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Using circuit QED, we consider the measurement of a superconducting transmon qubit via a
coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces co-
herent states with frequencies matched to transmon energy states. Realistic coupling is not ideally
dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of
the Jaynes-Cummings type. Previous work has shown that ringing up the resonator approximately
respects this ladder structure to produce a coherent state in the eigenbasis (a dressed coherent state).
We numerically investigate the validity of this coherent state approximation to find two primary de-
viations. First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding
to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity shears
the coherent state as it evolves. We then show that the next natural approximation for this sheared
state in the eigenbasis is a dressed squeezed state, and derive simple evolution equations for such
states using a hybrid phase-Fock-space description.

I. INTRODUCTION

Qubit technology using superconducting circuit quan-
tum electrodynamics (QED) [1, 2] has rapidly developed
over the past decade to become a leading contender for
realizing a scalable quantum computer. Most recent
qubit designs favor variations of the transmon [3–9] due
to its charge-noise insensitivity, which permits long co-
herence times while also enabling high-fidelity quantum
gates [10–12] and high-fidelity dispersive qubit readout
[13–15] via coupled microwave resonators. Transmon-
based circuit operation fidelities are now near the thresh-
old for quantum error correction protocols, some versions
of which have been realized [16–19].

The quantized energy states of a transmon are mea-
sured in circuit QED by coupling them to a detuned mi-
crowave resonator. For low numbers of photons popu-
lating the readout resonator, the coupling is well-studied
[1, 3, 20] and approximates an idealized dispersive quan-
tum non-demolition (QND) measurement [21]. Each
transmon energy level dispersively shifts the frequency
of the coupled resonator by a distinct amount, allowing
the transmon state to be determined by measurement of
the microwave field transmitted through or reflected from
the resonator. However, nondispersive effects become im-
portant when the number of resonator photons becomes
comparable to a characteristic (“critical”) number set by
the detuning and coupling strength [1, 22, 23]; present-
day experiments often operate in this nondispersive (or
nonlinear dispersive) regime [15, 24–26].

In this paper, we analyze and model the nondispersive
effects that occur during the ring-up of a readout res-
onator coupled to a transmon. These effects arise from
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the hybridization of the resonator and transmon states
into joint resonator-transmon eigenstates. While ringing
up the resonator from its ground state, the joint state
remains largely confined to a single Jaynes-Cummings
eigenstate ladder that corresponds to the initial transmon
state. As pointed out in Refs. [27–29], this joint state can
be approximated by a coherent state in the eigenbasis
(recently named a dressed coherent state [29]). Here we
refine this initial approximation and provide a more accu-
rate model for the hybridized resonator-transmon state.

We numerically simulate the ring-up process for a res-
onator coupled to a transmon, then use this simulation
to develop and verify our analytical model. We find two
dominant deviations from a dressed coherent state. First,
we show that the ring-up process allows a small popula-
tion to leak from an initial transmon state into neighbor-
ing eigenstate ladders, and find simple expressions that
quantify this stray population. Second, we show that the
transmon-induced nonlinearity of the resonator distorts
the dressed coherent state remaining in the correct eigen-
state ladder with a shearing effect as it evolves, and show
that this effect closely approximates self-squeezing of the
dressed field at higher photon numbers. We then use a
hybrid phase-Fock-space method to find equations of mo-
tion for the parameters of an effective dressed squeezed
state that is formed during the ring-up process. Our im-
proved model is satisfyingly simple yet quite accurate.

To simplify our analysis and isolate the hybridization
effects of interest, we restrict our attention to a trans-
mon (modeled as a seven-level nonlinear oscillator) cou-
pled to a coherently pumped but non-leaking resonator
(using the rotating wave approximation). The simplifi-
cation of no resonator leakage may seem artificial, but it
is still a reasonable approximation during the resonator
ring-up and it is also relevant for at least two known
protocols. First, the catch-disperse-release protocol [27]
encodes qubit information into resonator states with min-
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imal initial leakage, then rapidly releases the resonator
field to a transmission line. Second, a recently proposed
readout protocol [30] similarly encodes qubit information
into bright and dark resonator states with minimal leak-
age, then rapidly distinguishes them destructively using
Josephson photomultipliers [31]. Our dressed squeezed
state model should describe the ring-up process of these
and similar protocols reasonably well. Additional effects
arising from a more realistic treatment of the resonator
decay will be considered in future work.

Our assumption of negligible resonator damping au-
tomatically eliminates qubit relaxation (and excitation)
due to the Purcell effect [22, 28, 32, 33], which in the
present-day experiments is often strongly suppressed by
Purcell filters [15, 34, 35]. We also neglect energy relax-
ation and dephasing of the qubit (thus also eliminating
dressed dephasing [22, 36]).

We note that squeezing of the resonator field may sig-
nificantly affect fidelity of the qubit measurement [37, 38],
which can be either increased or decreased, depending on
the squeezing axis direction. A significant improvement
of the fidelity due to self-developing quadrature squeez-
ing was predicted for the catch-disperse-release protocol
[27]. (An extreme regime of the self-developing squeez-
ing, with revival and formation of “cat” states was ex-
perimentally observed in [39].) The use of a squeezed
input microwave for the qubit measurement was ana-
lyzed in [40]. A Heisenberg-limited scaling for the qubit
readout was predicted for the two-resonator measure-
ment scheme based on two-mode squeezed microwave in
[41]. The significant current interest in various uses of
squeezed microwave states [40–43] is supported by a nat-
ural way of producing them with Josephson parametric
amplifiers [44–49]. All this motivates the importance of
studying squeezed microwave fields in superconducting
circuits containing qubits.

The paper is organized as follows. In Sec. II we de-
scribe the resonator-transmon system and how the nu-
merical simulations are performed. In Sec. III we discuss
the dressed coherent state model and focus on analyzing
the inaccuracy of this model relative to numerical sim-
ulation. We quantify two deviations from the dressed
coherent state model: stray population leakage to incor-
rect eigenstate ladders (Sec. III B), and distortion of the
remaining dressed state during evolution into a dressed
sheared state (Sec. III C). In Sec. IV, we prove that a
dressed sheared state approximates a dressed squeezed
state and then derive hybrid phase-Fock-space evolution
equations for such states. Comparison with the sim-
ulation results shows that the accuracy of the dressed
squeezed state approximation is much better than ac-
curacy of the dressed coherent state approximation. We
conclude in Sec. V. In the Appendix we show that, some-
what unexpectedly, dressed coherent states and dressed
squeezed states are practically unentangled despite the
strong entanglement of the dressed Fock states from
which they are composed.

FIG. 1. (a) Considered system: a transmon coupled to a
pumped resonator. The resonator damping is neglected, since
we focus on the resonator ring-up and/or setups with a tun-
able coupler. (b) Jaynes-Cummings ladder of states. Bare
states are shown by solid black lines. Eigenlevels are shown
by red dashed lines. When n & nc, the eigenlevels are signif-
icantly different from bare levels.

II. MODEL

Following the circuit QED paradigm of measurement
[1], we consider a transmon coupled to a detuned read-
out resonator (Fig. 1). We do not simplify the trans-
mon to a 2-level qubit, but instead include the lowest
7 energy levels confined by the cosine potential of the
transmon. Though the transmon eigenstates may be
written explicitly as Mathieu functions [3, 50], we have
checked that a perturbative treatment of the transmon
as an approximate oscillator with quartic arharmonicity
[3] is sufficiently accurate for our purposes. We assume a
transmon-resonator coupling of Jaynes-Cummings type
[51], using the rotating wave approximation (RWA) for
simplicity. (Notably, this approximation fails at very
high photon numbers, leading to important effects [26].)
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A. Pumped resonator-transmon Hamiltonian

In our model the resonator Hamiltonian is

Hr = ωr a
†a =

∑
n,k

nωr |n, k〉〈n, k|, (1)

with ~ = 1, bare resonator frequency ωr, lowering (rais-
ing) operator a (a†) for the resonator mode satisfying
[a, a†] = 1, and resonator index n = 0, 1, . . . for suc-
cessive energy levels. For completeness we included the
transmon index k = 0, 1, . . . , 6 for the 7 lowest levels to
emphasize the matrix representation in terms of the joint
product states |n, k〉 ≡ |n〉r ⊗ |k〉q for the bare energy
states.

Similarly, the transmon Hamiltonian has the form

Hq =
∑
n,k

Ek |n, k〉〈n, k|, (2)

Ek = E0 + ωqk − η
k(k − 1)

2
. (3)

The dominant effect of the nonlinearity of the cosine
potential for the transmon is the quartic anharmonicity
η ≡ ω10 − ω21 > 0 of the upper level frequency spacings
relative to the qubit frequency ωq ≡ ω10, where each fre-
quency ωk` ≡ Ek − E` denotes an energy difference. At
this level of approximation, the transmon has the struc-
ture of a Duffing oscillator with a linearly accumulating
anharmonicity ω(k+1)k = ωq − k η. [This approximation
is sometimes extended to an infinite number of levels,
Hq = E0 + ωq b

†b− (η/2) b†b(b†b− 1) [52], with an effec-
tive oscillator lowering (raising) operator b (b†) satisfying
[b, b†] = 1, but we explicitly keep only the 7 lowest levels
here.]

