
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Entanglement swapping of two arbitrarily degraded
entangled states

Brian T. Kirby, Siddhartha Santra, Vladimir S. Malinovsky, and Michael Brodsky
Phys. Rev. A 94, 012336 — Published 20 July 2016

DOI: 10.1103/PhysRevA.94.012336

http://dx.doi.org/10.1103/PhysRevA.94.012336


Entanglement Swapping of Two Arbitrarily Degraded Entangled States

Brian T. Kirby,∗ Siddhartha Santra,† Vladimir S. Malinovsky, and Michael Brodsky
U.S. Army Research Laboratory, Adelphi, MD 20783, USA

We consider entanglement swapping, a key component of quantum network operations and entanglement
distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed
by environmental interactions causing a reduction in their degree of entanglement. Thus an understanding
of entanglement swapping with partially mixed states is of importance. Here we present a general analytical
solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method
for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially
mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on
the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally,
we determine a general relationship between the ranks of the initial states and the rank of the final state after
swapping.

I. INTRODUCTION

Recent interest in quantum networks is driven by the en-
ticing possibility of powerful new network functionalities that
are unattainable by conventional classical communication net-
works. Similarly to their classical counterparts, quantum net-
works are comprised of a multitude of nodes interconnected
by quantum channels. While nodes generate, store and ma-
nipulate quantum states, the channels transfer or teleport these
states between the nodes with high fidelity allowing the dis-
tribution of quantum entanglement across the entire network.
This inherent ability to distribute and manipulate entangle-
ment between distant parties is the underpinning of quantum
applications.

Entanglement swapping is one of the basic quantum opera-
tions used for entanglement distribution [1–3]. For instance, it
could be used for the creation of multi-partite entangled states
[4] from bi-partite entanglement or for overcoming the trans-
mission loss in establishing entanglement over long-distances
via quantum repeaters [5–8]. Interestingly, the entanglement
swapping concept also lends itself to the search for entangle-
ment conserving quantities [9–12]. In any experimental im-
plementation the generated entangled quantum states are not
necessarily perfect and, in fact, could be further degraded by
transmission through the communication channels. Entangle-
ment swapping of certain classes of degraded states were con-
sidered recently [13–17]. However, the nature of the intrin-
sic imperfections of any quantum network and the exact de-
coherence mechanism of the transmission channel itself are
implementation dependent [18–21]. Thus the need to under-
stand how entanglement swapping of partially degraded states
works in all cases calls for a general solution for swapping of
arbitrary states.

In this paper we give an analytical description of entan-
glement swapping of general two-qubit states, which encom-
passes arbitrary two-qubit states resulting from any possible
decoherence mechanisms. While entanglement swapping can
be accomplished by using projection on arbitrary basis states
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here we chose the Bell state basis for clarity and potential re-
alistic implementations for photonic qubits. We further use
our analytical results to numerically model how the concur-
rence of the final states resulting from entanglement swap-
ping depend on the initial states used. We find that entangle-
ment swapping with any arbitrarily mixed two-qubit state rep-
resented by density matrix M and a pure fully entangled Bell
state results in a state, concurrence of which is the same as that
of M . Next, we determine that the concurrence of a state re-
sulting from entanglement swapping of any two Bell diagonal
states is upper bounded by the product of the concurrences of
the initial states. Lastly, we consider entanglement swapping
with arbitrarily entangled pure states. We find a lower bound
for this case, and discuss how the rank of input matrices af-
fects the rank of output matrix. Specifically we find that en-
tanglement swapping two states of rank R1 and R2 results in
a state with rank at least as high as max[R1,R2]. Finally, our
general analytical solution incorporates a few specific cases
of entanglement swapping with particularly restricted input
states that have been published in recent years.

The paper is organized as follows. In Sec. (II) we first ob-
tain a closed form expression for the output two-qubit density
matrix starting from two general density matrices as inputs.
Numerically we build a model for optical implementation of
a Bell state measurement (BSM) and use it to verify our ana-
lytical results. In Sec. (III) we present an analysis of how the
concurrence of initial states is related to the concurrence of
the final states using both numerical and analytical methods.
We conclude with a discussion in Sec. (IV).

II. ANALYTICAL SOLUTION FOR ENTANGLEMENT
SWAPPING

A. Bell states

In this first subsection we start with an instructional exam-
ple of entanglement swapping using Bell states.

The setup we consider is shown in Fig. 1, where the sources
A,B are independent photon-pair sources and thus the joint
4-qubit state of the photons in modes 1,2,3,4 is given by the
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tensor product of the states produced at the two sources,

ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4. (1)

H1,H2 are the Hilbert spaces of the two-qubits whose state
is described by ρ1,2 ∈ B(H1,2) ≃ B(H1 ⊗H2) and similarly
H3,H4 are the spaces for the other pair ρ3,4 ∈ B(H3,4) ≃
B(H3 ⊗ H4), where B(Hi) is the space of operators on the
respective Hilbert spaces. In this subsection ρ1,2 and ρ3,4 are
entangled two-qubit Bell states, but could represent any arbi-
trary two-qubit state in the rest of the paper.

