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Fock states are a fundamental resource for many quantum technologies such as quantum metrol-
ogy. While much progress has been made in single-photon source technologies, preparing Fock states
with large photon number remains challenging. We present and analyze a bootstrapped approach for
non-deterministically preparing large photon-number Fock states by iteratively fusing smaller Fock
states on a beamsplitter. We show that by employing state recycling we are able to exponentially im-
prove the preparation rate over conventional schemes, allowing the efficient preparation of large Fock
states. The scheme requires single-photon sources, beamsplitters, number-resolved photo-detectors,
fast-feedforward, and an optical quantum memory.

I. INTRODUCTION

Fock states form a ubiquitous resource for many quan-
tum technologies [1, 2], ranging from quantum communi-
cation and quantum cryptography, to quantum-enhanced
metrology [3–7], novel interferometric protocols [8], and
all-optical quantum information processing [9]. While
much progress has been made in single-photon source
technology, preparing large photon-number Fock states
remains challenging. Large Fock states can be relatively
easily prepared from single-photon Fock states using non-
deterministic linear optics, or via heralded spontaneous
parametric down-conversion (SPDC). However, scalabil-
ity is a problem owing to the inefficient (inverse exponen-
tial) scaling of the success probability against the desired
number of photons.

It is known that quantum enhanced metrology is opti-
mal (i.e. it reaches the Heisenberg limit of phase sensitiv-
ity) when NOON states are used [10]. Creating NOON
states with large photon number can be as hard as
building a universal optical quantum computer, as it re-
quires many of the same technologies, such as a quantum
memory, and feedforward. Nonetheless, one needs Fock
states with large photon number to first generate NOON
states with large photon number for quantum enhanced
metrology [3]. Thus, efficient schemes for generating Fock
states with large photon number, as presented in this
manuscript, are an important stepping stone for realiz-
ing optimal quantum enhanced metrology.

Here, we present and analyze a bootstrapped proto-
col for iteratively building up large photon-number Fock
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states from a resource of single photons. We show that
the bootstrapped technique exponentially improves scal-
ability compared to näıve single-shot preparation tech-
niques, allowing efficient (polynomial time) state prepa-
ration. The experimental requirements are largely the
same as for universal linear optics quantum computing
(LOQC) [9], which, while presently challenging, will be
viable when all-optical quantum computing eventuates.

This paper is structured as follows. In Sec. II, we review
the most common form of Fock state preparation — her-
alded spontaneous parametric down-conversion — where
we condition upon detecting some number of photons in
one mode, guaranteeing the same number of photons in
the other. In Sec. III, we present a näıve brute-force ap-
proach to preparing large Fock states via post-selected
linear optics — a technique which is inefficient, requiring
exponential resources in both time and resource states.
In Sec. IV, we present an improved technique, based on
post-selected linear optics, where larger Fock states are
progressively built up by combining smaller Fock states.
We also introduce a recycling protocol, which exponen-
tially improves the efficiency of state preparation com-
pared to the previously described schemes. In Sec. V,
we discuss fusion, i.e. how does the choice for the or-
der in which to fuse Fock states affect resource scal-
ing? Specifically we describe our fusion protocol, speak
about some analytic approximations, discuss specific fu-
sion strategies that we implement, and talk about hybrid
schemes, where, instead of beginning with a resource of
single photons, we begin with a resource of larger Fock
states, thereby reducing the number of operations re-
quired to prepare the larger states. In Sec. VI, we discuss
the converse protocol, where we wish to reduce photon
number, allowing prepared Fock states with more than
the desired photon-number to be shrunk to the desired
target size. In Sec. VII we provide an analysis of imper-
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fections in our scheme for guidance with experimental
implementations. We present all of our simulation results
in Sec. VIII, where we numerically simulate the different
Fock state preparation algorithms. We conclude in Sec.
IX and discuss issues that require consideration in future
experimental implementations, specifically inefficiencies
and imperfect photon mode-overlap.

II. POST-SELECTED SPONTANEOUS
PARAMETRIC DOWN-CONVERSION

Perhaps, the most trivial approach to preparing large
photon-number Fock states is to employ post-selected,
heralded SPDC. Here, we exploit the photon-number cor-
relations between the signal and idler modes of the SPDC
output state. That is, upon detecting n photons in one
mode, we are guaranteed of having prepared exactly n
photons in the other (assuming perfect detection effi-
ciency), as shown in Fig. 1. This approach has been ex-
perimentally demonstrated for small Fock states of up to
three photons [11].

