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Abstract

The channel loss incurred in long-distance transmission places a significant burden on quantum

key distribution (QKD) systems: they must defeat a passive eavesdropper who detects all the light

lost in the quantum channel and does so without disturbing the light that reaches the intended

destination. The current QKD implementation with the highest long-distance secret-key rate

meets this challenge by transmitting no more than one photon per bit [Opt. Express 21, 24550–

24565 (2013)]. As a result, it cannot achieve the Gbps secret-key rate needed for one-time pad

encryption of large data files unless an impractically large amount of multiplexing is employed. We

introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number of

photons per bit distributed over a much greater number of optical modes. FL-QKD offers security

against the optimum frequency-domain collective attack by transmitting less than one photon per

mode and using photon-coincidence channel monitoring, and it is completely immune to passive

eavesdropping. More importantly, FL-QKD is capable of a 2Gbps secret-key rate over a 50 km

fiber link, without any multiplexing, using available equipment, i.e., no new technology need be

developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its unprecedented

secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art systems by two

orders of magnitude.
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I. INTRODUCTION

One-time pad (OTP) encryption provides information-theoretically secure message trans-

mission [1], but key distribution is its Achilles’ heel. Quantum key distribution (QKD)

permits remote parties (Alice and Bob) to share a random bit string—the key needed for

OTP encryption—with security vouchsafed by quantum mechanics [2–5]. Unfortunately, the

demonstrated secret-key rates of long-distance QKD systems fall far short of the Gbps rates

needed for OTP encryption of large data files, as seen from the following state-of-the-art

achievements. In discrete-variable QKD (DV-QKD), the best result to date is Lucamarini

et al.’s decoy state Bennett-Brassard 1984 (BB84) system, which used a 1Gbps source rate

but only realized a 1Mbps secret-key rate over a 50-km-long fiber [6]. In continuous-variable

QKD (CV-QKD), the best result to date is from Huang et al., who reported a 1Mbps secret-

key rate at 25 km path length using a 50Mbaud source rate [7], with 90 kbps expected at

50 km in the asymptotic (infinite block-length) regime.

Focusing, for the moment, on DV-QKD systems—owing to their greater demonstrated

capability over long distances—it is easy to identify why Gbps rates are beyond their state-

of-the-art grasp: they transmit no more than ∼1 photon/bit. One justification for this

self-imposed limit is that these systems must defeat the undetectable passive eavesdropper.

QKD security analyses afford the eavesdropper (Eve) all things consistent with the laws of

physics. In particular, a passive Eve could replace the transmissivity κ ≪ 1 optical fiber

connecting Alice and Bob with a lossless long-distance coupler that allows her to capture

and measure a fraction 1−κ of Alice’s transmitted light while routing the remaining fraction

κ to Bob without disturbance. With no disturbance of the light that Bob receives, Eve does

not create the telltale errors that reveal her eavesdropping. In principle, such a coupler

could be constructed to mimic—insofar as Alice and Bob are concerned—the propagation

characteristics of the fiber that it replaced. Thus Alice and Bob could not detect Eve’s

presence via channel monitoring, e.g., with an optical time-domain reflectometer. So, were

Alice to ignore the potential presence of the undetectable passive eavesdropper and make a

many-photons-per-bit BB84 transmission to Bob through this lossy quantum channel, then

Eve could easily obtain a near-perfect measurement of all of Alice’s bits.

We regard secret-key rate, in bits per second, as QKD systems’ preeminent figure of merit:

unless Gbps rates over metropolitan-area spans can be realized, OTP-encrypted transmission
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of large data files will not reach widespread usage. Existing QKD systems operating over

long–distance connections might be pushed to Gbps secret-key rates, but doing so would

require impractically large amounts of wavelength-division multiplexing (WDM). Consider

scaling Lucamarini et al.’s BB84 system [6] to a 10Gbps source rate achieving a 10Mbps

secret-key rate over a 50 km fiber link. That system would require 100 WDM channels to

yield a 1Gbps secret-key rate—while 1000 such channels would be needed at the original

source rate—each with its own single-photon detection setup. A similar scaling of Huang et

al.’s CV-QKD system [7]—to a 10Gbaud source rate that achieves 18Mbps secret-key rate

over a 50 km fiber link in the asymptotic regime—implies that more than 50 WDM channels

would be needed to obtain a 1Gbps secret-key rate.