The excitation-preserving interaction (within RWA) is

HI =
∑
n,k

g
√
n(k + 1) |n− 1, k + 1〉〈n, k|+ H.c., (4)

where g is the coupling strength between levels |0, 1〉 and
|1, 0〉. As in Ref. [3], we neglect the effects of the anhar-
monicity η in the coupling for simplicity. [Extending this
coupling to an infinite number of transmon levels yields
HI = g (ab† + a†b).]

Finally, the Hamiltonian for coherently pumping the
resonator with a classical field ε(t) e−iωdt is (within RWA)

Hd = ε(t) e−iωdt a† + ε∗(t) eiωdt a

= ε(t) e−iωdt
∑
n,k

√
n+ 1 |n+ 1, k〉〈n, k|+ H.c., (5)

where ε(t) is a complex envelope for the drive.

Combining Eqs. (1)–(5) into the total Hamiltonian
H = Hr +Hq +HI +Hd, and rewriting it in the rotating

frame of the drive frequency ωd yields

Hrot =
∑
n,k

{
[n (ωr − ωd) + (Ek − k ωd)] |n, k〉〈n, k|

+ g
√
n(k + 1) |n− 1, k + 1〉〈n, k|+ H.c.

+ ε(t)
√
n+ 1 |n+ 1, k〉〈n, k|+ H.c.

}
. (6)

This simplified Hamiltonian will be sufficient in what fol-
lows to observe the dominant non-dispersive effects that
affect the resonator ring-up. Note that we use the rotat-
ing frame in numerical simulations, but physics related
to Jaynes-Cummings ladders of states is easier to under-
stand in the lab frame, so we will often imply the lab
frame for clarity in the discussions below.

B. Numerical simulation and diagonalization

For numerical simulation, the Hamiltonian in Eq. (6)
is represented by a 7N × 7N matrix using the bare en-
ergy basis |n, k〉, where N = 200–800 is the maximum
number of simulated levels for the resonator. We choose
experimentally relevant resonator and transmon param-
eters, which in most simulations are ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 200 MHz, and g/2π = 100 MHz.
For the drive, we change the frequency ωd to be resonant
with specific eigenstate transition frequencies of interest
(detailed later) and use drive amplitudes typically in the
range ε/2π = 10–60 MHz.

The hybridization of the joint eigenstates [see Fig. 1(b)]
is significant when the number of photons n in the res-
onator is comparable to or larger than the so-called crit-
ical photon number [1, 22, 23],

nc =
(ωr − ωq)2

4g2
. (7)

For the above parameters nc = 25. This defines the scale
at which we expect significant deviations from the ideal
dispersive model.

We use the following numerical procedure for identi-
fying the joint hybridized eigenstates |n, k〉 of Eq. (6)
without a drive—we will distinguish dressed (eigen)
states (and operators) from bare states by an over-
line throughout. After setting ε = 0 to eliminate the
drive, the matrix representation of Eq. (6) is numeri-
cally diagonalized to obtain an initially unsorted list of
matched eigenenergy/eigenstate pairs {En,k, |n, k〉} for
the qubit-resonator system. The one-to-one correspon-
dence between these pairs and the bare energy/state pairs
{En,k, |n, k〉} may be found by examining the structure
of the RWA interaction Hamiltonian in Eq. (4): Since
excitation number is preserved, there exist closed sub-
spaces {|n, k〉 : (n + k) = nΣ} with constant excitation
number nΣ = 0, 1, . . ., which we name RWA strips [26]
[see Fig. 1(b)]. Crucially, since energy levels repel during
interaction and avoid crossing, the order of the eigenener-
gies within a strip is the same as for bare energies. Thus,
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for each strip with nΣ excitations we first identify the
eigenstates |n, k〉 that lie within the span of that strip;
next, we order the eigenenergies En,k to match the bare
energies En,k, which uniquely identifies each hybridized
eigenenergy/eigenstate pair. We then set the overall sign
of each eigenstate such that it does not flip with chang-
ing n. After performing this identification, we construct
a basis-change matrix

U ≡
∑
n,k

|n, k〉〈n, k| (8)

to easily switch between representations numerically.
Note that without proper identification (sorting) of the
eigenstates, the numerical analysis at large photon num-
bers is practically impossible.

The eigenstates |n, k〉 form the Jaynes-Cummings lad-
ders of effective resonator levels that correspond to a
fixed nominal qubit level k. For brevity we will call
them eigenladders of dressed resonator Fock states. Each
eigenladder behaves like a nonlinear resonator, with an
n-dependent frequency

ω(k)
r (n) = En+1,k − En,k. (9)

Note that in this formula both sides are numerically cal-
culated in the rotating frame; however, the equation in
the lab frame is the same. Conversion to the lab frame
involves adding the drive frequency: ωd +ω

(k)
r (n) for the

resonator frequency and (n+ k)ωd + En,k for energy.

At large photon numbers, n & nc, each |n, k〉 spans
a significant fraction of all bare transmon levels. Never-
theless, as we will see, ringing up the resonator from its
ground state with an initial transmon level k will primar-
ily excite the states within the eigenladder corresponding
to k. This behavior closely mimics that of the ideal dis-
persive case, where a pump excites the bare resonator
states |n〉r while keeping the transmon state |k〉q unper-
turbed. However, we will also show that there are small
but important dynamical differences between our RWA
Jaynes-Cummings model and ideal dispersive coupling in
the eigenbasis.

III. DRESSED COHERENT STATE MODEL

We now define an ideal coherent state in the eigenba-
sis [27–29] (a dressed coherent state) corresponding to a
nominal transmon state k as

|α〉k = e−|α|
2/2
∑
n

αn√
n!
|n, k〉, (10)

so that the only difference from the standard coherent
state of the resonator is that we use eigenstates instead of
the bare states. Perhaps surprisingly given the eigenstate
hybridization, such a dressed coherent state is practically
unentangled even for |α|2 � nc, in contrast to what one
might initially guess [29]—see Appendix.

A dressed coherent state is not an eigenstate of the
bare lowering operator a of the resonator. Instead, it is
an eigenstate of the dressed lowering operator [28, 36]

a ≡ UaU† =
∑
n,k

√
n+ 1 |n, k〉〈n+ 1, k| (11)

that removes a collective excitation within the same
eigenladder. The parameter α is the expectation value of
the dressed lowering operator, α = k〈α|a|α〉k, which will
be useful in what follows.

Note that for a dressed coherent state |α〉k, |α|2 is not
exactly equal to the average number n̄ of photons in the
resonator. (Instead, |α|2 = k〈α|a†a|α〉k is the average
dressed excitation number within eigenladder k.) How-
ever, the difference is very small and will be mostly ne-
glected below, so that we will use n̄ = |α|2. In the cases
when the difference may be important, we will specify
the meaning of n̄ explicitly.

A. Model inaccuracy contributions

During resonator ring-up, we expect the joint qubit-
resonator state to approximate such a dressed coherent
state, rather than a bare coherent state as is usually as-
sumed with ideal dispersive coupling. As such, we quan-
tify the fidelity of a numerically simulated state |ψ〉 com-
pared to a dressed coherent state |α〉k as the overlap

F = |〈ψ|α〉k|2, (12)

where the parameter α is chosen to maximize the fidelity.
In practice, we find that an initial guess of α = 〈ψ|a|ψ〉
is very close to the optimal α, producing nearly indistin-
guishable fidelity.

Note that we can expand a numerically calculated state
|ψ〉 =

∑
n,` cn,` |n, `〉 as

|ψ〉 =
√

1− Pstray |ψ〉k +
√
Pstray |ψ〉⊥, (13)

splitting it into a part |ψ〉k ∝
∑
n cn,k |n, k〉 within

the “correct” eigenladder k, and a part |ψ〉⊥ ∝∑
n,` 6=k cn,` |n, `〉 orthogonal to that eigenladder, where

Pstray =
∑
n,` 6=k |cn,`|2 is the stray population that leaked

out of the eigenladder k, and both |ψ〉k and |ψ〉⊥ are
normalized. As such, if we define the overlap fidelity
within the correct eigenladder Fc = |k〈α|ψ〉k|2, then we
can write the total fidelity as F = (1 − Pstray)Fc, and
thus decompose the infidelity

1− F = Pstray + (1− Pstray)(1− Fc) (14)

into two distinct sources: (i) the stray population Pstray

outside the correct eigenladder, and (ii) the infidelity 1−
Fc compared with a coherent state within the correct
eigenladder.

To test the infidelity of the dressed coherent state
model, we numerically simulate the resonator ring-up



5

FIG. 2. Infidelity of coherent-state approximations during
resonator ring-up. The infidelity 1 − Fb of a bare coherent
state (dotted red line) is compared with the infidelity 1 − F
of a dressed coherent state (dashed black line). The latter
displays two distinct effects: at short time (and small pho-
ton number n̄) the dominant effect is the leakage of a stray
population Pstray (thin solid blue line) out of the correct eigen-
ladder; however, at longer time (and larger n̄) the infidelity
1 − Fc of the renormalized state within the correct eigen-
ladder (thick solid orange line) significantly increases during
evolution. Here the system, with parameters ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz, is res-
onantly pumped from its ground state |0, 0〉 with a constant
drive envelope ε/2π = 10 MHz.

with a (sudden) constant drive amplitude ε/2π = 10
MHz, and then calculate the infidelity according to
Eq. (14) as a function of time, yielding the results pre-
sented in Fig. 2. First, we confirm that the infidelity 1−F
for a dressed coherent state (black dashed line) is typi-
cally orders of magnitude better than the infidelity 1−Fb

for a bare coherent state (red dotted line); as expected,
1 − Fb becomes very significant at n & nc. Second, we
can clearly separate the effects of the stray population
leakage Pstray (thin solid blue line) from the infidelity
1−Fc of the renormalized state within the correct eigen-
ladder (thick solid orange line). At short times, the dom-
inant effect is a small (∼10−5) stray population leakage
that rapidly oscillates and then stays approximately con-
stant. (For clarity we do not show oscillations for the
black dashed line, showing only the maxima.) However,
at longer times the contribution 1−Fc becomes the dom-
inant source of infidelity (eventually reaching ∼10−1). In
the next two subsections, we quantify these two sources
of infidelity in more detail.