FIG. 1. Conditional preparation of an n-photon Fock state
via post-selected SPDC. A non-linear crystal is pumped with
a coherent state |α〉, yielding a two-mode state given by a
correlated superposition in the photon-number basis. Due to
the perfect photon-number correlation between the two out-
put modes, detection of n photons in the second output mode
guarantees the preparation of n photons in the first. While
this works in principle for arbitrary n, the success probability
decreases exponentially with n.

An SPDC source coherently down-converts photons
from a coherent pump source with amplitude α into pho-
ton pairs across the signal and idler output modes via a
second-order non-linear process. This evolution is given
by a Hamiltonian of the form

ĤSPDC = χâpumpâ
†
signalâ

†
idler + h.c., (1)

where χ is the interaction strength, which depends on the
non-linear material. This yields an output state, which is
a two-mode superposition in the photon-number basis,

|ψSPDC〉 =

∞∑
n=0

λn|n, n〉, (2)

where the photon-number distribution is given by

|λn|2 =
1

n̄+ 1

(
n̄

n̄+ 1

)n
, (3)

and n̄ is the mean photon number, which is a function
of the pump-power α. Evidently, there is perfect photon-
number correlation between the two output modes, pro-
viding a direct approach to non-deterministically prepar-
ing Fock states of arbitrary photon number. Suppose we
wish to prepare large photon-number Fock states, with
a target of at least d photons. Then the probability of
successful preparation is

Pprep(d) =

∞∑
n=d

|λn|2 =

(
n̄

n̄+ 1

)d
, (4)

which decreases exponentially with d, and therefore, the
average number of trials required until success scales ex-
ponentially with d. Furthermore, in present-day laborato-
ries, n̄� 1 [12], making this approach unviable for large
d. In Fig. 2, we illustrate the preparation probability for
modest values of d.

FIG. 2. The probability of preparing at least d photons in the
first mode of an SPDC source with mean photon number n̄,
by post-selecting upon measuring at least d photons in the
other mode.

III. SINGLE-SHOT PREPARATION VIA
POST-SELECTED LINEAR OPTICS

Using only single-photon sources as a resource (either
from SPDC or any other source technology), the obvi-
ous way in which to prepare large photon-number Fock
states using post-selected linear optics, is to simply input
single-photon states into each of the input modes of the
network, and post-select upon detecting vacuum at all
but one of the output modes. When this post-selection
succeeds, conservation of photon number ensures that all
photons exit through the unmeasured mode. This is il-
lustrated in Fig. 3.

Let us consider an n-mode interferometer with exactly
one photon at each input mode. Then the input state is
of the form

|ψin〉 = |1〉⊗n = â†1 . . . â
†
n|0〉⊗n =

[
n∏
i=1

â†i

]
|0〉⊗n, (5)

where â†i is the photonic creation operator for the ith

mode.
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FIG. 3. Single-shot preparation on an n-photon Fock state
from n single photons. A photon is incident upon each input
mode, and we post-select upon detecting vacuum in all but
one of the output modes, where all n photons must have exited
the remaining output mode.

Next, we apply a linear optics network, implementing
the unitary map on the photonic creation operators

Û â†i Û
† 7→

n∑
j=1

Ui,j â
†
j , (6)

yielding

|ψout〉 = Û |ψin〉

=

 n∏
i=1

n∑
j=1

Ui,j â
†
j

 |0〉⊗n. (7)

Post-selecting upon all photons being present in the first
mode (i.e. vacuum in all other modes), the projected state
is

|ψproj〉 =

[
n∏
i=1

Ui,1â
†
1

]
|0〉⊗n

=
√
n!

[
n∏
i=1

Ui,1

]
|n〉|0〉⊗n−1, (8)

and the probability of this event occurring is

Pbunch = n!

∣∣∣∣∣
n∏
i=1

Ui,1

∣∣∣∣∣
2

. (9)

In the case of a balanced interferometer (i.e. one where
each input photon has equal amplitude of reaching the
first output mode — which maximizes Pbunch, following
from the triangle inequality — we have

|Ui,1| =
1√
n
∀ i, (10)

and then

Pbunch = n!