If both sources A and B in Fig. (1) emit the φ+ Bell state,
then the initial system is given by:

∣φ+1,2⟩ ⊗ ∣φ+3,4⟩, (2)

where the Bell states are ∣φ±i,j⟩ = 1
√

2
(∣H⟩i∣H⟩j ± ∣V ⟩i∣V ⟩j)

and ∣ψ±i,j⟩ = 1
√

2
(∣H⟩i∣V ⟩j ± ∣V ⟩i∣H⟩j) and i and j represent

the modes. As written, the state in Eq. (2) is the tensor product
of modes 1,2 and 3,4 emitted from sources A and B corre-
spondingly. Rewriting this composite state in terms of states
with modes 2 and 3 together (the modes being measured) and
modes 1 and 4 together (the modes being entangled) we ob-
tain:
1

2
[∣φ+1,4⟩∣φ+2,3⟩ + ∣φ−1,4⟩∣φ−2,3⟩ + ∣ψ+1,4⟩∣ψ+2,3⟩ + ∣ψ−1,4⟩∣ψ−2,3⟩].

(3)
Note, that a Bell State measurement is a projection of modes
2,3 onto their Bell Basis ∣φ±2,3⟩ and ∣ψ±2,3⟩. It’s clear from Eq.
3 that a BSM in modes 2,3 will result in an entangled state in
modes 1,4, the modes which have never interacted. Projection
of modes 2,3 onto other entangled bases states besides the
Bell basis is also capable of entangling modes 1,4. However,
the Bell state projection onto ∣ψ−2,3⟩ for photonic qubits could
be conveniently realized by using just a conventional balanced
beamsplitter, hence motivating the use of BSM throughout
this paper. Information on physical implementations of BSM
can be found in Subsec. (II C). In Eq. (3), we see that for this
particular case the final state in modes 1,4 is the same as that
found in the BSM of modes 2,3, each outcome occurring with
equal probability 1

4
. When swapping Bell states the output and

input concurrences are all maximal and equal to 1.

B. Arbitrary states

We will now extend the above example to general density
matrices in order to find the state resulting from entanglement
swapping two arbitrarily mixed states. That is we project the
joint density matrix ρ1,2,3,4 onto a Bell state in the subspace
of spatial modes 2,3, followed by tracing these modes out
and normalizing, resulting in a final state for ρ14. To accom-
plish this projection for general input density matrices and for
any Bell state outcome consider the input states for ρ1,2 and
ρ3,4, whose elements in the basis ∣HH⟩, ∣HV ⟩, ∣V H⟩, ∣V V ⟩
are ai,j and bi,j correspondingly. Then ρ1,2,3,4 takes form of:

ρ1,2,3,4 = a11b11∣H1H2⟩∣H3H4⟩⟨H1H2∣⟨H3H4∣
+ a11b12∣H1H2⟩∣H3H4⟩⟨H1H2∣⟨H3V4∣ + ...

(4)

FIG. 1. General layout for entanglement swapping. Source A emits
states entangled in modes 1 and 2, while source B emits states en-
tangled in modes 3 and 4. Entanglement between modes 1 and 4 can
sometimes be created when a BSM on modes 2 and 3 is performed.

To facilitate the projection of modes 2 and 3 onto Bell states
we then express all terms in ρ1,2,3,4 as a sum of Bell states.
As an example of how this can be achieved on a term by term
basis, consider the first term ∣H1H2⟩∣H3H4⟩, which can be
written as a linear sum of Bell states in modes 2 and 3 as
1
2
(∣φ+14⟩∣φ+23⟩ + ∣φ+14⟩∣φ−23⟩ + ∣φ−14⟩∣φ+23⟩ + ∣φ−14⟩∣φ−23⟩). Simi-

lar results can be calculated for all 256 terms in the sum of
Eq. (4).

The general output states for entanglement swapping ρψ±1,4

and ρφ±1,4 can then be found in terms of the elements of
the initial input density matrices ρ1,2 and ρ3,4 by projecting
onto either ∣ψ±2,3⟩ or ∣φ±2,3⟩ respectively, followed by tracing
out modes 2,3. Thus with Πψ±

2,3 = ∣ψ±2,3⟩ ⟨ψ±2,3∣ ,Πφ±
2,3 =

∣φ±2,3⟩ ⟨φ±2,3∣ as the projectors onto the distinct Bell states,
one has:

ρψ±1,4 = Tr2,3[
Πψ±

2,3 ρ1,2,3,4 Πψ±
2,3

N±

] (5)

ρφ±1,4 = Tr2,3[
Πφ±

2,3 ρ1,2,3,4 Πφ±
2,3

M±

] (6)

The output states ρψ±1,4 and ρφ±1,4 are the main analytical result
of the paper and serve as the basis of our analysis presented
below in Sec. III (for explicit forms of ρψ±1,4 and ρφ±1,4 and their
normalization factors N±,M± see Appendix A). We verified
one of these results (ρψ−1,4) by numerical simulation for an opti-
cal implementation of a BSM that is described in Subsec. II C.
Note that over the last few years several papers have treated
entanglement swapping for particularly restricted classes of
partially mixed input states, nearly all of which fall into the
broad category of X-states [13–17]. We ascertain that our
general analytical solution of Eqs. (5) and (6) incorporates
each of those results. A detailed description of entanglement
swapping of X-states is presented in Appendix B.
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C. Photonic implementation with a beamsplitter

Now we consider a physical implementation of the entan-
glement swapping protocol using polarization entangled pho-
tons and a BSM which consists of a beamsplitter and a coin-
cidence measurement. This model connects the results in the
previous sections to realizable experiments, and also allows
us to verify the results of Subsec. II B using a formal descrip-
tion of the swapping setup. As an aside, the relative simplicity
of this very BSM implementation motivates the choice of the
Bell basis as a basis to which project modes 2,3.