B. Infidelity from stray population

We now focus on the cause of the stray population
outside the correct eigenladder. (Recall that our model
neglects qubit energy relaxation, dressed dephasing, and

FIG. 3. Solid blue lines: numerically calculated stray popula-
tion Pstray as a function of time t; dashed black lines: steady-
state value Ps.s.(t), calculated via Eq. (20). (a) Leaked pop-

ulation in the excited eigenladder |n, 1〉 for sudden driving
with ε/2π = 60 MHz from initial ground state |0, 0〉. The os-
cillations reach an initial maximum of Pmax ≈ 4Ps.s.(0), then
dephase to about Ps.s.(t)+Ps.s.(0), with decreasing Ps.s.(t) be-
cause of increasing average photon number n̄. (b) The same
for adiabatic drive ε(t), linearly increasing for first 10 ns to
the same constant value of 60 MHz. The stray population
follows the steady state, which increases for 10 ns because
of increasing ε(t). (c) Sudden driving with ε/2π = 60 MHz

from an initial excited qubit state |0, 1〉, showing population

Pstray,0 leaked to the ground-state eigenladder |n, 0〉. This
case is fully symmetric with (a) since it involves the same
pair of transmon levels. (d) The same driving as in (c), but
showing leaked population Pstray,2 of the second-excited eigen-

ladder |n, 2〉. The behavior is similar to (c), but involves the
next pair of transmon levels. For all panels ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 250 MHz, g/2π = 100 MHz, and ωd

is on resonance with the resonator frequency, corresponding
to each initial state.

Purcell effect.) Fig. 3 shows numerical results for dif-
ferent choices of initial state and drive amplitude, pro-
duced in a manner similar to Fig. 2, but focusing on
shorter times and lower photon numbers, where the stray
population is the dominant source of infidelity. Initially,
the stray population rapidly oscillates from zero around
a steady-state value, then the oscillations damp, after
which the stray population continues to slowly decay on
a longer time scale. We now provide a phenomenological
model that describes this behavior.

A dressed coherent state would naturally be pro-
duced by a dressed displacement Hamiltonian of the form
ε∗a + εa†, as opposed to the bare displacement Hamil-
tonian ε∗a + εa† of the drive that appears in Eq. (6).
This mismatch between bare and dressed states in the
drive is the source of the stray population that leaks out
of the correct eigenladder during ring-up. To show this
mismatch in a simple way, we first focus on the ring-up
from an initial ground state |0, 0〉 = |0, 0〉. In this case

the dominant leakage occurs to the eigenladder |n, 1〉,
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with negligible second-order leakage to the other eigen-
ladders. [As discussed later, the following derivation may

be readily generalized to other initial states, such as |0, 1〉
in Figs. 3(c) and 3(d).]

Focusing only on the coupling between eigenladders
|n, 0〉 and |n, 1〉, for n� nc we can write [28, 36]

a ≈ ā− g

∆
σ−, ∆ = ωr−ωq, σ− =

∑
n

|n, 0〉〈n, 1|, (15)

where σ− is the qubit lowering operator in the eigenbasis.
It is natural to guess that at n & nc the resonator-qubit
detuning ∆ should change because of the ac Stark shift,
and therefore Eq. (15) can be replaced with approxima-
tion

a ≈ ā−
∑
n

g

∆n
|n, 0〉〈n, 1|, ∆n = En+1,0 − En,1, (16)

where ∆n is the qubit-resonator detuning with account
of the ac Stark shift, ωq(n) = En,1−En,0 (see Appendix
of [35]). We did not prove Eq. (16) analytically, but
we checked numerically that this approximation works
well, at least for our range of parameters. Additionally
approximating ∆n ≈ ∆n̄ for a dressed coherent state
with n̄ = |α|2, from Eq. (16) we obtain

a ≈ ā− g

∆n̄
σ−. (17)

(For non-integer n̄, we can use the nearest integer or the
more precise method of averaging ∆n over the state.)
Note that for a constant resonant drive, the average num-
ber of photons increases as n̄(t) ≈ |εt|2, before the chang-
ing resonator frequency (9) starts affecting the resonance.

Thus, the drive term in the Hamiltonian can be ap-
proximately expanded in the eigenbasis as

ε∗a+ εa† ≈ (ε∗ā+ εā†)− g

∆n̄
(ε∗σ− + εσ+) , (18)

where σ+ = (σ−)†. The first term of this effective drive
produces dressed coherent states, while the second term
couples the lowest two eigenladders to cause leakage.

The coupling essentially “copies” the dressed coherent
state from the correct eigenladder |n, 0〉 to the neighbor-
ing eigenladder. The resulting copy has a relatively small
magnitude because g/∆n̄ � 1 and also because the two
eigenladders have a significant frequency shift due to dif-
fering energies. Thus, we assume approximately the same
dressed coherent state α(t) in both eigenladders and use
the joint state of the form |ψ〉 ≈ |α(t)〉0 + c(t) |α(t)〉1,
where the small amplitude c(t) quantifies the leakage

to the |n, 1〉 eigenladder, so that the stray population
is Pstray = |c|2 � 1. In this case we can approxi-
mately write c = 〈ψ|σ−|ψ〉, and thus find the evolution
ċ = 〈ψ| i [Hrot, σ−] |ψ〉, which simplifies to

ċ ≈ i εg
∆n̄

+ iΩn̄ c, (19)

where Ωn̄ = ∆n̄+ωd−ωr is the oscillation frequency (note
that Ωn̄ = ∆n̄ for a resonant drive). The steady state for
this evolution (assuming a slowly changing n̄), ċs.s. = 0,
corresponds to the steady-state leakage population

Ps.s. = |cs.s.|2 =

∣∣∣∣ εg

Ωn̄∆n̄

∣∣∣∣2 . (20)

For a drive that is suddenly turned on, as in Fig. 3(a),
the stray population will oscillate to reach a maximum

Pmax = |2cs.s.(0)|2 = 4Ps.s.(0) = 4

∣∣∣∣ εgΩ0∆

∣∣∣∣2 , (21)

which is close to the numerical value for Pmax in Fig. 3(a).
As discussed below, the oscillations eventually dephase,
so we would expect the value Pstray = Pmax/2 after that.
However, by the time it occurs, Ps.s. in Eq. (20), shown
by the dashed black line in Fig. 3(a), significantly de-
creases because n̄ is already large. As a result, we expect
the value Pstray = Ps.s.(0) + Ps.s.(t) after decay of the
oscillations. (Here the first term comes from continuing
dephased oscillations while the second term comes from
the moving center of oscillations on the complex plane of
c.) This formula is also close to the numerical result in
Fig. 3(a).

Figures 4(a–d) show in more detail that the functional
form of Eq. (21) agrees well with the numerically ob-
tained maximum stray populations Pmax in the case of
a sudden drive. In contrast, when the drive ε(t) is adia-
batically increased from zero, then the stray population
closely follows the time-dependent steady state Ps.s. of
Eq. (20), as shown in Fig. 3(b). Our analysis based on
Eq. (19) predicts that in the diabatic case of a sudden
drive, the oscillation frequency Ωn̄ should increase when
n̄ increases. This is checked in Fig. 4(e); agreement with
numerical results is again very good.

Now let us discuss the decay of oscillations seen in
Fig. 3(a), which is somewhat surprising since our model
does not include any decoherence. Numerical results
show that the oscillations decay only for a resonant drive
(for a strongly off-resonant drive, n̄� 1 and oscillations
do not decay). Therefore, we assume a resonant drive,
so that n̄(t) ≈ |εt|2. Let us now take into account the
spread in photon number, n̄±

√
n̄, which produces a cor-

responding spread in oscillation frequency Ωn = ∆n in
Eq. (19) that dephases the oscillations. At sufficiently
low photon number (up to several nc), we can use the
approximation

∆n ≈ ∆− 2χn, χ ≈ −ωr

ωq

g2η

∆(∆ + η)
, (22)

which produces the spread of oscillation frequency in Eq.
(19) with the standard deviation δΩ ' 2χ

√
n̄ ≈ 2χ|ε|t.