∣∣∣∣∣
n∏
i=1

1√
n

∣∣∣∣∣
2

=
n!

nn
∼
√
n

en
. (11)

Clearly, the probability of preparing an n-photon Fock
state decreases exponentially with n. Thus, a realistic ex-
perimental implementation would be limited to relatively
small n.

As a simple example, consider two-photon Hong-Ou-
Mandel (HOM) [13] interference. In this instance n = 2,
and

Pbunch =
2!

22
=

1

2
, (12)

as expected, since the output state of a HOM interfer-
ometer is |ψout〉 = (|2, 0〉+ |0, 2〉)/

√
2.

IV. BOOTSTRAPPED PREPARATION VIA
POST-SELECTED LINEAR OPTICS

FIG. 4. The Fock state fusion operation. Two Fock states with
m and n photons are mixed on a beamsplitter of reflectivity
η. Upon detecting s photons in the first output mode, an
m+ n− s photon state is prepared in the other mode.

To improve upon the unfavorable scaling of the single-
shot approach, we next consider a bootstrapped ap-
proach, where progressively larger Fock states are built
up using the iterative application of a fusion operation.
The fusion operation is simply a beamsplitter, fed with
two Fock states with photon numbers m and n, where
one output mode is measured in the photon-number ba-
sis. When no photons are detected, this yields a larger
Fock state of size m + n. When s photons are detected
we have prepared a subtracted state of size m+ n− s, as
shown in Fig. 4.

The input state to the fusion operation is

|ψin〉 = |m,n〉

=
1√
m!n!

(â†)m(b̂†)n|0, 0〉, (13)

which is incident upon a beamsplitter of reflectivity η,
given by the biased beamsplitter unitary

UBS =

(
η

√
1− η2√

1− η2 −η

)
, (14)

where local phases are irrelevant. Then the output state
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is

|ψout〉 = ÛBS|ψin〉

=
1√
m!n!

(ηâ† +
√

1− η2b̂†)m

× (
√

1− η2â† − ηb̂†)n|0, 0〉

=
1√
m!n!

m∑
j=0

(
m

j

)
ηj
√

1− η2
m−j

(â†)j(b̂†)m−j

×
n∑
k=0

(
n

k

)√
1− η2

k
ηn−k(−1)n−k

× (â†)k(b̂†)n−k|0, 0〉

=
1√
m!n!

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
ηn+j−k

√
1− η2

m+k−j

× (−1)n−k(â†)j+k(b̂†)m+n−j−k|0, 0〉

=
1√
m!n!

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
ηn+j−k

√
1− η2

m+k−j

× (−1)n−k
√

(j + k)!(m+ n− j − k)!

× |j + k,m+ n− j − k〉. (15)

We are interested in the case where s photons are
measured in the first mode, thereby producing an s-
photon-subtracted state in the second mode. Thus, we
let s = j + k, and the unnormalized post-selected state
reduces to

|ψps〉 =

√
s!(m+ n− s)!

m!n!

m∑
j=0

(
m

j

)(
n

s− j

)
ηn+2j−s

×
√

1− η2
m+s−2j

(−1)n−s+j |s,m+ n− s〉.
(16)

The probability of detecting s photons is, therefore,

Psub(s|m,n) = η2(n−s)(1− η2)m+s s!(m+ n− s)!
m!n!

×

∣∣∣∣∣∣
s∑
j=0

(
m

j

)(
n

s− j

)[
η2

η2 − 1

]j∣∣∣∣∣∣
2

. (17)

The conditionally-prepared state will have grown if the
s-photon-subtracted state is larger than both m and n.
thus, we require s < m+ n−max(m,n). The probability
of preparing a state at least as large as both the input
Fock states is

Pgrow(m,n) =

m+n−max(m,n)−1∑
s=0

Psub(s|m,n). (18)

In the case of the non-recycled protocol, we only accept
the s = 0 outcome, so we eliminate the sum and keep
only the s = 0 term.