Implementation of the BSM pictured in Fig. 1 with a 50/50
beamsplitter and a coincidence measurement selects on the ψ−

state by exploiting the antisymmetric nature of the singlet state
that yields coincidence counts. Identical photons will bunch at
the output of a beamsplitter, which is known as the Hong-Ou-
Mandel effect [22]. However, the opposite effect can occur
if the input photons are in the singlet state, resulting in each
photon exiting in a different port. Since this anti-bunching
only occurs for the singlet state we can perform a projective
measurement onto ψ−2,3 by post-selecting on joint detection at
the output ports of a balanced beamsplitter [23–28].

We begin with the initial state ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4 as pic-
tured in Fig. 1, and consider the action of a beamsplitter on
modes 2,3. Specifically, photons in modes 2,3 are directed as
inputs to the two-input modes a, b respectively of a beamsplit-
ter (of reflectivity η) whose action on the two input modes is
given by,

â†
i → i

√
ηâ†

i +
√

1 − ηb̂†
i ,

b̂†
j →

√
1 − ηâ†

j + i
√
ηb̂†
j , (7)

where i, j = {H,V } are polarization labels for the photons in
modes a, b, for example, â†

H creates a horizontally polarized
photon in mode a of the beamsplitter etc. This means that an
input pure-state to the beamsplitter, ∣ψin⟩ = ∣i⟩a ∣j⟩b = â

†
i b̂

†
j ∣0⟩,

yields an output

∣ψout⟩ = ÛBS ∣ψin⟩
= (f(η)â†

i â
†
j + (1 − η)â†

j b̂
†
i − ηâ

†
i b̂

†
j + f(η)b̂

†
i b̂

†
j) ∣0⟩ , (8)

where, f(η) = i
√
η(1 − η). From Eq. (8) one can see that

terms such as â†
i â

†
j (b̂

†
i b̂

†
j) create two photons in the same out-

put mode a (b). These doubly occupied output modes lie in
the complement HB, of the part of the Hilbert space for the
input-output modes that we are interested in - the coincidence
subspaceHC. The direct sum of these two subspaces gives us
the full mode space, Hmode = HC ⊕ HB, whose spans in the
∣i⟩a ∣j⟩b notation are

HB = Span{∣H⟩a ∣H⟩a , ∣V ⟩a ∣V ⟩a , ∣H⟩a ∣V ⟩a ,
∣H⟩b ∣H⟩b , ∣V ⟩b ∣V ⟩b , ∣H⟩b ∣V ⟩b},

HC = Span ∣H⟩a ∣H⟩b , ∣H⟩a ∣V ⟩b , ∣V ⟩a ∣H⟩b ,
∣V ⟩a ∣V ⟩b}. (9)

Clearly, Dim(Hmode) = Dim(HC) +Dim(HB) = 4 + 6 = 10.

Note that the coincidence space HC ⊂ Hmode is actually an
isometric embedding of H2 ⊗ H3 into Hmode. Denoting this
isometry by the map K̂, we have that K̂ ∶ H2 ⊗H3 ↦ Hmode,
Hmode ≅isom H2 ⊗ H3, K̂†K̂ = 112,3. Infact, the projector Π
onto the coincidence subspace is given by Π = 11Coin⊕0Bunch =
∑4
α=1 ∣αi⟩ ⟨αi∣ = ∑4

i=1 K̂ ∣i⟩ ⟨i∣ K̂† = K̂(∑4
i=1 ∣i⟩ ⟨i∣)K̂† =

K̂K̂†, where ∣αi⟩ , i = 1,2,3,4 is a basis for HCoin and
∣i⟩ , i = 1,2,3,4 is a basis for H2 ⊗ H3 with ∣αi⟩ = K̂ ∣i⟩.
Clearly Π2 = K̂K̂†K̂K̂† = K̂(K̂†K̂)K̂† = K̂11K̂† = Π and
ΠHCoin = HCoin,ΠHBunch = 0.

The unitary ÛBS , introduced in Eq. (8), acts on the entire
10-dimensional mode spaceHmode. Hence before considering
the action of the unitary ÛBS on the 2,3 part of the four-qubit
input state ρ1,2,3,4 we need a basis change operator Ŵ such
that,

Ŵ ∶ (H2 ⊗H3) ⊗ (H1 ⊗H4) ↦ Hmode ⊗ (H1 ⊗H4), (10)

which can be achieved by Ŵ = K̂ ⊗ 111,4. The operator Ŵ
is thus a partial isometry on the original 4-qubit space whose
action is to transform,

ρ1,2,3,4 ↦ ρi1,2,3,4 =Ŵρ1,2,3,4Ŵ
†

=(K̂ ⊗ 111,4)ρ1,2,3,4(K̂† ⊗ 111,4). (11)

In the new basis the unitary action of the beamsplitter on
ρi1,2,3,4 is given by the adjoint action of the operator ÛBS re-
sulting in the four-qubit density matrix ρii1,2,3,4 in theHmode ⊗
(H1 ⊗H4) basis,

ρii1,2,3,4 = ÛBSρi1,2,3,4Û †
BS

= (ÛBS ⊗ 111,4)(K̂ ⊗ 111,4)ρ1,2,3,4(K̂† ⊗ 111,4)(Û †
BS ⊗ 111,4)

= (ÛBSK ⊗ 111,4)ρ1,2,3,4(K̂†Û †
BS ⊗ 111,4). (12)

Next we consider a coincidence measurement on the two
output channels of the beamsplitter. Since we are interested in
the four-qubit state conditioned on the detection of a photon
in each of the two output modes of the beamsplitter, we need
the conditional density matrix which is actually the operator
ρiii1,2,3,4, obtained after normalizing the projection of ρii1,2,3,4
onto the coincidence subspaceHCoin

ρiii1,2,3,4 =
Πρii1,2,3,4Π

Tr(Πρii1,2,3,4Π) , (13)

where the trace in the denominator is the trace over the Hilbert
spaces of all 4-qubits. One now needs to transform the basis
of ρiii1,2,3,4 fromHmode⊗(H1⊗H4) to (H2⊗H3)⊗(H1⊗H4)
to give ρiv1,2,3,4 = Ŵ †ρiii1,2,3,4Ŵ .