This implies that the corresponding accumulated phase

difference after a time t is δϕ =
∫ t

0
δΩ dt′ ≈ χ|ε|t2. As-

suming that a phase accumulation of |δϕ| ' 1 indicates
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Numerics
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(e)

Analytics

Numerics
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FIG. 4. Model validation for stray population Pstray in the neighboring eigenladder, using a sudden resonant [off-resonant in

(d)] drive and starting with |0, 0〉 (a-g) or |0, 1〉 (h,i). Panels (a–d): Testing of Eq. (21) for the maximum stray population
Pmax against numerical results, by varying (a) the drive amplitude ε, (b) coupling g, (c) resonator-qubit detuning ∆, and (d)
drive frequency ωd. (e): Testing that the time-dependent oscillation frequency evolves as Ωn̄ = ∆n̄ given by Eq. (16). (f,g):
Testing of Eq. (23) for the decay time tdecay of the eigenladder oscillations [as in Fig. 3(a)], using a prefactor of 1.23 for decay

to 1/3 amplitude. (h,i): Similar to panels (a,g), but for the leakage to the second excited eigenladder |n, 2〉 starting from the

excited state |0, 1〉; in this case Eqs. (21) and (23) need the following replacements: g 7→
√

2 g, ∆ 7→ ∆ + η, Ω0 7→ Ω0 + η,

χ 7→ χ′ = ω
(2)
r − ω

(1)
r . In all panels blue dots show numerical results, while red lines are calculated analytically. We use

the following parameters: ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz, ε/2π = 10 MHz, except for
parameters, which are varied, and in (g) ε/2π = 50 MHz and in (h,i) η/2π = 300 MHz.

a significant level of dephasing, this estimate yields an
oscillation decay time

tdecay ' |χε|−1/2, (23)

with an unknown prefactor on the order of 1. This
estimate crudely agrees with the oscillation decay in
Fig. 3(a). For a more detailed analysis we checked the
numerical dependence of the decay time on ε and χ in
Figs. 4(f) and 4(g). The agreement is quite good using a
prefactor of 1.23 in Eq. (23), when the decay time is de-
fined numerically as decay of the probability oscillations
[as in Fig. 3(a)] to 1/3 of initial amplitude. Note that
this derivation predicts a crudely Gaussian envelope of
oscillation decay for

√
Pstray(t), and this prediction also

agrees with the numerical results (though not quite well
because of the change of the oscillation center cs.s. over
time).

Simple modifications of the above derivation are suf-
ficient to describe the stray populations when starting
from a different initial state. As an example, let us con-
sider an initially excited qubit state |0, 1〉. In this case
there will be two neighboring eigenladders that interact:
the ground eigenladder |n, 0〉, and the second excited

eigenladder |n, 2〉. Stray population that leaks to the
ground eigenladder will oscillate precisely as before be-
tween the ground and excited eigenladders, reproducing
Eqs. (20), (21), and (23); this equivalence due to symme-
try is emphasized in Fig. 3(c). In contrast, the stray pop-
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ulation leaking to the second excited eigenladder |n, 2〉
oscillates between excited and second-excited eigenlad-
ders, so behaves somewhat differently. We modify our
derivation starting from Eq. (18) to include only the in-

teraction between the eigenladders |n, 1〉 and |n, 2〉, which

yields the following parameter replacements: g →
√

2 g,
∆n → En+1,1 − En,2, ∆ → ∆ + η, Ω0 → Ω0 + η, and

2χ → 2χ′ = ω
(2)
r (0) − ω(1)

r (0). Thus, the equivalents of
Eqs. (20) and (23) at low n are

P ′s.s. =

∣∣∣∣∣
√

2 εg

(∆ + η − 2χ′n̄)(Ω0 + η − 2χ′n̄)

∣∣∣∣∣
2

, (24)

t′decay ' |χ′ε|−1/2. (25)

These equations agree with the numerical results shown
in Fig. 3(d) and Fig. 4(h,i).

Our analysis shows that the stray population of an
“incorrect” eigenladder considered in this section should
be quite small for typical experimental parameters. The
case of an adiabatically increased drive is more exper-
imentally relevant, so let us use Eq. (20) and crudely
estimate the effect as Pstray ∼ (εg/∆2)2. Then for
g/2π ' 100 MHz, ∆/2π ' 1 GHz, and ε/2π ' 50 MHz
(such drive pumps ∼ 10 photons within first 10 ns), we
obtain Pstray ∼ 3 × 10−5. Even if ∆/2π is decreased to
500 MHz in this estimate and ε/2π is increased to 100
MHz (40 photons within first 10 ns), the resulting value
Pstray ∼ 2×10−3 still remains quite small. Therefore, this
should not significantly affect the qubit measurement er-
ror, at least for present-day experiments. (Recall that
we neglected qubit energy relaxation, dressed dephasing,
Purcell relaxation, and non-RWA effects, which can be
responsible for much larger population transfer to incor-
rect eigenladders.)

C. Infidelity from shearing

The second contribution to the infidelity of the dressed
coherent state approximation in Eq. (14) is due to infi-
delity 1 − Fc within the correct eigenladder. As seen in
Fig. 2, it becomes increasingly important at longer evolu-
tion times, when the number of photons n̄ becomes large.
As discussed below, this infidelity arises from the effec-
tive nonlinearity of the resonator due to its interaction
with the transmon. This nonlinearity produces a shear-
ing effect on the evolution of the dressed coherent state
that squeezes the state.

Numerically, this distortion is clearly seen by plotting
the Husimi Q-function of the renormalized state |ψ〉k [de-
fined as in Eq. (13)] that remains within the correct eigen-
ladder,

Qψ(α) =
1

π
|k〈α|ψ〉k|2 , (26)

where |α〉k is a dressed coherent state as in Eq. (10).
The contour plots of Qψ(α) in the complex plane of α

are shown in Fig. 5(a) for a numerically simulated ring-
up evolution, starting with the state |0, 0〉 (there are
five snapshots at time moments separated by 50 ns).
If the state |ψ〉k were a perfect dressed coherent state
|ψ〉k = |β〉k centered at β = k〈ψ|ā|ψ〉k, it would have a

Q-function Qψ(α) = e−|α−β|
2

/π with circular contours.
However, Fig. 5(a) clearly shows a progressive distortion
of the initial circular profile into a squeezed ellipse as the
average photon number increases. We will prove later
that |ψ〉k is indeed a close approximation of a (minimum-

uncertainty) squeezed state in the eigenbasis |n, k〉 – see
Fig. 5(b).

The squeezing distortion in Fig. 5 is similar to the self-
developing quadrature squeezing discussed in Ref. [27]
for the catch-disperse-release measurement protocol (e.g.,
compare Fig. 5 with the figures in the Supplemental Ma-
terial of [27]). In that protocol, the squeezing was shown
to significantly decrease the measurement error. In gen-
eral, the self-developing squeezing can either increase or
decrease the measurement error depending on the angle
of the squeezing axis, and the analysis is clearly impor-
tant for practical qubit measurements. A strong self-
developing squeezing has been observed experimentally
in Ref. [39].

The reason for the self-developing squeezing is the non-
linearity of the transmon, which makes the effective res-

onator frequency ω
(k)
r (n) dependent on the number of

photons n – see Eq. (9) and the inset of Fig. 5(a). Qual-
itatively, this n-dependence causes parts of the circles
in Fig. 5(a) with different distances |α| from the ori-
gin to rotate with slightly different angular velocities,
thus shearing the circular profile of an initially coher-
ent state as it evolves. Note that in the case of a con-
stant derivative dω

(k)
r (n)/dn, the shearing rate should

grow with |α| because dn = 2|α| d|α|; thus, the effect be-
comes more important for larger photon numbers. Also
note that the drift of the resonator detuning from the
drive with n could be compensated for by changing the
drive frequency (chirping); however, this does not affect
the shearing, since it originates from the frequency vari-
ation within the photon number uncertainty n̄±

√
n̄.

It is easy to analyze the shearing effect in the absence
of the drive. If at t = 0 we have a dressed coherent state
given by Eq. (10) (with notation α replaced by β), then
it obviously evolves as

|ψ(t)〉k = e−|β|
2/2
∑
n

βn√
n!
e−iEn,k t |n, k〉, (27)

where the eigenenergies En,k are in the rotating frame ωd,
i.e., with subtracted terms (n+k)ωd. Let us expand these
energies up to the second order in the vicinity of n̄ = |β|2

as En,k ≈ En̄,k+ω
(k)
r (n̄) (n− n̄)+ 1

2 (dω
(k)
r /dn)|n̄(n− n̄)2,

where the resonator frequencies ω
(k)
r (n) are also in the

rotating frame (i.e., with subtracted ωd) and we neglect
discreteness of n by assuming n̄ � 1 and sufficiently
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FIG. 5. (a) Numerically simulated evolution of the dressed Husimi Q-function for the state remaining in the correct eigenladder,
given an initial state of |0, 0〉 and a resonant drive. Snapshots taken at 50 ns intervals show the progressive shearing of the

state caused by resonator nonlinearity. Inset: n-dependence of the difference ∆ω
(k)
r = ω

(k)
r − ωr between the effective and bare

resonator frequencies. The solid blue (upper) line shows ∆ω
(0)
r (n) for the ground-state eigenladder, the solid orange (lower)

line shows ∆ω
(1)
r (n) for the excited-state eigenladder, and the red dashed line indicates the applied drive frequency. (b) Detail

of the Q-function at 200 ns. The analytical result for a dressed squeezed state (dashed red) shows good agreement with the
numerically simulated state (solid black). The agreement is significantly better for earlier times (not shown). Parameters are:
ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz, and ε/2π = 10 MHz. The contours of the Q-function are
drawn at the levels of 0.1/π, 0.2/π, . . . 0.8/π.

small nonlinearity. This gives

|ψ(t)〉k ≈ e−|β|
2/2
∑
n

[β(t)]n√
n!

e−iq (n−n̄)2 |n, k〉, (28)

β̇ = −iω(k)
r (n̄)β, q̇ =

1

2
(dω(k)

r /dn)|n̄, (29)

where we neglected the overall phase of |ψ(t)〉k. Thus,
to leading order in |n − n̄|, the effect is an appearance

of the quadratic phase factor e−iq (n−n̄)2 and an obvious
rotation of β(t) when the effective resonator frequency

ω
(k)
r (n̄) is not exactly on resonance with the drive. The

presence of the growing quadratic-term coefficient q in
the phase factor leads to a deviation from the dressed
coherent state, for which q = 0. (We restrict our at-
tention to the case q � 1; very interesting effects beyond
this regime, including state revival and formation of “cat”
states, have been observed in [39].)