We wish to maximize this probability such that the
likelihood of state growth is maximized, so for each con-
figuration of input Fock states m and n, we optimize η
to maximize Pgrow,

Popt(m,n) = maxη[Pgrow(m,n)],

ηopt(m,n) = argmaxη[Pgrow(m,n)]. (19)

V. FUSION

Figure 5 shows the optimized beamsplitter reflec-
tivities and growth probabilities for 1 ≤ m ≤ 10 and
1 ≤ n ≤ 10. Evidently, when employing recycling (i.e. ac-
cepting all outcomes s) the growth probability is maxi-
mized when fusing two Fock states of equal photon num-
ber, m = n. This suggests that the optimal strategy for
performing the fusion operations is to always fuse to-
gether states of equal size. This is analogous with the
cluster state [14, 15] literature, where Rohde & Barrett
showed that the balanced strategy [16], where one pref-
erentially bonds cluster states of equal size, is optimal
for state growth. In this instance, the only probabilities
of interest are Psub(s|m,m), and the optimized growth
probability is Popt(m,m) = 1/2 ∀m. That is, for every
fusion operation between two states of equal size, the
probability of growing the state is always 1/2, which is
very favorable when dealing with large photon-number
states. When not employing recycling (i.e. accepting only
the s = 0 outcomes), the growth probability is maximized
when we only attempt to fuse a Fock state with the single-
photon state (i.e. m = 1 or n = 1). Rohde & Barrett refer
to this as the modesty strategy, since fusions involve only
the smallest states.

Clearly, if we were to progressively build up a large
photon-number state by repeatedly utilizing the fusion
operation and requiring s = 0, the success probability of
the protocol would decrease exponentially with the num-
ber of fusion operations. To improve on this, we bor-
row the concept of recycling from cluster state protocols
[16–18], where when a fusion operation fails we do not
throw away the state and begin from scratch, but rather
store the states from failures and reuse them in future
fusion operations. Intuitively, we are accepting all detec-
tion events, as opposed to only the s = 0 events, which
one expects to improve efficiency.

A. Fusion Protocol

We begin by assuming that we have a resource of
single-photon states, that come for free, i.e. these states
are trivial to prepare on-demand. Next, we have a series
of buckets (quantum memories) containing Fock states of
different photon numbers. Let cn(t) be the number of n-
photon states that we have in the respective bucket after
the tth fusion operation. Since we assume that single-
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FIG. 5. (a) The optimal beamsplitter reflectivity (ηopt) for
maximizing growth probability when fusing two Fock states
of photon number m and n, accepting all outcomes s. (b) The
associated growth probability (Popt) for the fusion operation.
(c) The optimal beamsplitter reflectivity for maximizing only
the probability of the s = 0 outcome, i.e. for the non-recycled
protocol. (d) The associated success probability. Evidently the
fusion operation with recycling has higher success probability
than without recycling, since we are accepting all events s as
opposed to only the s = 0 cases.

photon states come for free, we let c1(0) =∞, and ini-
tially all other buckets are empty, ci>1(0) = 0.

We then take two Fock states from the buckets, in ac-

cordance with the employed fusion strategy, which we
let be m and n, and apply the fusion operation between
them. With probability Psub(s|m,n) this prepares the
(m+ n− s)-photon state, which updates the buckets ac-
cording to

cm → cm − 1,

cn → cn − 1,

cm+n−s →
{
cm+n−s + 1 with recycling;
cm+n−s + δs,0 without recycling.

(20)

That is, we remove a state from each of the m- and n-
photon buckets, and add one more state to the m+ n− s
photon bucket. Thus, the protocol proceeds as a random
walk of populations between the buckets. With recycling,
we accept all events s, and without recycling accept only
the s = 0 outcomes. Obviously the latter case repopulates
the larger photon-number buckets with lower probability,
reducing the rate of state preparation.

Next, suppose we wish to prepare a resource of Fock
states with photon number at least d. Then we are inter-
ested in the buckets

c≥d =

∞∑
j=d

cj . (21)

The rate at which these states are prepared, per fusion
operation, is then

r(d) = lim
t→∞

c≥d(t)

t
, (22)

where t is the number of fusion operations that have been
applied. We consider the t→∞ limit to establish the
steady state flow dynamics of states through the buckets
under the action of the random walk.