In this paper we introduce floodlight quantum key distribution (FL-QKD), and show

that it offers a practical route to Gbps secret-key rates over metropolitan-area distances

with security against the optimum frequency-domain collective attack and without the need

for multiplexing. How does FL-QKD realize this extraordinary secret-key rate? It derives

from FL-QKD’s secret-key efficiency, in bits per channel use, being two order of magnitude

higher than those of state-of-the-art systems. In particular, FL-QKD floods the Alice-to-Bob

channel with broadband light—whose bandwidth is much greater than the modulation rate—

containing many photons per bit. Its immunity to the undetectable passive-eavesdropping

attack then comes from that high number of transmitted photons per bit being distributed

over a much greater number of optical modes to make that transmission have low bright-

ness, i.e., less than one photon per mode. FL-QKD also employs photon-coincidence channel

monitoring on the Alice-to-Bob channel, to ensure security against the active component

of a frequency-domain collective attack, in which Eve can inject her own light into Bob’s

terminal and tries to obtain his bit string from the modulated version of that light which

is contained in what she taps from the Bob-to-Alice channel. More importantly, we show

that FL-QKD can support a 2Gbps secret-key rate over a 50-km-long fiber link against the

optimum frequency-domain collective attack, and that it can be implemented with available

equipment, i.e., no new technology need be developed. In short, FL-QKD opens the possi-

bility for OTP encryption of large data files for secure transmission over metropolitan-area

distances at Gbps rates.

The remainder of the paper is organized as follows. Sections II through V present, in

succession, a description of the FL-QKD protocol, its security analysis, its secret-key rate
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FIG. 1: (color online). Quantum channel setup for FL-QKD under frequency-domain collective at-

tack. ASE: amplified spontaneous emission source. SPDC: spontaneous parametric downconverter.

BPSK: binary phase-shift keying. LO: local oscillator.

behavior, and some concluding discussion. For the sake of readability, we have relegated all

detailed analysis to a series of appendices.

II. PROTOCOL DESCRIPTION

Figure 1 shows FL-QKD’s quantum channel setup in the presence of a frequency-domain

collective attack. Alice and Bob use this setup to generate their raw key and to bound Eve’s

Holevo information. Not shown in this figure is the tamper-proof classical channel that Alice

and Bob use for reconciliation. Neither that procedure nor FL-QKD’s subsequent privacy

amplification step will be described herein, because they are merely higher rate versions of

standard practice in QKD.

Raw key generation in FL-QKD occurs as follows. Alice sends unmodulated, continuous-

wave (cw) light over optical fiber to Bob, who imposes a random bit string on that light

by means of binary phase-shift keying (BPSK), amplifies the modulated light (to overcome

return-path loss), and returns it to Alice over optical fiber. FL-QKD’s security against a

frequency-domain collective attack, and its high secret-key rate, come from the composite

nature of Alice’s source plus the data that Alice and Bob obtain from their channel monitors,

which are used to ensure the integrity of the Alice-to-Bob channel, i.e, the near-perfect

correlation between the light reaching Bob and the reference retained by Alice. So, to

complete our protocol description, we will characterize Alice’s source and Alice and Bob’s

channel monitors.
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Alice uses an optical amplifier to produce a high-brightness (many photons/sec-Hz) single

spatial-mode beam of amplified spontaneous emission (ASE) noise with a W -Hz-bandwidth

flat spectrum. She uses a cw spontaneous parametric downconverter (SPDC) to produce

quadrature-entangled, single spatial-mode signal and idler beams that have bandwidth W

flat spectra, with the former having the same center frequency as her ASE source. Alice

directs the idler beam to a single-photon detector that is part of her channel monitor.

She uses a beam combiner to merge a low-brightness (≪ 1 photon/sec-Hz) portion of her

ASE light with her SPDC’s signal light resulting in an n:1 ASE-to-SPDC-ratio output with

n ≫ 1. She sends a small fraction of her combined ASE-SPDC light to another single-

photon detector (also part of her channel monitor), and transmits the remaining portion

of her ASE-SPDC light to Bob. Alice stores the high-brightness portion of her initial ASE

light in an optical delay-line fiber (whose delay matches that of the Alice-to-Bob-to-Alice

roundtrip) for use as the local oscillator (LO) in a broadband homodyne receiver. She

employs optical amplification, as needed, so that her LO retains its high-brightness character

without appreciable degradation, see App. A.3 for details. Prior to BPSK modulation, Bob

routes a small fraction of the light he receives to the single-photon detector that is his

channel monitor.