Finally, to yield the two qubit density matrix ρiv we take a
partial trace over the Hilbert spaces of the qubits 2,3 in ρiv1,2,3,4
resulting in,

ρv1,2,3,4 = Tr2,3(ρiv1,2,3,4)

= 1

Tr(Πρii1,2,3,4Π)
4

∑
i=1

⟨i∣Ŵ †Πρii1,2,3,4ΠŴ ∣i⟩ (14)
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where ∣i⟩ is an orthonormal (ON) basis for H2 ⊗ H3,
∑4
i=1 ∣i⟩ ⟨i∣ = 112,3. Putting everything together one has that,

ρv1,2,3,4 =
1

N
4

∑
i=1

⟨i∣(K̂†ÛBSK̂ ⊗ 111,4)ρ1,2,3,4(K̂†Û †
BSK̂ ⊗ 111,4)∣i⟩

(15)

With

N = Tr(Πρii1,2,3,4Π) =
4

∑
i,j=1

⟨i, j∣(K̂†ÛBSK̂ ⊗ 111,4)ρ1,2,3,4(K̂†Û †
BSK̂ ⊗ 111,4)∣i, j⟩ ,

(16)

with ∣i⟩ , i = 1,2,3,4 an ON basis for H2 ⊗ H3 and ∣j⟩ =
1,2,3,4 an ON basis forH1 ⊗H4.

Note, it can be shown [23] that the operator K̂†ÛBSK̂ ap-
pearing in Eqs. (15) and (16) may be expressed as the sum of
a projector onto the ∣ψ−2,3⟩ state of spatial modes 2,3 and an
operator that has states with one photon per spatial mode in its
kernel, i.e.,

K̂†ÛBSK̂ = ∣ψ−2,3⟩ ⟨ψ−2,3∣ + Ô. (17)

Here, the operator Ô annihilates any joint state with one pho-
ton in each mode 2,3 in our setup. Since it is only the latter
kind of states that we focus on in this work, Eq. (15) implies
that the output state ρiv is the reduced (and normalized) part
on subsystems 1,4 after projecting onto the maximally entan-
gled antisymmetric pure state ∣ψ−2,3⟩ in an operator expansion,
ρ1,2,3,4 = ∑j ô1,4j ⊗ ô2,3j . Eq. (15) establishes the connection
to the implementation free approach of Subsecs. II A, II B and
B.

The results of this subsection are derived for a typical phys-
ical setup of entanglement swapping based on photonic qubits
and a BSM relying on photon anti-bunching. For consistency,
we have implemented Eq. (15) programmatically and can nu-
merically find the final output state ρ14 given two numerical
inputs for ρ12 and ρ34. By comparing these numerical outputs
with those found from ρψ−1,4 of Eq. (5) for the same inputs we
have concluded that the two approaches are identical.

III. CONCURRENCE RELATIONS

Using the results of the previous sections we now apply an-
alytical and numerical methods to analyze how entanglement
swaps for various types of states. We prove some statements
analytically and for others we come to conclusions based on
numerical simulations with large numbers of random density
matrices.

A. Entanglement swapping of a general state with a Bell state

The most important feature of Eqs. (5) and (6) is that they
can accept any input density matrix. In this subsection we

FIG. 2. (Color online) Resulting concurrence from entanglement
swapping with a general random density matrix (with concurrence
CA) and a Bell state (with concurrence CB = 1). The horizontal axis
is the product of the initial concurrences and the vertical axis is the
final concurrence (CF ) of the swapped state. The dashed red line is
the diagonal.

make use of this in order to show that when any input den-
sity matrix M of any form is swapped with a Bell state, the
resulting concurrence is equal to that of M . In other words,
the concurrence of partially mixed state is conserved when it
is swapped with a Bell state. We first illustrate this result nu-
merically for general input density matrices by using a large
number of Bures distributed random density matrices. Then
we consider the special case ofM being anX-state, and prove
this claim analytically (Appendix C), due to the ease at which
the concurrence of an X-state can be calculated. In order to
sample uniformly from the space of possible density matrices
we have used 106 random density matrices distributed accord-
ing to the Bures metric [29]. More information about how
random matrices were calculated can be found in Appendix
E.

Here and in the analysis below in order to simplify the no-
tations we label variables describing the first (second) input
state in modes 1,2 (3,4) asA (B), and the final state in modes
1,4 as F .

For each of the random density matrices we calculate the
concurrence CA, we then swap this matrix with a Bell state
according to the Eqs. (5) and (6) and calculate the final con-
currence CF of the resulting matrix.

Fig. 2 plots the final concurrence CF as a function of a
product CA and CB (CB being a concurrence of a Bell state
is equal to unity in this case) as black dots. One clearly sees
that all the black dots lies exactly on the diagonal marked by
dashed red line. That is the concurrence of the final state after
swapping is equal to the product of the concurrences of the
initial state. Note, that in this figure we project modes 2,3
onto ψ− with the BSM, however the same results are found
regardless of which Bell state is projected onto.