B. Analytic Approximations

For some simplified schemes, we can establish analytic
results that show that the rate is improved exponentially
over the single-shot case discussed in Sec. III. First we
consider a non-recycled scheme, where we attempt to
construct a Fock state with d photons, where d is a power
of 2. For values of d that are not a power of 2, we can
simply construct a Fock state with a number that is the
next largest power of 2. The rate will be unchanged, and
the scaling will not be significantly affected.

As this is a non-recycled scheme we only retain suc-
cesses. We therefore fuse single-photon states until we
obtain 2-photon states, fuse 2-photon states until we ob-
tain 4-photon states, and so forth, which is why we con-
sider powers of two. As was found above (see Fig. 5), the
success probability is maximized for 50/50 beam split-
ters when using equal photon numbers, so we use 50/50
beam splitters. To estimate the rate, we will estimate the
average number of single-photon states needed to pro-
duce one d-photon state. Then the preparation rate of
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d-photon Fock states per fusion operation will have scal-
ing equal to the inverse of this number. That is because
there can be no more than a factor of 2 between the num-
ber of single-photon states used and the number of fusion
operations.

To show that result, consider first the ideal case where
every fusion operation is successful. Then for d single-
photon states, there would be d/2 fusion operations, and
d/4 fusion operations on the 2-photon states, and so
forth. Adding them together for d a power of two gives
a total number of fusion operations equal to d − 1, or
one less than the number of single-photon states. As the
success rate is reduced, the number of fusion operations
can only be reduced for a given number of single pho-
tons. Hence the number of fusion operations cannot be
any larger than the number of single photons. For this
scheme we perform fusion operations on all pairs of sin-
gle photons, so the number of fusion operations must be
at least half the number of single-photon states.

Now we estimate the average number of single-photon
states required to produce one d-photon state. The ex-
pected number of attempts to fuse two d/2-photon states
to produce the d-photon state will be 1/Psub(0|d/2, d/2).
This corresponds to an expected number of d/2-photon
states of 2/Psub(0|d/2, d/2), as there are two in each
attempt. Then, the expected number of d/4-photon
states required to produce each d/2-photon state is
2/Psub(0|d/4, d/4). As a result, the expected number
of d/4-photon states required to produce one d-photon
state is 4/[Psub(0|d/2, d/2)Psub(0|d/4, d/4)]. Continuing
this reasoning, the expected number of single photons
required to produce one d-photon state is

log2 d∏
j=1

2

Psub(0|d/2j , d/2j)
. (23)

To estimate this expected number of photons, we can
use

Psub(0|n, n) = 2−2n
(2n)!

(n!)2
∼ 1√

πn
, (24)

where the approximation is via Stirling’s formula. Us-
ing this approximation with Eq. (23) gives the expected
number of single-photon states scaling as

2log2 d

log2 d∏
j=1

√
πd/2j = d(πd)(log2 d)/22− log2 d(log2 d+1)/4)

= d3/4+(log2 π)/2+(log2 d)/4. (25)

Testing this expression numerically, we find that the ex-
pected number of single photons is about 1.2777 times
this value.

As discussed above, the preparation rate of d-photon
Fock states per fusion operation will scale as the inverse
of this expression, and is therefore

r(d) ∝ 1

d3/4+(log2 π)/2d(log2 d)/4
. (26)

There is an exponential improvement over the case with
just a single interferometer and single-shot preparation.
The scaling is not exponential in d, but it is also not
polynomial in d, because the power is logarithmic in d.

For a further improvement, we can add limited recy-
cling. Rather than just requiring zero photons to be lost
at each stage, we require that the number of photons lost
is no more than n/2 when fusing two n-photon states so
that the probability of success is given by

P =

Floor(n/2)∑
s=0

Psub(s|n, n), (27)

with η = 1/
√

2. Then we find numerically that the prob-
ability of success approaches ∼ 1/3 in the limit n → ∞
as can be seen in Fig. 6. An analytic solution for this
result currently eludes us so we have provided numerical
evidence. It is smaller for smaller values of n, but be-
cause we are calculating the scaling for large d we will
take the probability of success to be 1/3. Without loss
of generality we can require that on success the photon
number is d3n/2e. If the photon number is larger than
that, we can reduce the photon number with the state
reduction scheme described in Sec. VI. Now, in order to
obtain photon number d, we need a number of levels scal-
ing as log3/2 d, rather than log2 d. However, the multiply-
ing factor for the number of repetitions at each stage is
smaller.