Alice and Bob use their channel monitors to measure the singles rates, SI for Alice’s idler

beam, SA for Alice’s tap on her transmitted beam, and SB for Bob’s tap on his received

beam. They also use their monitors to obtain CIA and C̃IA, the time-aligned and time-

shifted coincidence rates between Alice’s idler and the tap on her transmitted beam, and

CIB and C̃IB, the time-aligned and time-shifted coincidence rates between Alice’s idler and

Bob’s tap on his received beam, in both cases employing a Tg-duration coincidence gate and

accounting for the relevant propagation delays in the appropriate manners. From these rates

they compute

fE = 1− [CIB − C̃IB]/SB

[CIA − C̃IA]/SA

, (1)

which will be shown below to quantify the integrity of the Alice-to-Bob channel.

III. SECURITY ANALYSIS

As detailed in App. B, Eve’s general frequency-domain collective attack is as follows. Eve

first establishes lossless connections between her equipment and the communicating parties
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FIG. 2: (color online). Realization of Eve’s optimum frequency-domain collective attack. SPDC:

spontaneous parametric downconverter. Eve’s SPDC signal beam (shown) is coupled to Bob

through a beam splitter, while her SPDC idler beam (not shown) is retained for use in her re-

ceiver.

in both the forward (Alice-to-Bob) and backward (Bob-to-Alice) channels. In the forward

path, she performs a general unitary transformation that, during each of Bob’s bit intervals,

acts in an independent, identically distributed manner on the M = W/R frequency modes

of Alice’s transmitted light. In particular, the inputs to that unitary transformation are

Alice’s transmitted field and Eve’s K vacuum-state ancilla fields. Eve retains the K ancilla

fields that emerge from this unitary operation and sends the remaining field to Bob. She

completes her attack with a collective measurement on her stored ancilla fields and the light

she taps from the Bob-to-Alice channel. Here we note, see App. E, that fE is an intrusion

parameter that quantifies Eve’s degradation of the phase-sensitive cross-covariance between

Alice’s idler and Bob’s received light from what it would be were Eve only mounting a

passive attack. Furthermore, we show in App. C.2 that Eve’s optimum frequency-domain

collective attack—one that maximizes her Holevo information for a given photon flux and

fE value—is in fact Gaussian and can be realized by her using an SPDC source, injecting its

signal light into Bob through a beam splitter in the Alice-to-Bob fiber, while retaining her

idler for a collective measurement with the light she taps from the Alice-to-Bob and Bob-to-

Alice fibers, see Fig. 2. For this optimum attack, fE equals Eve’s injection fraction, viz., the

fraction of light entering Bob’s terminal that is due to her [8]. Hence that configuration will

be employed throughout the security analysis below. (Interestingly, this SPDC beam-splitter

attack has the same structure as the entangling-cloner attack on CV-QKD [9].)

We will be concerned with optimized performance for Alice and Bob against Eve’s op-
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timum frequency-domain collective attack without regard for finite-key effects. (For FL-

QKD’s ∼Gbps secret-key rates, finite-key effects become inconsequential for key-generation

sessions as short as a few seconds.) Thus, following standard practice for assessing security

against collective attacks (see, e.g., [10, 11]), we will find ∆ILBAB, a lower bound on Alice and

Bob’s secret-key rate, from

∆ILBAB = βIAB − χUB
EB, (2)

where IAB is Alice and Bob’s Shannon-information rate, β is Alice and Bob’s reconciliation

efficiency, and χUB
EB is an upper bound on Eve’s Holevo-information rate for her optimum

frequency-domain collective attack. Before doing so, let us provide some simple intuition

about how FL-QKD can be secure against individual passive or active attacks.

We will limit our consideration of these individual attacks to low-brightness operation

(the ASE-SPDC light Alice sends to Bob has NS ≪ 1 photon/sec-Hz) in a lossy scenario

(channel transmissivity κS ≪ 1) with Alice’s source bandwidth W greatly exceeding Bob’s

BPSK modulation rate R. For Eve’s passive attack, we neglect the small amount of SPDC

light in Alice’s transmission and the small amounts tapped by Alice and Bob for their chan-

nel monitors. Alice’s homodyne receiver and Eve’s optimum quantum receiver then have

error probabilities satisfying Pr(e)homAlice ∼ exp(−WκSNSGB/RNB)/2 [12] and Pr(e)passEve ∼
exp(−4WκSN

2
SGB/RNB)/2 [13], where GB ≫ 1 and NB ≥ GB − 1 are the gain and ASE

output-noise brightness of Bob’s optical amplifier. Because ln[Pr(e)homAlice]/ ln[Pr(e)
pass
Eve ] ∼