We point out that in the case considered in this section the
concurrence of the initial mixed state M can be viewed as a
conserved quantity, because it is equal to the concurrence of
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the final state after entanglement swapping. Quantities which
are conserved during entanglement swapping have been stud-
ied in the past [9], and there has been considerable recent in-
terest in more general forms of conservation related to entan-
glement [10–12].

This conservation result can be intuitively understood if we
interpret it is as a teleportation. Consider the case when a gen-
eral stateM is in modes 1,2 and the Bell state is in modes 3,4.
Then the BSM is implementing a teleportation of the state in
mode 2 to mode 4, but without the step of applying a unitary
transformation to mode 4 to recover the original state. How-
ever, since the entanglement of two qubit states is invariant
under local unitary operations the state ρ1,4 still has the same
concurrence as the initial M .

B. Entanglement swapping of two Bell diagonal states

Next we consider Bell diagonal states and how the final
concurrence after swapping two Bell diagonal states depends
on the initial states. We will begin this section by showing
numerically that the concurrence of the final state after the
entanglement swapping of two Bell diagonal states is upper
bounded by the product of the concurrences of the input states.
An empirical lower bound for this case will also be found nu-
merically in terms of the product of the input concurrences.
Lastly, we will analytically demonstrate that the swapping of
the same two Bell diagonal states which are restricted to rank
2 will always swap to a state with concurrence equal to the
numerical upper bound.

Bell diagonal states are a special set ofX-states which con-
sist of a mixture of Bell states. For example, a general Bell
diagonal state is given by:

ρBell = α∣ψ+⟩⟨ψ+∣+β∣ψ−⟩⟨ψ−∣+γ∣φ+⟩⟨φ+∣+δ∣φ−⟩⟨φ−∣, (18)

where the coefficients are nonnegative and sum to unity.
In order to investigate how the concurrence of Bell diagonal

states behaves during entanglement swapping we randomly
generated 106 pairs of Bell diagonal states (where the two
states in the pair are in general different). These states were
generated by randomly sampling from the tetrahedron formed
by Bell states [29, 30]. We then swapped each of these pairs
using Eqs. (5) and (6), calculated the resulting concurrence,
and plotted it in Fig. 3, where the horizontal axis is the prod-
uct of the two initial states concurrences and the vertical is the
final states concurrence. This figure clearly shows there exists
an upper bound on the concurrence of the final state given by
the product of the input concurrences.

In addition from Fig. 3 we see that a lower bound is also
present. For simplicity we have numerically fit this line to
5CACB

4
− 1

4
, whereCA andCB refer to the initial concurrences

for the input states pictured in Fig. 1. These results can all be
combined then to find the final inequality for entanglement
swapping with Bell diagonal states:

max [0, 5CACB
4

− 1

4
] ≤ CF ≤ CACB , (19)

where CF is the concurrence of the output state.

FIG. 3. (Color online) Entanglement swapping with 106 random Bell
diagonal states. The horizontal axis is the product of the two ini-
tial concurrences (given by CA and CB), and the vertical axis is the
concurrence of the final state (given by CF ). The upper and lower
bounds are also displayed.

Further, the upper bound can be derived analytically for the
case of swapping a rank 2 Bell diagonal state with itself. This
result is shown in Appendix D.

C. Entanglement swapping of two pure states

Several past results have indicated that swapping could re-
sult in improved final entanglement for certain input states
[9, 14–16]. Here we find one extremely broad class of in-
put states (arbitrarily entangled completely pure state) is often
capable of increasing the final concurrence above the product
of the two initial concurrences. Moreover, the resulting state
concurrence is always higher than the product of the two ini-
tial concurrences squared.

To randomly generate a large number of pure states of var-
ious degrees of entanglement we take the first column of a
Haar distributed random unitary matrix [31], or equivalently,
apply a Haar distributed random unitary transformation to a
pure state. More information about how we calculate Haar
distributed random matrices can be found in the Appendix E.

Pictured in Fig. 4 is the result of entanglement swapping
with 106 pairs of random pure states, where each member of
the pair is in general different. Similarly to procedure em-
ployed for plotting previous figures, for each of the 106 pairs
of random matrices the final state is calculated according to
Eqs. (5) and (6); its concurrence was evaluated and plotted as
a function of the product of the two initial concurrences. For
the dataset presented in this figure we project on ψ−2,3 in the
BSM, however the same results are obtained for any of the
three other possible BSM outcomes. The diagonal has also
been plotted as a dashed line in Fig. 4 to facilitate compar-
isons between the three plots. We see that the square of the
product of the initial concurrences is always lower than the
final concurrence. Although the bound is not tight it is qual-
itatively useful for determining the “worst case” scenario for
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FIG. 4. (Color online) Comparison of concurrence before and after
entanglement swapping with pure states. The horizontal axis is the
product of the two input concurrences (given by CA and CB), and
the vertical axis is the final concurrence (given by CF ). The dashed
line is the diagonal, and the solid line is the square of the x axis.

FIG. 5. (Color online) The concurrence (CF ) which results from
swapping two randomly generated pure states of concurrence CA

and CB as a function of these two concurrences. Colored according
to the ratio of the concurrences of the two input states with dark
blue nearest unity. Shown here for BSM results of ψ−, however the
density of points is identical for all BSM outcomes.

entanglement swapping with pure states. For completeness
we have also found an empirical lower bound from the nu-
merical data by fitting the minimum points to an exponential
given approximately by −0.318+0.323e1.404CACB , whereCA
and CB denote the concurrences of the two input states. It is
obvious from Fig. 4 that there are lots of final states whose
concurrence is relatively high, and in particular is greater than
the product of the two initial concurrences.