Therefore, the number of single photons required to
obtain a single d-photon Fock state scales as

6log3/2 d = dlog3/2 6 = d4.419.... (28)

Testing this expression numerically, the number of single
photons required is about 47 times less. The correspond-
ing rate for this scheme then scales as

r(d) ∝ d−4.419.... (29)

0 20 40 60 80 100
0.30

0.32

0.34

0.36

0.38

0.40

FIG. 6. The probability of an improved recycling scheme with
η = 1/

√
2, where we require that the number of photons lost

is no more than n/2 when fusing two n-photon states. We see
that this probability approaches ∼ 1/3 as n→∞.
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This scaling is again an exponential improvement, and is
now strictly polynomial.

C. Fusion Strategies

An analytic bound for more advanced recycling strate-
gies is nontrivial and we instead simulate these proto-
cols as classical Markov processes between the buck-
ets, with transition probabilities given by the parameters
Psub(s|m,n), and transition rules from Eq. (20).

While Fig. 5 intuitively hints that the balanced strat-
egy may be optimal, we consider several other strategies
as a comparison to provide further insight into the impor-
tance of fusion strategy. We will consider four recycling
strategies in total:

• Balanced: Fuse the largest two available states of
equal size, m = n. This strategy is based on the
observation of Fig. 5 that fusing states of equal size
maximizes the growth probability, Pgrow.

• Modesty: Always attempt to grow our state by a
single photon, by fusing the state m with a single-
photon state, n = 1.

• Random: Randomly choose any two available
states, irrespective of their relative sizes.

• Frugal: Same as balanced, except that it does
not attempt to fuse two equally sized states if
m = n > bd′/2c, where d′ ≥ d. For states of size
n > d′/2, it instead attempts to fuse available
states such that d ≤ m+ n ≤ d′. This is because
larger number states are costly to prepare, so it
is wasteful to fuse two states with a total photon
number well in excess of the target d.

The optimization technique for the frugal strategy is dif-
ferent than for the other strategies, which use Pgrow. If
the total input photon number m+ n ≥ d, then for each
configuration of input Fock states m and n, we optimize η
to maximize the probability of getting at least d photons.
Specifically, we maximize

m+n−d∑
s=0

P (s|m,n). (30)

If m+ n < d, then for each configuration of input Fock
states m and n, we optimize η to maximize the proba-
bility of increasing the maximum photon number with
increasing weightings for growing the photon number
larger. Specifically, we maximize

m+n−max(m,n)∑
s=0

[m+ n− s−max(m,n)]P (s|m,n).

(31)

D. Hybrid schemes

Thus far, we have considered the scenario where a free
resource of single-photon states is available. Clearly, this
is appropriate when our sources are true single-photon
sources. However, emerging photon-source technologies,
such as some quantum dot sources, have the ability to
prepare small-photon-number Fock states directly. In-
tuitively, one expects that by starting with a resource
of such larger states, by mitigating the need to non-
deterministically prepare these states from single pho-
tons, we might further improve preparation rates.

This is easily accommodated for in our framework by
letting cx =∞ rather than c1 =∞, where x is the num-
ber of photons that can be prepared in a single shot.
For example, beginning with two-photon sources, we let
c2 =∞. Having made this slight adjustment to the pro-
tocol, it proceeds as usual using the appropriate fusion
strategy.

VI. STATE REDUCTION

In our analysis, we have let d be our target number of
photons, and the state preparation rate r(d) is defined to
be the rate at which Fock states of size at least d are pre-
pared. For some protocols employing large Fock states,
this is an appropriate definition. However, for other ap-
plications one may require states of size exactly equal to
d. In this instance we would need a protocol by which to
reduce the photon number of states larger than d to have
photon number exactly d.

