4.102 ω1 0.275

η2 0.05949 γ2 7.328 ω2 3.508

η3 0.37991 γ3 1.414 ω3 4.451

η4 0.08462 γ4 0.46 ω4 13.591

η5 1.09548 γ5 1.862 ω5 14.226

η6 0.30039 γ6 11.922 ω6 15.55

η7 0.03983 γ7 39.091 ω7 32.011

γ̃k
1

nm
λk

1
nm

γ̃0 0.0322 - -

γ̃1 0.0207 λ1 0.0014

γ̃2 0.0371 λ2 0.0177

γ̃3 0.0072 λ3 0.0225

γ̃4 0.0023 λ4 0.0688

γ̃5 0.0094 λ5 0.0721

γ̃6 0.0604 λ6 0.0788

γ̃7 0.1981 λ7 0.1622

TABLE I. Parameters for the Drude-Lorentz model of a
graphene sheet in 3D graphite

We note that the optical response in the infrared
regime for 3D graphite and an isolated graphene is differ-
ent. While σ for graphite exhibits a Drude-like behavior,
the graphene optical conductivity is constant. This dif-
ference is attributed to the different electronic structure
characteristics for the two systems [15]. To ensure that
the σ = const feature is captured, the single graphene
conductivity η̃DL is obtained by using a characteristic
distance a = 0.224 nm. In addition, we require that
η̃DL(0) coincides with ηgr at zero frequency as:

η̃DL(λ) = ηDL(λ)
ηgr
η0
. (B3)

2. Atomic Polarizabilities

In general, the atomic polarizability can be represented
as a multioscillator model in the following form

α(λ) =

m∑
k=1

αk

1 + λ2

λ2
a,k

, (B4)

where the imaginary frequency axis is used.
For lighter atoms, such as H2, He and He* one-

oscillator model is typically used in Ref. [5]. Thus we
utilize available data in [16, 17] summarized as

Atom α(0)(a.u.) ωa(eV )

H 4.5 11.65

H2 5.439 14.09

He 1.384 27.64

He∗ 315.77 1.18

TABLE II. Polarizability parameters of the single-oscillator
model for several atoms (B4). Here 1 a.u. = 0.1482 Å3.

For heavier atoms, such as Na, K, Rb, Cs and Fe con-
sistent data for the one-oscillator polarizability is not
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readily found. However, we use numerical results in [18],
where precise calculations of the α(0) and their vdW co-
efficients Ca3 and Ca6 vdW coefficients are reported. Using
the following relations,

Ca3 =
1

4π

∫ ∞
0

dωα(iω), Ca6 =
3

π

∫ ∞
0

dωα2(iω), (B5)

α(iω)ω=0 = α(0), lim
ω→∞

ω2α(iω) = N, (B6)

it is realized that a two-oscillator model (4 parameters)
for α(ω) is needed in order to a have self-sustained solu-
tion. The results obtained are shown in Table III.

Two-oscillator Single-oscillator

Atom α1(a.u.) ω1(eV ) α2(a.u.) ω2(eV ) α0(a.u.) ω0(eV )

Na 162.1 2.12 0.547 116.4 162.6 2.13

K 288.4 1.66 1.754 87.0 290.2 1.68

Rb 316.7 1.65 1.85 119.6 318.6 1.68

Cs 397.3 1.53 2.597 123.8 399.9 1.55

Fe 307.8 1.75 9.972 42.8 317.8 1.89

TABLE III. Parameters of two- and single-oscillator models
for several atoms.

It is evident that the first oscillator gives the dominant
contribution to the atomic polarizability. One further
notes that if only Ca6 coefficient is used together with
α(iω)ω=0 = α(0), the obtained data for the atomic po-
larizability and characteristic frequency are very similar
to the first oscillator parameters if obtained via the Ca6
and Ca3 two-oscillator scheme.

The calculations for the Casimir-Polder force are not
affected significantly by using the atomic polarizability
via one- or two-oscillator representation if the regime of
interest is at larger separations. For shorter separations,
however, the difference can be significant. For example,
the relative error for C3(a,N ) in Eq. (10) is found to
be on the order of 15% (Na), 23% (K), 28% (Rb), 33%
(Cs), 38% (Fe). Therefore, for the calculations of the
vdW coefficient in Eq. (B4), the two oscillator model for
the atomic polarzaibility is utilized.
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G. C. Hegerfeldt, T. Köhler, M. Stoll, and C. Walter,
Europhys. Lett. 59, 357363 (2002).

[18] A. Derevianko, W. R. Johnson, M. S. Safronova, and
J. F. Babb, Phys. Rev. Lett. 82, 3589 (1999).

http://dx.doi.org/ 10.1209/epl/i2002-00202-4
http://dx.doi.org/10.1103/physrevlett.82.3589

	The Casimir-Polder effect for a stack of conductive planes
	Abstract
	Introduction
	The Casimir-Polder energy
	Asymptotic Relations
	N planes, a  
	N planes, a 0 
	Large (d) and small (d 0) interplane distances

	Numerical simulations
	Conclusion
	Acknowledgments
	The energy of an atom near the stack of N conductive planes
	TM mode, Hz =0
	TE mode, Ez =0


	Dielectric Response Properties
	The Drude-Lorentz model of conductivity
	Atomic Polarizabilities

	References