It is easy to see that the infidelity of the sheared state
(28) compared with the dressed coherent state |β〉k is

1− Fc ≈ q2 (n− n̄)4 ≈ 3(q |β|2)2, (30)

assuming 1−Fc � 1 and n̄� 1. This infidelity grows in
time because of the q-evolution (29) due to the nonlinear-
ity. However, the state evolution due to drive (in a locally
linear system) should preserve 1−Fc because both states
(|ψ〉k and |β〉k) are equally displaced within the complex

plane of α (mathematically, because the standard dis-
placement operator is unitary). Therefore, if the state
remains in the form (28), then

d

dt
(q |β|2) = q̇ |β|2 =

n̄

2
(dω(k)

r /dn)|n̄. (31)

In particular, if n̄ ≈ (εt)2 for a resonant drive and the

derivative dω
(k)
r /dn does not significantly depend on n

[see inset in Fig. 5(a)], then qn̄ ' (dω
(k)
r /dn) ε2t3/6, and

the infidelity is

1− Fc '
1

12
[ε2t3 (dω(k)

r /dn)]2. (32)

This is a very crude estimate because dω
(k)
r /dn de-

pends on n, the approximation n̄ ≈ (εt)2 works only at
small t and, most importantly, the state during the evo-
lution does not remain in the form (28), as discussed in
the next section. [The form (28) is no longer applicable
when the motion of the Q-function center shown in Fig.
5(a) deviates from a straight line.] Nevertheless, com-
parison with numerical results in Fig. 6 shows that Eq.
(32) gives a reasonable estimate of the infidelity. The
blue (upper) solid line in Fig. 6 is identical to the orange
line in Fig. 2 and shows the numerically calculated 1−Fc

for the evolution starting with |0, 0〉. The blue (upper)

dashed line is obtained using Eq. (32) with dω
(0)
r /dn cal-

culated at n = 0. It fits the solid line well at short
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FIG. 6. Infidelity 1 − Fc of the dressed coherent state ap-
proximation within the initial eigenladder, starting with |0, 0〉
(upper lines, blue) or |0, 1〉 (lower lines, red). Parameters are
the same as for Fig. 2. The solid lines show numerical re-
sults, upper (blue) dashed line is calculated via Eq. (32) with
the frequency derivative taken at n = 0, and the lower (red)
dashed line is calculated by integrating Eq. (31).

times, and then deviates up, mostly because |dω(0)
r /dn|

decreases with n [see inset in Fig. 5(a)] while analytics
still uses the value at n = 0. The red (lower) solid line
in Fig. 6 shows 1 − Fc for the evolution starting with
|0, 1〉. This infidelity is crudely two orders of magnitude
less than for the blue (upper) line because the derivative

|dω(1)
r /dn| within the excited-state eigenladder is much

smaller than that for the ground state [see inset in Fig.
5(a)]. The infidelity 1−Fc shows a dip near 100 ns. This

is because ω
(1)
r (n) increases for n < 20 and decreases for

n > 20; therefore q|β|2 in Eq. (31) first increases and then
decreases, passing through zero. At the point of passing
zero we expect 1 − Fc = 0, thus producing the dip; nu-
merically it is not zero because the form (28) is only an

approximation. Since dω
(1)
r /dn depends on n very signif-

icantly (even changing the sign), we cannot use Eq. (32),
so instead we have integrated Eq. (31) to obtain the red
(lower) dashed line in Fig. 6. As we see, it agrees well
with the solid line. If the integration of Eq. (31) is also
done for the evolution starting with |0, 0〉, then the result
is significantly closer to the blue solid line than the blue
dashed line.

Note that the states with a quadratic phase factor as
in Eq. (28) have been discussed in optics long ago [53–
55]. It was shown that these states are squeezed in the
broad sense that variance of a quadrature operator can
be smaller than that for a coherent state. However, to
the best of our knowledge, it was never shown that such
states with large n̄ can be represented as squeezed states
in the narrow sense, i.e., they are close to satisfying the
minimum-uncertainty condition. Moreover, it was often
emphasized that the states described by Eq. (28) are not
the minimum-uncertainty states, because for sufficiently
large q they have crescent-like shape of the Q-function

instead of the elliptical shape, and for even larger q the
shape becomes a ring-like one (see experiment [39]). In
contrast, in the next section we will show that in the prac-
tically interesting regime these states are quite close to
the squeezed states in the narrow sense. This is because
for large n̄ the squeezing factor is determined by q|β|2,
while significant deviation from a minimum-uncertainty
squeezed state starts at |qβ| & 0.1; therefore the squeez-
ing becomes significant already for such values of q, for
which the deviation (crescent-like shape) is still quite
small – see Fig. 5(b). In the next section we will also de-
rive simple evolution equations for these squeezed states.

IV. DRESSED SQUEEZED STATE MODEL

As discussed in the previous section, transmon-induced
nonlinearity of the resonator (i.e., frequency dependence
on the number of photons) evolves a dressed coherent
state into a sheared state of the form (28) with quadratic
phase factor. Unfortunately, it is not easy to describe
evolution of this sheared state due to drive. In some
sense this is because an evolution due to drive is natu-
rally described in the phase space (which is almost always
used in optics), while the sheared state representation re-
quires Fock space. We will be able to solve this dilemma
by showing that the sheared state (28) is actually close
to a (minimum-uncertainty) squeezed state in the eigen-
basis, which we call a dressed squeezed state. Evolution
of a squeezed state due to drive can be easily described
in the phase space, while its evolution due to nonlinear-
ity can be easily described in the Fock space. Thus, if
we have a reasonably simple conversion between the Fock
and phase spaces for squeezed states, we can describe the
state evolution due to both nonlinearity and drive. This
simple conversion is possible only for large n̄, which is an
important assumption for our derivation below (in prac-
tice, it is still well applicable for the dynamics starting
with the vacuum state).

A. Dressed sheared Gaussian state

In this section we prove that for sufficiently large num-
ber of photons, the (dressed) sheared state is approx-
imately equivalent to a (dressed) minimum-uncertainty
squeezed state.

For |β|2 � 1 we can use a Gaussian approximation for
the wavefunction (28) in the Fock space. Let us introduce
a more general (dressed) sheared Gaussian state as

|β,K,W 〉k =
∑
n

1

(2πW |β|2)1/4
exp

[
− (n− |β|2)2

4W |β|2

]
× exp[in arg(β)] exp

[
−iK(n− |β|2)

|β|2

]
|n, k〉 , (33)

in which we used the new notation K = q|β|2 and also
introduced a new parameter W = σ2

n/σ
2
n,cs, which is
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the variance σ2
n of the Gaussian n-distribution compared

with the variance σ2
n,cs = |β|2 of a dressed coherent

state, so that w =
√
W is the relative width of the n-

distribution. Thus, the sheared Gaussian state is char-
acterized by 4 parameters: β has the standard optical
meaning, K characterizes the shearing, W characterizes
the relative width of photon number distribution, and k
labels the eigenladder. We assume that K and W are
on the order of 1, while |β|2 � 1. Note that the term
in arg(β) can be replaced with i(n − |β|2) arg(β); this
changes only the unimportant overall phase of the state,
but clarifies the role of arg(β) as the linear-order part of
the phase expansion in n around the mean |β|2.

We call the form (33) a hybrid phase-Fock represen-
tation, because β is borrowed from optical phase space,
while K and W are the Fock-space parameters. Note
that the state (33) is not exactly normalized, but the
difference from perfect normalization is less than 10−5

if |β|2 > max(20W, 1/W ). With a similar accuracy,
n̄ = |β|2 for the average number of photons (excitations
in the eigenladder).