To clarify which pairs of states increase concurrence after
swapping we consider the final concurrence as a function of
both initial concurrences CA and CB . Fig. 5 plots the 106

points in the three spatial dimensions CA, CB and CF . The

points are colored based on the ratio of the larger of the ini-
tial concurrences to the smaller one. The color progressively
changes from dark red (high ratio of the initial concurrences)
to blue (ratio near unity).

The set of points in Fig. 5 appear to make up a solid
bounded volume. In agreement with Fig. 4 one clearly see the
lower bound, but, interestingly, Fig. 5 shows an upper bound
as well. The bound seems to depend on the ratio of CACB .
The main feature of the data is that the final concurrence CF
can approach one only if the ratio of CACB is close to unity
irrespective of the actual values of ofCA, CB . That is the final
state may be highly entangled even if the input states had low
concurrences as long as those initial concurrences were near
equal.

This result generalizes earlier results which show that two
identical pure states which are not fully entangled can be used
for purification [9]. In that particular case, the identical in-
put states were imbalanced Bell states given, in the notation
of section II B, as cos(θ)∣HH⟩ + sin(θ)∣V V ⟩ with θ = π/4
corresponding to a ‘balanced’ input Bell state. It was found
that these imbalanced states swap to the ∣ψ±⟩ Bell states upon
a BSM outcome of ∣ψ±⟩. The intuitive reason for this is that
the imbalance of the input state, which is between the ∣HH⟩
and ∣V V ⟩ terms, becomes balanced again for states with only
terms involving ∣HV ⟩ and ∣V H⟩, since each term has equal
amounts of H and V . Since in this example the purification
occurs only when the two initial states are equally imbalanced,
and independent of the degree of imbalance (the angle θ), we
conjecture that this is the reason why Fig. 5 shows that states
of similar concurrence are most likely to increase entangle-
ment, because those are the ones which are most likely to ful-
fill these criteria.

D. General rank relationship for any input matrices

The above results indicate that, in general, the purity (or the
rank) of a state appears to have an important impact on how
it will function in an entanglement swapping setting. To illus-
trate this we have considered how the rank of the output state
is related to the rank of the input states. Using 106 random
matrices uniformly distributed according to an induced mea-
sure (see Appendix E), we have found that the rank of the final
state RF is related to the rank of the input states RA and RB
as:

RF ≥ max[RA,RB]. (20)

Further, we have found that the equality is satisfied when ei-
therRA orRB are equal to one. In other words, entanglement
swapping a state of rank R with a pure state results in a state
of the same rank R, and two pure states will always swap
into another pure state. Interestingly, this result is analogous
to relationships between the rank of single-mode nonclassical
states and their entangled two-mode outputs after a beamsplit-
ter [10, 32].
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IV. CONCLUSION

We have given a general analytical solution for entangle-
ment swapping of two different arbitrary bipartite states. We
have shown how this solution simplifies when input states are
restricted to either X-states or Bell states. In addition, we
have discussed an implementation of photonic entanglement
swapping.

We have found relationships between the input and output
concurrences for various classes of bipartite states. First, we
determined that the concurrence of an arbitrary entangled state
is preserved by swapping with a Bell state. Second, through
a mix of numerical and analytical means we defined both an
upper and lower bound on the concurrence of a state resulting
from entanglement swapping with two Bell diagonal states.
Specifically, the upper bound is the product of the two ini-
tial concurrences. Finally, we demonstrated the impact of pu-
rity, and rank in general, on entanglement swapping. We have
shown that the concurrence of the final state after entangle-
ment swapping of two pure states is lower bounded by the
squared product of the concurrences of the initial states.

The reliance of future quantum networks on entanglement

swapping makes these results an essential tool for predicting
and understanding network performance. Our analysis also
facilitates a deeper understanding of the subtle differences of
the entanglement swapping between various classes of quan-
tum states.
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Appendix A: General form of output density matrices for
entanglement swapping of arbitrary states

It is convenient to use the matrix form of Eqs. (5) and (6) for
calculations. For this reason we show here the explicit forms
of the final density matrices after entanglement swapping in
terms of the elements of the input density matrices:

ρψ±1,4=

1
N±

⎛
⎜⎜⎜
⎝

a22b11 ± a21b13 ± a12b31 + a11b33 a22b12 ± a21b14 ± a12b32 + a11b34 a24b11 ± a23b13 ± a14b31 + a13b33 a24b12 ± a23b14 ± a14b32 + a13b34
a22b21 ± a21b23 ± a12b41 + a11b43 a22b22 ± a21b24 ± a12b42 + a11b44 a24b21 ± a23b23 ± a14b41 + a13b43 a24b22 ± a23b24 ± a14b42 + a13b44
a42b11 ± a41b13 ± a32b31 + a31b33 a42b12 ± a41b14 ± a32b32 + a31b34 a44b11 ± a43b13 ± a34b31 + a33b33 a44b12 ± a43b14 ± a34b32 + a33b34
a42b21 ± a41b23 ± a32b41 + a31b43 a42b22 ± a41b24 ± a32b42 + a31b44 a44b21 ± a43b23 ± a34b41 + a33b43 a44b22 ± a43b24 ± a34b42 + a33b44

⎞
⎟⎟⎟
⎠

(A1)
ρφ±1,4=

1
M±

⎛
⎜⎜⎜
⎝

a11b11 ± a12b13 ± a21b31 + a22b33 a11b12 ± a12b14 ± a21b32 + a22b34 a13b11 ± a14b13 ± a23b31 + a24b33 a13b12 ± a14b14 ± a23b32 + a24b34
a11b21 ± a12b23 ± a21b41 + a22b43 a11b22 ± a12b24 ± a21b42 + a22b44 a13b21 ± a14b23 ± a23b41 + a24b43 a13b22 ± a14b24 ± a23b42 + a24b44
a31b11 ± a32b13 ± a41b31 + a42b33 a31b12 ± a32b14 ± a41b32 + a42b34 a33b11 ± a34b13 ± a43b31 + a44b33 a33b12 ± a34b14 ± a43b32 + a44b34
a31b21 ± a32b23 ± a41b41 + a42b43 a31b22 ± a32b24 ± a41b42 + a42b44 a33b21 ± a34b23 ± a43b41 + a44b43 a33b22 ± a34b24 ± a43b42 + a44b44

⎞
⎟⎟⎟
⎠
.