1/4NS, we see that low-brightness (NS ≪ 1) operation affords Alice and Bob a considerable

advantage over Eve. Physically, this advantage is due to the NS ≪ 1 low-brightness condi-

tion’s making Eve unable to obtain a high-brightness reference—from the light she taps from

the Alice-to-Bob fiber—with which to detect Bob’s BPSK modulation. Later, we will see

that this low-brightness condition ensures that Eve’s Holevo information rate for her unde-

tectable passive-eavesdropping attack falls far below Alice and Bob’s Shannon information

rate. In other words, as claimed earlier, FL-QKD’s transmitting less than one photon per

mode makes it immune to the attack that has driven the highest-rate, long-distance QKD

system to limit its transmissions to ∼1 photon/bit.

For Eve’s active attack, we employ the conditions applied above and, in addition, pre-

sume that Alice and Bob’s channel monitors constrain their adversary’s light injection to a

small fraction, fE ≪ 1, of the light entering Bob’s terminal. The error probability of Alice’s

homodyne receiver will then obey Pr(e)homAlice ∼ exp(−W (1 − fE)κSNSGB/RNB)/2. Eve’s
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optimum quantum receiver—for an individual attack in the Fig. 2 setup using her opti-

mum SPDC-injection strategy in conjunction with a tap on just the Bob-to-Alice channel—

then has error probability Pr(e)actEve ∼ exp(−4WfEκSNSGB/RNB)/2. Now we find that

ln[Pr(e)homAlice]/ ln[Pr(e)
act
Eve] ∼ (1− fE)/4fE, which is highly favorable to Alice and Bob when

their channel monitors limit Eve to fE ≪ 1.

Having provided some individual-attack insights into FL-QKD’s security, we return to the

task of assessing our protocol’s security analysis when Eve mounts her optimum frequency-

domain collective attack. To evaluate Alice’s error probability under that attack, we note

the number of independent modes that contribute to the light Alice receives from Bob being

much greater than one—for W = 2THz with R ≤ 10Gbps, as we will assume below, we

get M = W/R ≥ 200—justifies a central limit theorem argument that makes Alice’s error

probability satisfy [14]

Pr(e)homAlice = Q

(
µ0 − µ1

σ0 + σ1

)
, (3)

where µb and σb for b = 0, 1 are the means and standard deviations of Alice’s homodyne

measurement when Bob’s bit values (phase modulations) are equally likely to be 0 (0 rad

phase shift) or 1 (π rad phase shift), and Q(x) =
∫∞

x
dt e−t2/2/

√
2π. See App. D for the {µb}

and {σb} with all losses included. With Alice’s error probability in hand, Alice and Bob’s

Shannon-information rate is found from

IAB = R
[
1 + Pr(e)homAlice log2(Pr(e)

hom
Alice)

+(1− Pr(e)homAlice) log2(1− Pr(e)homAlice)
]
. (4)

Eve’s Holevo-information rate about Bob’s bit string for her optimum collective attack is

χEB = R

[
S(ρE)−

1∑

b=0

S(ρ
(b)
E )/2

]
, (5)

where S(·) denotes von Neumann entropy. Here, ρ
(b)
E is Eve’s conditional joint density

operator—when Bob transmits a single bit with value b = 0 or 1—for the 3M modes

available to her that are associated with that bit, viz., M modes each from her retained

idler, the light she collects from the Alice-to-Bob fiber, and the light she collects from

the Bob-to-Alice fiber. Her unconditional joint density operator for those 3M modes is then

ρE =
∑1

b=0 ρ
(b)
E /2. The ρ

(b)
E are zero-mean Gaussian states whose von Neumann entropies are

easily found by symplectic diagonalization [15], as explained in App. C. The unconditional
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state, ρE is zero mean but not Gaussian, making its von Neumann entropy quite difficult

to evaluate. However, that state’s covariance matrix is easily found [16], and we know that

S(ρE) ≤ S(ρGauss
E ), where ρ

Gauss
E is a zero-mean Gaussian state with the same covariance

matrix as ρE. We can find S(ρGauss
E ) by another symplectic diagonalization and so obtain

χEB ≤ χUB
EB = Rmin

[
S(ρGauss

E )−
1∑

b=0

S(ρ
(b)
E )/2, 1

]
, (6)

where we have used S(ρE)−
∑1

b=0 S(ρ
(b)
E )/2 ≤ 1, which follows from that term’s being Eve’s

Holevo information about a single-bit transmission from Bob.