The average value of the dressed lowering operator for
the state (33) is

〈ā〉 ≈ β +
2−W − 1/W

8β∗
− iKW

β∗
− 2K2W

β∗
≈ β, (34)

where in the second equality we neglected the terms scal-
ing as |β|−1. Similarly, neglecting |β|−1-terms, we find

〈ā2〉 ≈ β2 +
β2

|β|2

(
1

2
− 1

2W
− 4iKW − 8K2W

)
. (35)

Now let us define (dressed) quadrature operators,

Xϕ =
1

2

(
e−iϕ ā+ eiϕ ā†

)
, (36)

for which ϕ is the quadrature angle (note that notation
ϕ was briefly used for a different quantity in Sec. III B).
Using Eqs. (34) and (35) we find the variance σ2

Xϕ =

〈X2
ϕ〉 − 〈Xϕ〉2,

σ2
Xϕ =

W + 1/W

8
+ 2K2W + KW sin[2 arg(β)− 2ϕ]

+

(
W − 1/W

8
− 2K2W

)
cos[2 arg(β)− 2ϕ]. (37)

It is easy to check that the ϕ-dependence of this vari-
ance is exactly what would be expected for a minimum-
uncertainty squeezed state. In particular, the product of
the minimum and maximum values of σ2

Xϕ is the same
as for a coherent state,

σ2
Xϕ,minσ

2
Xϕ,max = 1/16, (38)

with

σ2
Xϕ,min =

[
1 + S −

√
(1 + S)2 − 1

]
/4, (39)

S = 8K2W + (W + 1/W − 2)/2, (40)

and σ2
Xϕ,max = [1 + S +

√
(1 + S)2 − 1]/4. We see that

the degree of squeezing is determined by the parameter S,
so that S = 0 corresponds to a (dressed) coherent state.
The minimum quadrature variance σ2

Xϕ,min is achieved

at the angle ϕmin = θ/2, where

θ = 2 arg(β) + arctan

(
8KW

16K2W −W + 1/W

)
+
π

2
[1− sgn(16K2W −W + 1/W )], (41)

and the factor of 2 between θ and ϕmin is to conform with
the standard optical definition of the squeezing parame-
ter discussed later.

Thus, we have proven that for sufficiently large |β|2
the (dressed) sheared Gaussian state (33) is close to a
(dressed) minimum-uncertainty squeezed state (despite
this is not true for small |β|2 [39, 54, 55]). Note that
the “conservation of area” criterion (38) for a minimum-
uncertainty squeezed state is valid for quadratures, but
is not valid for the Husimi Q-function shown in Fig. 5,
because the Q-function involves convolution with a co-
herent state, and therefore the width of the short axis
can be at most a factor of

√
2 shorter than that of a

coherent state.

B. Conversion into squeezed state notations

Using the standard optical definition [56, 57], a dressed
squeezed state should be defined as

|β, ξ〉k = exp[βā† − β∗ā] exp

[
ξ∗
ā2

2
− ξ ā

†

2

]
|0, k〉, (42)

where ξ ≡ reiθ is the squeezing parameter, while β is a
displacement in the phase space. The smallest standard
deviation σXϕ,min for the quadrature Xϕ should then be
achieved [56, 57] at the angle ϕmin = θ/2 [thus corre-
sponding to our notation in Eq. (41)], and its value should
be σXϕ,min = e−rσXϕ,cs compared with the standard de-
viation σXϕ,cs for a coherent state. The longest axis is
σXϕ,max = erσXϕ,cs at the angle ϕmax = θ/2± π/2.

Comparing these standard optical definitions with our
approximate results (38), (39), and (41) for large |β|2, we
obtain the conversion

r =
1

2
arccosh(S + 1), (43)

where S is given by Eq. (40), while θ is given by Eq. (41).
It is easy to check that the case K = 0, W = 1 cor-

responds to the dressed coherent state, ξ = 0. In the
absence of shearing, K = 0, we have a dressed amplitude-
squeezed state for W < 1 [as is obvious from Eq. (33)]
and a dressed phase-squeezed state for W > 1 – see
Eq. (41), from which θ/2 = arg(β) for W < 1 and
θ/2 = arg(β) ± π/2 for W > 1. As shown in the Ap-
pendix, the dressed squeezed state is practically unentan-
gled for large |β|2, in spite of a significant entanglement
of the qubit-resonator eigenstates.
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Using Eqs. (41) and (43) we can convert a sheared
Gaussian state (33) with sufficiently large |β|2 into a
(minimum-uncertainty) squeezed state (42). Similarly,
we can convert any (minimum-uncertainty) squeezed
state with sufficiently large |β|2 into a sheared Gaussian
state. Most importantly, we know that a squeezed state
is simply displaced in the phase space by an action of
a drive ε(t). This means that a sheared Gaussian state
(33) remains a sheared Gaussian state under an action
of the drive (assuming large |β|2). Since it also keeps the
form (33) under the evolution due to nonlinearity, this
form is always preserved (approximately), and therefore
it is sufficient for us to characterize the evolution of the
state by evolution of only three parameters: β, K, and
W . We emphasize that this simplicity is possible only
for large |β|2 or, in other words, for a sufficiently small
nonlinearity. In general, the simultaneous evolution due
to nonlinearity and drive creates states that cannot be
described as (minimum-uncertainty) squeezed states or
sheared states. Nevertheless, this approximation works
quite well for our system.

C. Phase-Fock-space evolution of dressed squeezed
state

Now let us derive evolution equations for the parame-
ters K, W , and β of the dressed sheared/squeezed state.
We will first consider the evolution in the absence of the
drive, then the evolution only due to the drive, and then
add up the terms from these evolutions.

Evolution of the dressed sheared state (33) due to non-
linearity of the resonator is given by Eq. (29), which leads
to

K̇ =
1

2
|β|2(dω(k)

r /dn)
∣∣∣
n=|β|2

. (44)

Note that we do not need to take a derivative of |β|2
because this type of evolution does not change |β|2. In
the absence of the drive, the parameter β evolves only due
to the resonator frequency detuning from the rotating
frame,

β̇ = −iω(k)
r (n)

∣∣∣
n=|β|2

β. (45)

To derive formulas for the evolution of β, K, and W
due to drive ε(t), we use the fact [57] that for a squeezed
state (42) the parameter ξ remains constant, while β

changes as β̇ = −iε. Therefore, the parameters S and
θ given by Eqs. (40) and (41) should remain constant

with changing β. The corresponding evolution K̇ and Ẇ
can be found from the system of equations

∂S

∂K
K̇+

∂S

∂W
Ẇ = 0,

∂θ

∂K
K̇+

∂θ

∂W
Ẇ+

∂θ

∂β
β̇ = 0, (46)

which has the following solution:

Ẇ = 8KWRe(ε/β), K̇ =

(
1−W 2

4W 2
− 4K2

)
Re(ε/β),

(47)

where we took into account the equation β̇ = −iε. Note
that here we should not include evolution of β due to
detuning, Eq. (45), because otherwise the angle θ would

not be constant. Also note that in the term (∂θ/∂β)β̇ in
Eq. (46) we imply derivatives for both Re(β) and Im(β).

Combining the evolution equations both in the absence
of a drive and from the drive itself, we finally obtain

Ẇ = 8KW Re(ε/β), (48)

K̇ =

(
1−W 2

4W 2
− 4K2

)
Re(ε/β)

+
1

2
|β|2 (dω(k)

r /dn)
∣∣∣
n=|β|2

, (49)

β̇ = −iω(k)
r (n)

∣∣∣
n=|β|2

β − iε. (50)

These equations together with the conversion formulas
(41) and (43) is our main result for the evolution of the
dressed squeezed state. They allow very efficient sim-
ulation, since they avoid the large dimensionality of the
pure Fock-space evolution specified by Eq. (6). Equations
(48)–(50) are a hybrid between the Fock-space and the
phase-space representations, capable of describing evolu-
tion of the dressed squeezed state as it rings up due to
a coherent drive ε. To our knowledge, this is a novel
representation, which was not previously used in optics.

Note that the derivation of these equations assumes
large |β|2. However, they can be numerically applied even
for evolution starting with vacuum, β(0) = 0. [There
is no divergence due to the factor of β in the denomi-
nator, because at small times β = −iεt, and therefore
Re(ε/β) = Re(i/t) = 0.] We used these relatively sim-
ple equations to compare with the numerical results for
evolution due to Hamiltonian (6) in a system with typi-
cally 7×300 levels, and found very good agreement. The
reason why Eqs. (48)–(50) still work well when starting
with the vacuum is that the effect of nonlinearity at short
times is small (K ≈ 0, W ≈ 1), while by the time when
the squeezing due to nonlinearity becomes important,
|β|2 is already large. Note, however, that for |β|2 . 100
the sheared and squeezed states are significantly differ-
ent, and then it is important to use the dressed squeezed
state (42) [not the sheared state (33)] as the more accu-
rate model for comparison with simulation results.

Figure 5(b) shows comparison between the Q-function
for the numerically calculated state |ψ〉0 (solid lines) and
for the dressed squeezed state (dashed lines) calculated
using Eqs. (48)–(50). [At the end we have converted pa-
rameters K and W into the squeezing parameters r and
θ using Eqs. (41) and (43), and then calculated the Q-
function using the standard formula [56] for a squeezed
state.] If the parameter β is not calculated from Eq. (50)
but is instead computed as β = 0〈ψ|ā|ψ〉0, then the visual
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agreement between the dashed and solid lines becomes in-
significantly better. The visible difference between solid
and dashed lines is because the numerical state |ψ〉0 is not
exactly the dressed squeezed state; in particular, for Fig.
5(b) |qβ|

√
W = |K/β|

√
W = 0.023, which is comparable

to the value of 0.1, above which a significant crescent-
shape appears. The dashed lines in Fig. 5(b) are drawn
for the squeezing parameter r = 0.550. This corresponds
to the minimum and maximum quadrature variances of
0.333 and 3.00 compared with the coherent state (0.340
and 3.01 numerically for |ψ〉0) and the scaling factors
of 0.816 and 1.41 for the short and long axes of the Q-
function, compared with the coherent state (numerically
0.81 and 1.43 in the vicinity of the center).