(A2)

The normalization constants are given by:

N± = a22b11 + a44b11 ± a21b13 ± a43b13
+ a22b22 + a44b22 ± a21b24 ± a43b24
± a12b31 ± a34b31 + a11b33 + a33b33
± a12b42 ± a34b42 + a11b44 + a33b44,

M± = a11b11 + a33b11 ± a12b13 ± a34b13
+ a11b22 + a33b22 ± a12b24 ± a34b24
± a21b31 ± a43b31 + a22b33 + a44b33
± a21b42 ± a43b42 + a22b44 + a44b44.

(A3)

Appendix B: Analytical solution for entanglement swapping
with X-states

Naturally, the general output states of Eqs. (A1) and (A2)
can be simplified significantly for specific inputs such as X-
states. Due to the considerable recent interest in X-states, of

which the Werner states and Bell diagonal states are a special
case [33], we will consider them in more detail here.
X-states are two qubit density matrices with decoupled par-

ity sectors {∣HV ⟩ , ∣V H⟩} and {∣HH⟩ , ∣V V ⟩}. Thus in the
ordered basis for two qubits ∣HH⟩ , ∣HV ⟩ , ∣V H⟩ , ∣V V ⟩ an
X-state is a density matrix of the following form:

χc =
⎛
⎜⎜⎜
⎝

c11 0 0 c14
0 c22 c23 0
0 c32 c33 0
c41 0 0 c44

⎞
⎟⎟⎟
⎠
. (B1)

If the input density matrix for modes 1,2 is given by
Eq. (B1), and the input for modes 3,4 is given by

χd =
⎛
⎜⎜⎜
⎝

d11 0 0 d14
0 d22 d23 0
0 d32 d33 0
d41 0 0 d44

⎞
⎟⎟⎟
⎠
, (B2)
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then it follows from the Eqs. (5) and (6) that the resulting output density matrices after entanglement swapping is again
an X-state in the form of:

χψ±1,4 =
1

Nχ
±

⎛
⎜⎜⎜
⎝

c22d11 + c11d33 0 0 ±c23d14 ± c14d32
0 c22d22 + c11d44 ±c23d23 ± c14d41 0
0 ±c41d14 ± c32d32 c44d11 + c33d33 0

±c41d23 ± c32d41 0 0 c44d22 + c33d44

⎞
⎟⎟⎟
⎠
, (B3)

χφ±1,4 =
1

Mχ
±

⎛
⎜⎜⎜
⎝

c11d11 + c22d33 0 0 ±c14d14 ± c23d32
0 c11d22 + c22d44 ±c14d23 ± c23d41 0
0 ±c32d14 ± c41d32 c33d11 + c44d33 0

±c32d23 ± c41d41 0 0 c33d22 + c44d44

⎞
⎟⎟⎟
⎠
. (B4)

The normalization constants are given by Nχ
±

= c22d11 +
c44d11 + c22d22 + c44d22 + c11d33 + c33d33 + c11d44 + c33d44
andMχ

±
= c11d11+c33d11+c11d22+c33d22+c22d33+c44d33+

c22d44 + c44d44. The results of Eqs. (B3) and (B4) agree with
those of Roa et. al. [17], however, their results are found by
projecting onto a different set of modes than ours.

We now consider Bell state inputs as a special case of X-
states. This allows us to reproduce results of the example
given in Sec. (II A) using the more general formalism above.
By using the ∣φ+⟩ Bell state as the input states for both, ρ1,2
and ρ3,4, of Eqs. (A1) and (A2) or of (B3) and (B4) :

ρ1,2 = ρ3,4 = ∣φ+⟩⟨φ+∣ =
⎛
⎜⎜⎜
⎝

1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

⎞
⎟⎟⎟
⎠
, (B5)

we obtain:

µψ±1,4 = ∣ψ±⟩⟨ψ±∣ =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 1

2
± 1

2
0

0 ± 1
2

1
2

0
0 0 0 0

⎞
⎟⎟⎟
⎠
, (B6)

µφ±1,4 = ∣φ±⟩⟨φ±∣ =
⎛
⎜⎜⎜
⎝

1
2

0 0 ± 1
2

0 0 0 0
0 0 0 0
± 1

2
0 0 1

2

⎞
⎟⎟⎟
⎠
, (B7)

where µψ±1,4 and µφ±1,4 represent the final density matrix of
modes 1,4 and the superscript indicates which Bell state was
projected onto in modes 2,3. The output matrix is one of the
four Bell states in modes 1,4, and exactly which one is deter-
mined by the specific BSM in modes 2,3 is performed. This
is in agreement with the results we found in Eq. (3).

Generalization to the other Bell state input combination
is summarized in Table B, which lists the resulting state in
modes 1,4 assuming the result of the BSM is ψ−. We have
chosen to show the results for projection ψ− since it is the
most readily implementable BSM in optical experiments as
further illustrated in the next subsection.