IV. SECRET-KEY RATES

We are now ready to demonstrate the power of FL-QKD. Figure 3(a) plots the lower

bound from Eq. (2) on Alice and Bob’s secret-key rate versus one-way path length when

Eve mounts her optimum collective attack, but Alice and Bob’s channel monitoring ensures

that Eve’s injection fraction into Bob’s terminal is fE = 0.01. Also shown in that figure

is a brightness versus path length plot for the light Alice sends to Bob. These curves were

obtained assuming that: (1) Alice’s ASE source and her SPDC signal light have flat spectra

with the same center frequency and W = 2THz bandwidth, and are combined in an n:1

ratio with n = 99; (2) the brightness of the light Alice sends to Bob and Bob’s bit rate

R ≤ 10Gbps are chosen to maximize their secret-key rate subject to the constraint that

Pr(e)Alice ≤ 0.1 to ensure the availability of a high-efficiency code for reconciliation [17];

(3) Bob’s amplifier has GB = NB = 104; (4) Eve has replaced the L-km-long, 0.2 dB/km

fibers in the Alice-to-Bob and Bob-to-Alice channels with lossless fibers and (1− fE)κS and

κS transmissivity beam splitters, respectively, with κS = 10−0.02L; (5) Alice taps 1% of her

combined ASE-SPDC light, and Bob taps 1% of his received light, for channel monitoring;

(6) Alice’s homodyne receiver has an undegraded local oscillator with brightness NLO = 104

and efficiency 0.9; (7) β = 0.94; and (8) the system is otherwise ideal.

We see from Fig. 3(a) that 2Gbps QKD is possible at 50 km one-way path length when

fE = 0.01, and that this secret-key rate is obtained with NS = 0.043. (Figure 3(b) shows how

this rate degrades as Eve’s injection fraction increases.) Thus, as suggested at the outset,

security against a collective attack has been ensured by a combination of low-brightness

transmission and coincidence-based channel monitoring. That FL-QKD has such a high
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FIG. 3: (color online). (a) Lower bound on Alice and Bob’s secret-key rate and Alice’s optimum

signal brightness when Eve mounts her optimum frequency-domain collective attack with injection

fraction fE = 0.01. (b) Lower bound on Alice and Bob’s secret-key rate versus fE for a 50-km

fiber link with all other parameters as in (a).

rate after the 10 dB of one-way propagation loss incurred at 50 km is then due to its use of

an optical bandwidth far in excess of its modulation rate, which enables Alice to transmit

many photons per bit (ppb) without affording Eve very much information. This follows from

Fig. 4(a), which plots the ppb that Alice transmits to Bob and the ppb that Bob receives

from Alice. We see that FL-QKD maintains a near-unity ppb received by Bob for all path

lengths less than 200 km [18]. The highest rate, long-distance, DV-QKD demonstration—

Lucamarini et al.’s BB84 system [6]—employs ∼1 transmitted ppb. Hence it cannot match

FL-QKD’s loss-independent ∼1 received ppb performance. Thus its long-distance secret-

key rate is vastly inferior to FL-QKD’s. Moreover, as noted earlier, an impractically large

amount of WDM would be needed for that BB84 system to match FL-QKD’s single-channel

Gbps secret-key rate capability over 50 km of fiber.

The story for Huang et al.’s CV-QKD demonstration [7] is a little different. CV-QKD

transmissions are better quantified in terms of photons per channel use rather than pho-

tons per bit, quantities that are identical for BB84 systems and for FL-QKD but typically

different for CV-QKD systems. Moreover, CV-QKD systems do not limit themselves to

∼1 photon/use. Nevertheless, even scaling it up to a 10Gbaud source rate, Huang et al.’s

system would still require more than 50 WDM channels to realize a 1Gbps secret-key rate

on a 50-km-long link.