D. Accuracy of dressed squeezed state
approximation

To quantify the accuracy of the dressed squeezed state
approximation and evolution equations (48)–(50), we
compare the numerically calculated state |ψ〉0 for the
evolution shown in Fig. 2 (starting with |0, 0〉) with the
result from Eqs. (48)–(50) for the sheared Gaussian state,
which is then converted into the dressed squeezed state
|β, ξ〉0. The infidelity 1− F = 1− |0〈β, ξ|ψ〉0|2 is shown
in Fig. 7 as the dashed blue (lower) line. It can be
compared with similar infidelity for the dressed coher-
ent state shown as the dashed orange (upper) line, for
which we also used Eq. (50). We see that the accuracy of
the dressed squeezed state model is much better than for
the dressed coherent state model when the infidelity of
the latter exceeds 10−3. However, at short times both in-
fidelities practically coincide and are significantly larger
than the coherent-state infidelity 1− Fc shown in Fig. 2
(also copied as the solid orange line in Fig. 7). Since the
difference between the orange dashed and orange solid
lines is the method of α(t) calculation, either via Eq. (50)
or as α = 0〈ψ|ā|ψ〉0, this indicates an inaccurate result
of Eq. (50) for the state center in the phase space. Let
us similarly calculate the center of the dressed squeezed
state as β = 0〈ψ|ā|ψ〉0 = α, while the squeezing parame-
ter ξ is still calculated via Eqs. (48)–(50). This produces
the blue (lower) solid line in Fig. 7, which is crudely two
orders of magnitude lower than 1 − Fc, thus confirming
that the dressed squeezed state approximation is much
better than the dressed coherent state approximation.

The reason for the inaccuracy of β(t) [or α(t)] calcu-
lation is rather simple. For the dashed lines in Fig. 7
we used the bare-basis value for the drive amplitude ε,
while within an eigenladder it is actually slightly differ-
ent. Using properly normalized eigenstates for n� nc, it
is easy to obtain the second-order correction in Eq. (15):
a ≈ [1 + 1

2 (g/∆)2σz] ā − (g/∆)σ− (see, e.g., Eq. (53)
in [28]), which leads to correction of the effective drive
amplitude,

ε̃ ≈
[
1− 1

2
(g/∆)2

]
ε, (51)

FIG. 7. Comparison between the dressed squeezed state and
dressed coherent state models within the “correct” eigenlad-
der. Parameters are the same as in Figs. 2 and 5, evolution
starts with |0, 0〉. Blue (lower) lines show time dependence of
the infidelity 1−F = 1−|0〈β, ξ|ψ〉0|2 for the dressed squeezed
states, orange (upper) lines show infidelity 1− |0〈α|ψ〉0|2 for
the dressed coherent states. For solid lines the state centers
β(t) and α(t) are calculated as average values of the operator
ā. For the dashed lines, β(t) and α(t) are obtained from Eq.
(50). For the dotted lines, in Eqs. (48)–(50) we use correc-
tion (51) for the drive amplitude. The dressed squeezed state
model is about two orders of magnitude more accurate than
the dressed coherent state model.

within the ground-state eigenladder at n . nc. (Within
the excited-state eigenladder the correction will then be
ε̃ ≈ {1 + 1

2 (g/∆)2 − 1
2 [
√

2 g/(∆ + η)]2} ε.) Using the
effective drive amplitude (51) in Eqs. (48)–(50) instead
of ε produces dotted lines (instead of dashed lines) in Fig.
7. We see that the dotted lines are quite close to the solid
lines; therefore, the simple correction (51) is sufficient for
an accurate theory. Even better accuracy can be achieved
if we use numerical matrix elements for the effective drive
amplitude within the ground-state eigenladder,

ε̃ =
〈n− 1, 0|a|n, 0〉√

n
ε, (52)

which now depends on n ≈ n̄. For Fig. 7 this produces a
line (not shown), which closely follows the blue solid line
for the squeezed-state approximation and a line practi-
cally indistinguishable from the orange solid line for the
coherent-state approximation.

We emphasize that in Fig. 7 the infidelity of the dressed
squeezed state model is . 10−3, while for the dressed
coherent state model it is only . 10−1. Note that we
always convert the sheared state (33) with parameters
K and W into the squeezed state (42) via Eqs. (41) and
(43) before comparing with numerical |ψ〉0. If this is not
done, the infidelity of the sheared Gaussian state in Fig.
7 would be above 10−3 at t < 100 ns (n̄ < 40), reaching
3 × 10−2 for n̄ < 0.5 and becoming practically equal to
the blue lines only at t > 160 ns (n̄ > 100).
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Thus, we have numerically confirmed that the dressed
squeezed state approximation performs much better than
the dressed coherent state approximation. Nevertheless,
the inaccuracy of the dressed squeezed state model still
grows in time, and may eventually become significant.

V. CONCLUSION

In this paper we analyzed the ring-up of a readout res-
onator coupled to a transmon qubit. The bare bases of
the transmon and resonator hybridize into a joint eigen-
basis that is organized into natural eigenladders associ-
ated with each nominal transmon state. As was pointed
out previously, ringing up the resonator from its ground
state using a coherent pump approximately creates a co-
herent state in this eigenbasis (i.e., a dressed coherent
state) that is confined to the eigenladder corresponding
to the initial transmon state. We analyzed the deviations
from this first approximation and developed a more ac-
curate dynamical model for the ring-up process.

Through numerical simulation, we demonstrated that
the ring-up evolution deviates from the dressed coherent
state model in two important respects. First, the initial
transmon population may leak into other (“incorrect”)
eigenladders that correspond to different initial transmon
states. Second, even within the initial (“correct”) eigen-
ladder the state may differ from a coherent state. We
analyzed both deviations and developed analytical mod-
els to quantify the effects.

The stray population that leaks outside the correct
eigenladder arises from the mismatch between the coher-
ent pump (in the bare basis) and the hybridized resonator
(in the eigenbasis). We found that this mismatch creates
interesting dynamics over a relatively short timescale af-
ter the pump is applied, and were able to describe the
resulting damped oscillations between neighboring eigen-
ladders quantitatively. The most important result is that
for typical experimental parameters the occupation of in-
correct eigenladders remains small (. 10−4); therefore,
this effect should not significantly contribute to the qubit
measurement error in present-day experiments. Note,
however, that our analysis focuses solely on the popu-
lation leakage caused by the pump itself during the ring-
up process; as such, it neglects other important effects
that contribute to the total leakage to incorrect eigen-
ladders in practice, such as qubit energy relaxation, the
Purcell effect, interactions with defects, dressed dephas-
ing, and non-RWA effects. (Note that [26] extends the
analysis presented here to include non-RWA effects, thus
explaining an important example of experimentally ob-
served leakage at high photon numbers.)

The dynamics of the hybridized resonator state re-
maining within the correct eigenladder is non-trivial due
to the effective resonator nonlinearity induced by the in-
teraction with the transmon. This nonlinearity leads to
a significant deviation from the dressed coherent state
picture—in our numerical simulations the infidelity of

the dressed coherent state reaches ∼10−1. The nonlin-
ear evolution shears the phase-space profile of the res-
onator state, deforming initially circular coherent state
profiles into elliptical and crescent-shaped profiles over
time. We showed that for practical ranges of parameters,
these sheared profiles approximate ideal squeezed states
in the eigenbasis (i.e., dressed squeezed states)—in our
simulations the infidelity of the squeezed state picture
reaches ∼10−3, or roughly two orders of magnitude bet-
ter than that of a dressed coherent state. (Note that the
dressed squeezed state is practically unentangled, simi-
lar to the dressed coherent state.) Using a hybrid phase-
Fock-space approach, we derived simple equations of mo-
tion [Eqs. (48)–(50)] for the self-developing squeezing,
which naturally generalize the evolution of a coherent
state. These equations of motion depend only on the
photon number-dependence of the dressed resonator fre-
quency, which may be added phenomenologically from
precomputed numerical simulations or measured experi-
mentally.

We emphasize that the self-developing squeezing may
significantly affect the qubit measurement error, either
decreasing or increasing it, depending on the squeezing
axis angle relative to the line passing through the state
centers in the phase space for the qubit states |0〉 and
|1〉. (The resonator field for the qubit state |0〉 is affected
by squeezing much more than for the state |1〉 because
of much more efficient level repulsion within the ground-
state ladder of the Jaynes-Cummings Hamiltonian for the
multi-level transmon.) Further analysis of this subject is
definitely important.

The dressed squeezed state model provides an efficient
and accurate description of the resonator physics dur-
ing a sufficiently rapid ring-up process, when the res-
onator decay may be neglected (as was assumed in this
paper). This regime is also physically relevant for at least
two known protocols: the catch-disperse-release measure-
ment of a qubit [27] and the readout protocol [30] based
on Josephson photomultipliers. However, in the standard
method of transmon measurement, the resonator decay
cannot be neglected (except during the ring-up), that will
require an extension of our dressed squeezed state model.
This generalization will be considered in future work.
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Appendix: Vanishing entanglement in dressed
coherent and squeezed states

In this appendix we show that dressed coherent states
and dressed squeezed states are practically unentangled
for large average numbers of photons n̄. For a dressed
coherent state we can anticipate this result because co-
herent states with large n̄ are practically classical. Thus,
the transmon is essentially driven by a classical field, and
should therefore produce an unentangled state. How-
ever, this result is rather paradoxical because the dressed
coherent state (10) is constructed out of highly entan-
gled eigenstates of the transmon-resonator system, so
significant entanglement could be naively expected. The
derivation below resolves this paradox. A similar result
also applies to a dressed squeezed state.