This may be easily efficiently implemented using post-
selected linear optics. We simply impinge the prepared
Fock state on an extremely low-reflectivity beamsplitter
with vacuum at the other input (n = 0, η � 1). Because
the beamsplitter reflectivity is low, most of the time no
photons will be detected in the reflected mode. Some-
times a single photon will be detected. And with higher
order probability more than one photon will be detected.
By making the reflectivity sufficiently small, these higher
order probabilities may be made arbitrarily low, such
that with close to unit probability we detect at most one
photon. When a single photon is detected we have re-
duced the photon number by one. We simply apply this
protocol repeatedly until the desired number of photons
have been subtracted, yielding the Fock state of the de-
sired target photon number. Note that this protocol is
efficient, requiring O(s) beamsplitter operations on aver-
age when attempting to subtract s photons.

Because the Fock states are only ever mixed with the
vacuum state in the state reduction protocol, there are
no mode-matching requirements, making state reduction
somewhat experimentally easier to implement than state
growth.
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VII. EXPERIMENTAL IMPERFECTIONS

There are many experimental errors to consider in this
scheme, including loss, mode-mismatch, and detector and
photon source inefficiencies, among others. The accumu-
lation of errors throughout this scheme will cause incor-
rect binning of Fock states, which will diminish the fi-
delity of the desired output state. Loss is the major ex-
perimental error that plagues this device, which can oc-
cur at any stage of the procedure. There are two distinct
loss mechanisms in this scheme: firstly, loss will occur
while photons are stored in the quantum memory, and
secondly, loss will occur due to inefficient photodetectors
during each fusion operation. Losses, in general, will pro-
duce a number of photons less than what is expected,
contributing to a mixed state, which reduces the fidelity
of the desired output state. For a given fusion operation
in the presence of loss, if we are given t = m + n total
photons, then the probability of retaining i photons and
losing t− i photons may be modelled by,

pi = νi(1− ν)t−i
(
t

i

)
, (32)

where 1 − ν is the probability of losing a single photon,
and so ν is the efficiency of a single instance of the fusion
operation. When ν ≈ 1 then pt ≈ 1 − (1 − ν)t. That
is, in the limit of small loss, the probability of losing
any photons is proportional to the number of photons.
This error happens regardless of whether the loss occurs
during detection or in the heralded mode, resulting in
a mixture of the desired state with a state containing
lower photon number. The total probability of loss for
the protocol is then proportional to the average number
of photons in a given fusion operation multiplied by the
number of fusion operations.

Another advantage of our scheme is that Fock states
have no phase and so the scheme is immune to dephasing.

VIII. RESULTS

In Fig. 7, we plot the rate of d-photon state prepara-
tion, r(d), for both the recycled and non-recycled boot-
strapped protocols (Sec. IV), the single-shot protocol
(Sec. III), and heralded SPDC (Sec. II).

In both bootstrapped protocols we employ the bal-
anced fusion strategy and assume an infinite resource
of single-photon states, c1 =∞. Here the currency for
resource requirements is the number of fusion (i.e. beam-
splitter) operations.

In the case of the single-shot protocol, Eq. (11) gives
us the rate of state preparation in units of the number
of trials of the entire interferometer. To convert this to
the currency of number of beamsplitters, we recognize
that the interferometer shown in Fig. 3 can be most eas-
ily constructed from d beamsplitters in a linear array to
progressively route every photon to the top mode. Thus,
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FIG. 7. Rate of preparation r of Fock states with at least
d photons, for the recycled and non-recycled bootstrapped
protocols (using the balanced strategy), the single-shot pro-
tocol, and the heralded SPDC protocol. In the cases of the two
bootstrapped protocols and the SPDC protocol, we observe
a strict exponential decrease in the preparation rate against
the number of photons. It is evident that state recycling yields
a far more favorable scaling than the non-recycled or single-
shot protocols. For heralded SPDC, the exponential exhibits
a dependence on the mean photon number (n̄) of the source,
which reflects the SPDC pump-power. Here we have chosen
n̄ such that the SPDC and recycled bootstrapped balanced
protocols have the same 20-photon preparation rate, provid-
ing a baseline for the regime of SPDC operation such that it
matches the preparation rate of the recycled protocol.

the rate of state preparation, as measured by number of
beamsplitter operations, is simply given by Eq. (11) with
an additional factor of 1/d, yielding r(d) = d!/dd+1.