ψ+ ψ− φ+ φ−

ψ+ ψ− ψ+ φ− φ+

ψ− ψ+ ψ− φ+ φ−

φ+ φ− φ+ ψ− ψ+

φ− φ+ φ− ψ+ ψ−

TABLE I. Output bell states for various combinations of input Bell
states when the BSM of spatial modes 2,3 results in ψ−. The top row
and first column represent the input states in modes 1,2 and 3,4, and
the corresponding table element represents the final state in 1,4 after
entanglement swapping.

Appendix C: Analytical demonstration that swapping X-states
and Bell states preserves the concurrence of the X-state

If we assume we have an initial X-state given by Eq. (B1)
then the result of swapping this state with, for example, the
Bell state φ− results in:

σψ±1,4 =
⎛
⎜⎜⎜⎜
⎝

x11 0 0 ∓x14
0 x22 ∓x23 0

0 ∓x32 x33 0

∓x41 0 0 x44

⎞
⎟⎟⎟⎟
⎠
, (C1)

σφ±1,4 =
⎛
⎜⎜⎜⎜
⎝

x33 0 0 ∓x32
0 x44 ∓x41 0

0 ∓x14 x11 0

∓x23 0 0 x22

⎞
⎟⎟⎟⎟
⎠
, (C2)

where the superscript on σ is the result of the BSM and we
have changed c to x to avoid confusion. As expected all of
these states are X-states.

The concurrence of an X-state has a straightforward alge-
braic solution [33]. Specifically, the concurrence of the X-
state in Eq. (B1) is given by

C(χc) = 2max [0, ∣c14∣ −
√
c22c33, ∣c23∣ −

√
c11c44] . (C3)
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We can easily determine, with the use of Eq. (C3), the con-
currence of the final states. For example for σφ+ we find a
concurrence of

C(σφ+) = 2max [0, ∣x32∣ −
√
x44x11, ∣x41∣ −

√
x33x22] .

(C4)
We can see that this is equivalent to that of the initial X-state
concurrence, given by Eq. (C3), because ∣x41∣ = ∣x14∣ and
∣x32∣ = ∣x23∣, due to the Hermiticity condition on a density
matrix. The same results are found for every combination of
Bell state input and choice of BSM projection.

Appendix D: Analytical upper bound for swapping rank 2 Bell
diagonal states with themselves

Bell diagonal states of the form shown in Eq. (18) which
have only two nonzero coefficients are rank 2 density matri-
ces. We will now show analytically that for any rank 2 Bell
diagonal state with concurrence Cr that entanglement swap-
ping this state with itself results in a state with concurrence
C2
r , which is the upper bound for the general case. To illus-

trate this by a specific example, consider the input state given
by:

σ = α∣ψ+⟩⟨ψ+∣ + β∣ψ−⟩⟨ψ−∣, (D1)

where α + β = 1. In matrix form this state becomes

σ =
⎛
⎜⎜⎜⎜
⎝

0 0 0 0

0 1
2

1
2
(α − β) 0

0 1
2
(α − β) 1

2
0

0 0 0 0

⎞
⎟⎟⎟⎟
⎠
. (D2)

The concurrence of this state can be found from Eq. (C3), and
after algebra is given by ∣α − β∣.

Using Eq. (5) we find that entanglement swapping of state
Eq. (D2) with itself results in:

⎛
⎜⎜⎜⎜
⎝

0 0 0 0

0 1
2

− 1
2
(α − β) 2 0

0 − 1
2
(α − β) 2 1

2
0

0 0 0 0

⎞
⎟⎟⎟⎟
⎠

(D3)

when ψ− is the result of the BSM
The resulting concurrence can again be found from

Eq. (C3), and is given by (α − β) 2, which is exactly the
square of the input concurrence. Performing this same analy-
sis with any Bell diagonal states with only two non-zero terms
and for any BSM outcome has a similar outcome.

Appendix E: Methods for creating random density matrices

Random density matrices were calculated according to
[34]. As mentioned in the text we have used either an induced
measure such as the Hilbert-Schmidt metric the Bures metric
depending on the situation.

One way to generate a random density matrix is by starting
with a pure state in a higher dimension and tracing the an-
cillary space out to reduce the state to the desired size. This
procedure results in density matrices distributed according to
an induced probability distribution µn,k, where k defines the
size of the ancilla space which is to be traced out, with n = k
resulting in the Hilbert-Schmidt ensemble [29, 34]. An n × n
density matrix distributed uniformly according to µn,k can be
calculated as

G(n, k)G†(n, k)
tr[G(n, k)G†(n, k))] , (E1)

where G(n, k) is an n × k Ginibre matrix. This ensemble
is used in the main text when the rank of the output density
matrix is important, as in Subsec. III C, because the rank of
the resulting matrix is equal to k when k ≤ n.

Alternatively, an n × n Bures distributed random density
matrix can be calculated from

(1 +U)G(n,n)G†(n,n)(1 +U †)
tr[(1 +U)G(n,n)G(n,n)†(1 +U †)] , (E2)

where U is an n × n Haar distributed random unitary matrix.
In order to calculate U we have used the methods described
in [31] which involved a QR decomposition. The eigenvalues
of a unitary matrix have a magnitude of 1 and are complex.
If a set of unitary matrices is Haar distributed then the phases
of the eigenvalues will be uniformly distributed along the unit
circle. To check this we calculated the eigenvalues of 106

random 4×4 unitary matrices and found the mean and standard
deviation to be −0.000925005 and 1.81386 respectively, as
expected for a uniform distribution.
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