Let us consider a general dressed state

|ψ〉 =
∑

n
cn |n, k〉, (A.1)

where |n, k〉 are the eigenstates of the transmon-resonator
system for the transmon nominally in the state |k〉q, and
the coefficients cn describe the nominal resonator state∑
n cn |n〉r,

∑
n |cn|2 = 1. Our first goal is to derive a

condition for which this dressed state can be approxi-
mately represented as a direct product of the resonator
state

∑
n cn |n〉r and some transmon state (which will be

generally different from the nominal state |k〉q).

The eigenstate |n, k〉 can be expanded in the bare basis
(within the RWA strip) as

|n, k〉 =
∑

l
d

(n,k)
l |n− l, k + l〉, (A.2)

where the summation involves a few transmon levels,

−k ≤ l ≤ kmax − k, k < kmax ' 7. The coefficients d
(n,k)
l

depend on n because the coupling (4) between neighbor-
ing bare levels |n − l, k + l〉 and |n − l − 1, k + l + 1〉 is
proportional to

√
n− l. However, this dependence can

be neglected,
√
n− l ≈

√
n̄− l if

σn � n̄, kmax � n̄, (A.3)

where by the standard deviation σn we characterize the
spread of n in the state (A.1). In this case we can use ap-

proximation with n-independent coefficients d
(k)
l (which

may still depend on n̄),

|n, k〉 ≈
∑

l
d

(k)
l |n− l, k + l〉. (A.4)

Substituting Eq. (A.4) into Eq. (A.1), shifting the in-
dices, n − l → n, and changing the order of summation,
we obtain

|ψ〉 ≈
∑

l
d

(k)
l

∑
n
cn+l |n, k + l〉

=
∑

l
d

(k)
l |k + l〉q |φl〉, (A.5)

|φl〉 =
∑

n
cn+l |n〉r, (A.6)

where |k + l〉q is the transmon level and |φl〉 is the res-
onator state, which depends on transmon index l. Note
that |φl〉 are (practically) normalized, since the coeffi-
cients cn+l are the same as in the normalized state (A.1)
and the shift of indices by l is not important when the
condition (A.3) is satisfied.

The dependence of |φl〉 on the transmon index l indi-
cates the entanglement between the transmon and res-
onator. If |φl〉 were not dependent on l, then |ψ〉 in Eq.
(A.5) is an (unentangled) direct product of the transmon
and resonator states. Moreover, any l-dependent phase
factor, |φl〉 = eiϕl |φ0〉, may be absorbed into the trans-
mon state, still yielding a direct product. This gives us a
condition for the approximate absence of entanglement:
|〈φ0|φl〉| ≈ 1 for all transmon indices l.

Thus, we have shown that if∣∣∣∣∑n
c∗ncn+l

∣∣∣∣ ≈ 1 (A.7)

for any l within the relevant range, |l| ≤ kmax ' 7, then
the dressed state (A.1) is approximately a direct product,∑

n
cn |n, k〉 ≈

∑
n
cn |n〉r⊗

∑
l
eiϕld

(k)
l |k+l〉q, (A.8)

where ϕl = arg(
∑
n c
∗
ncn+l) and d

(k)
l are the coefficients

in the eigenstate (A.4).
Now let us show that the condition (A.7) is satisfied

for a dressed coherent state |α〉k given by Eq. (10). Since

in this case cn = exp(−|α|2/2)αn/
√
n!, we find

∑
n

c∗ncn+l =
∑
n

e−|α|
2 |α|2n

n!

|α|leil arg(α)√
(n+ 1)(n+ 2) · · · (n+ l)

≈ eiϕl , ϕl = l arg(α), (A.9)

where we approximated
√

(n+ 1)(n+ 2) · · · (n+ l) ≈
nl/2 ≈ |α|l. This approximation requires |α|2 � l2.
Thus, the dressed coherent state |α〉k is practically un-
entangled if |α|2 � k2

max.
The solid lines in Fig. 8(a) show the inaccuracy of the

direct-product approximation (A.8) for the dressed co-
herent state |α〉0 as a function of |α|2 for typical pa-
rameters: (ωr − ωq)/2π = 1 GHz, η/2π = 200 MHz,
and g/2π = 100 MHz (lower blue line, nc = 25) or
g/2π = 141.4 MHz (upper orange line, nc = 12.5). As a
measure of inaccuracy we use 1− |〈ψdp|α〉0|2, where the
direct-product state |ψdp〉 is given by Eq. (A.8). Note

that for small α we average coefficients d
(n,k)
l in Eq. (A.2)

to obtain d
(k)
l . We see that the solid lines in Fig. 8(a)

significantly increase with n̄ ≈ |α|2 until n̄ becomes much
larger than nc. This behavior is due to a competition be-
tween the continuously increasing entanglement of eigen-
states (A.2) and the decrease of entanglement due to the
increasingly satisfied condition (A.7). However, we see
that even at large n̄, the dressed coherent state |α〉0 is
very close to the direct-product state (A.8). For compar-
ison, we show with blue and orange dots the much larger
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FIG. 8. (a) Solid lines: infidelity 1 − |〈ψdp|α〉0|2 of approxi-
mating the dressed coherent state |α〉0 with a direct-product
state |ψdp〉 given by Eq. (A.8), as a function of |α|2. For com-
parison, the dots show similar infidelity for the eigenstates
|n, 0〉, i.e., dressed Fock states, as a function of n (axes of
n and |α|2 coincide). We assume (ωr − ωq)/2π = 1 GHz,
η/2π = 200 MHz, and g/2π = 100 MHz (lower blue line/dots,
nc = 25) or g/2π = 141.4 MHz (upper orange line/dots,
nc = 12.5). (b) Entanglement of formation EF (coinciding
with entropy of entanglement) for the dressed coherent states
|α〉0 (lines) and dressed Fock states (dots) with the same pa-
rameters as in (a).

inaccuracy when we try to approximate the correspond-
ing eigenstates |n, 0〉 (i.e., the dressed Fock states) with
similar direct-product wavefunctions. It is easy to prove
that the best such approximation is the bare state with
the largest coefficient in the expansion (A.2); the visible
kinks in Fig. 8(a) are due to the change of this best bare
state. Figure 8(b) is similar to Fig. 8(a), except it shows
the entanglement of formation [58] (equal to the entropy
of entanglement for pure states) for the same dressed co-

herent states |α〉0 and dressed Fock states |n, 0〉. With
this measure we again confirm that the dressed coher-
ent states are practically unentangled, in contrast to the

strongly entangled dressed Fock states [note an overall
similarity between Figs. 8(a) and 8(b)].

Even though a dressed coherent state is practically
unentangled, there is a strong classical correlation be-
tween the resonator and transmon dynamics. This can
be seen by adding explicit time dependence into Eq.
(A.8), thus going from the rotating frame into the lab
frame. Replacing coefficients cn for the coherent state
with cn(t) = e−inωrtcn(0) (the remaining factor e−iE(k,n̄)t

is an overall phase and therefore not important), we find
α(t) = e−iωrtα(0). As a result, φl = l arg[α(0)] − lωrt,
and therefore the dressed coherent state evolves in time
as

|α〉k = |e−iωrtα(0)〉r ⊗
∑
l

e−ilωrteilarg[α(0)]d
(k)
l |k + l〉q.

(A.10)
We see that both resonator and transmon states are
evolving with the period 2π/ωr in a phase-synchronized
way; the resonator state evolution is a simple oscilla-
tion, but the transmon evolution within the period is
quite non-trivial. This is exactly what we would expect
classically for a non-linear oscillator that is harmonically
driven with frequency ωr. We have performed numeri-
cal simulations for the transmon state evolution in Eq.
(A.10) using the x-representation (where x in this case
is the superconducting phase difference) and confirmed
such non-trivial evolution within one period of oscilla-
tions when n̄ is significantly larger than nc.

To check the direct-product condition (A.7) for a
dressed squeezed state, let us use its approximate sheared
Gaussian representation in Eq. (33). Then we find

∑
n

c∗ncn+l ≈ eil arg(β)

[
1− l2

2Wn̄
− 2K2W

n̄
l2
]
, (A.11)

assuming large n̄ = |β|2. We see that the condition (A.7)
is satisfied if

n̄� k2
max max(1/2W, 2K2W ). (A.12)

In this case the dressed squeezed state is practically unen-
tangled. For the dressed coherent state (W = 1, K = 0)
this inequality reduces to n̄� k2

max, as expected.
Note that in the case when the dressed sheared state

is practically unentangled, the phase ϕl = l arg(β) in Eq.
(A.8) is still the same as for the dressed coherent state
(except for the notation change, α→ β). Therefore, the
transmon state and its evolution within the period of ωr

is still the same as for the dressed coherent state with
α = β. In other words, for sufficiently large n̄ there is no
difference for the transmon if it is driven by a coherent
or a squeezed field from the resonator.
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