In the case of heralded SPDC, there is no direct conver-
sion for resource requirements, since the SPDC protocol
employs neither beamsplitters nor single photons as a re-
source. Rather, the currency is the number of repetitions
of the SPDC source (given by the pump repetition rate).
Thus, we use the number of repetitions as the resource,
bearing in mind that this resource has a different inter-
pretation than the resource usage in the other protocols.
In Fig. 7, we have chosen the mean photon-number, n̄,
such that SPDC has the same 20-photon preparation rate
as the balanced bootstrapped protocol with recycling, in
which case we see that n̄ ≈ 1.7 is a threshold, above which
SPDC is more efficient than the recycled bootstrapped
protocol, and below which is less efficient. This regime
for mean photon number is already well beyond what is
typically employed in present-day experiments.

It is clear from the log plot that in all cases other than
the balanced recycled protocol, the rate of state prepa-
ration decreases exponentially with d. However, it is ev-
ident that recycling substantially improves the prepara-
tion rate compared to the non-recycled and single-shot
approaches. For example, for 20-photon state prepara-
tion, state recycling improves the preparation rate by a
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factor of ≈ 105 over the single-shot protocol.
In Fig. 8, we show the recycled protocol for the various

fusion strategies introduced earlier in Sec. V. From the
log log plot, it is evident that the preparation rate ex-
hibits polynomial scaling against d when employing the
frugal and balanced recycled strategies, as opposed to the
exponential scaling of the random and modesty recycled
strategies, and the single-shot, non-recycled and SPDC
protocols. This represents an exponential efficiency im-
provement in the frugal and balanced recycled proto-
cols. The associated scaling for the Frugal and Balanced
strategies goes as ∼ 1/d2.8 and ∼ 1/d3.7 respectively,
which is significantly better than the scaling in the dou-
bling approach that led to the rate in Eq. (29).
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FIG. 8. Comparison of the strategies when employing state re-
cycling, showing the strategies frugal, balanced, random, and
modesty. The linear curves in the log-log plot are indicative of
polynomial scaling of the preparation rate against the desired
number of photons when employing the frugal and balanced
strategies, whereas the random and modesty strategies exhibit
exponential scaling.

In Fig. 9, we show the performance of hybrid schemes,
where we begin with a resource of Fock states with more
than one photon. We only include the results for the re-
cycled frugal protocol, since this was observed to exhibit
the best scaling in preparation rates.

IX. CONCLUSION

We have presented a scheme for preparing large
photon-number Fock states non-deterministically from a
resource of single-photon states, using post-selected lin-
ear optics, by progressively fusing together smaller Fock
states into larger ones. We find that by employing state
recycling we are able to exponentially improve the state
preparation rate — orders of magnitude for large pho-
ton number — allowing experiments to efficiently (i.e. in
polynomial time) prepare much larger Fock states than
näıve brute-force, single-shot approaches, which require
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FIG. 9. Preparation rates for at least d photons for hybrid
schemes, where we begin with resource states of different pho-
ton numbers x (i.e. cx =∞), and employ the frugal fusion
strategy. Evidently, as we begin with larger starting resource
states, the efficiency of the scheme improves, since now the
steps that would ordinarily be required to prepare these re-
source states from single-photon states are mitigated.

exponential time in general. While some of the experi-
mental requirements, such as quantum memory and fast-
feedforward, are presently extremely challenging, these
requirements are essentially the same as those for LOQC.
Thus, when the tools for optical quantum computing be-
come experimentally viable, all the requirements for this
scheme will be in place, and new experiments requiring
large photon-number Fock states will be accessible.

In our analysis, we have considered the ideal case,
where the resource of single-photon states are perfect |1〉
states (or more generally |x〉 states when beginning with
x-photon states as a resource), and the photo-detectors,
beamsplitters and quantum memory have perfect effi-
ciency. In practice, any experimental implementation will
exhibit inefficiencies, which would result in output states
mixed in the photon-number basis, something which fu-
ture experimental implementations would need to take
into account.

We have also assumed that all photons in the protocol
have perfect mode-overlap. In practice, photons will al-
ways exhibit some degree of distinguishability, resulting
in reduced HOM visibility. This will change the photon-
number distribution at the outputs of the fusion opera-
tions, affecting the state preparation rate and photon dis-
tinguishability of the prepared states. This can be readily
modelled using the mode-operator formalism. See Rohde
et al. [19–22] for details on how this technique may be
applied to linear optics protocols.
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