We will close our secret-key rate assessment with some additional comments on its under-

lying security analysis. Consider first the optimality of Eve’s using SPDC light injection in
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FIG. 4: (color online). (a) Alice’s transmitted photons per bit (ppb) and Bob’s received ppb

when Eve mounts her optimum frequency-domain collective attack with injection fraction fE =

0.01. (b) Upper bounds on Eve’s optimum frequency-domain collective attack, passive attack, and

active attack Holevo informations per mode—along with her entanglement-assisted capacity—as a

function of Alice’s signal brightness, NS , for a 50 km one-way path length assuming fE = 0.01.

the Fig. 2 setup. For a given value of her injection fraction, fE , Eve’s use of an SPDC source

in an active attack yields a Holevo information that saturates the entanglement-assisted ca-

pacity for the channel created by her injection, Bob’s BPSK modulation and optical ampli-

fication, and her tap of the Bob-to-Alice channel. Hence this confirms that no non-Gaussian

active attack with the same fE can do any better. This behavior is illustrated in Fig. 4(b),

for a 50 km one-way path length and fE = 0.01, where we have plotted our upper bound on

Eve’s active-attack Holevo information per mode versus Alice’s signal brightness, NS, along

with Eve’s entanglement-assisted capacity [19]. Further insights from Fig. 4(b) come from

its display of Eve’s passive-attack and optimum frequency-domain collective attack Holevo

informations per mode [20]. When NS ≤ 10−3, the active attack is almost as powerful as

the optimum frequency-domain collective attack, but at NS ≥ 0.1 the passive attack makes

the dominant contribution to the optimum frequency-domain collective attack [21]. These

characteristics are easily understood from the simple, individual-attack error probabilities

we presented earlier. For both passive and fixed-fE active attacks, Eve’s error probability

decreases with increasing NS, but her passive-attack error exponent is proportional to N2
S

at low brightness, whereas her fixed-fE active-attack error exponent is proportional to NS.

In future work we will pursue security analysis for coherent attacks. Because FL-QKD can

be regarded as a two-way CV-QKD protocol that uses discrete modulation, coherent-attack

security analyses for one-way CV-QKD [22–24] may provide a useful starting point.
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V. DISCUSSION

We have argued that a QKD system’s secret-key rate, in bits per second, is its preeminent

figure of merit, and we have shown that single-channel FL-QKD vastly outperforms its state-

of-the-art competition for long-distance OTP distribution. To elaborate on why that is so,

let us compare FL-QKD’s secret-key efficiency, in bits per channel use, with those of the

highest-rate, long-distance DV-QKD and CV-QKD systems. The secret-key efficiency of

Lucamarini et al.’s DV-QKD system at 50 km is 1Mbps/10Gbps = 10−3 bits/use, while the

extrapolated secret-key efficiency for Huang et al.’s CV-QKD system is 90 kbps/50Mbaud

= 1.8 × 10−3 bits/use at that distance. FL-QKD, however, is predicted to have a secret-

key efficiency of 0.2 bits/use at 50 km, two orders of magnitude better than state-of-the-art

performance. Pirandola et al. [25, 26] have shown that the ultimate limit for any QKD

protocol’s secret-key efficiency, in bits per mode, is − log2(1 − κS) = 0.152 bits per mode

for a 50-km-long fiber with 0.2 dB/km loss. Because CV-QKD must mode-match its LO

to its signal, CV-QKD’s secret-key efficiencies in bits per channel use and bits per mode

will coincide. Ideal DV-QKD systems also use single-mode transmission, in which case their

secret-key efficiencies in bits per channel use and bits per mode will coincide. FL-QKD, on

the other hand, employs many modes per channel use: at 50 km, our 10Gbps modulation

rate and 2THz ASE bandwidth imply there are 200 modes per channel use, making FL-

QKD’s secret-key efficiency in bits per mode 0.2 bits/use÷200modes/use = 10−3 bits/mode,

i.e., on par with Huang et al.’s and Lucamarini et al.’s.

Before closing, two additional points need some attention. Both are related to our use of

coincidence-based channel monitoring—the first concerns what information that monitoring

might reveal to Eve and the second has to do with preventing Eve from eluding that mon-

itoring with an intercept-resend attack—and both will be part of our continuing security

analysis for FL-QKD.

In their channel monitoring, Alice and Bob will record the times at which their monitors

have detected photons. Bob will transmit his detection times to Alice—over their tamper-

proof classical connection—and Alice, in turn, will merge that data with her own to find the

singles and coincidence rates she needs to determine the value of Eve’s intrusion parameter,

fE . As part of her frequency-domain collective attack, Eve can listen to Alice and Bob’s

classical channel, and use Bob’s photon-detection information to help her decode Bob’s
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transmission. The security analysis we have presented thus far does not account for that

possibility. We show, however, in App. G, that Eve’s Holevo information rate increases by

an inconsequential amount when she pays attention to Bob’s detection-time data. Indeed,

the resolution of the secret-key rate plot in Fig. 3(a) is insufficient to show the effect.

Although Eve’s frequency-domain collective attack derives no appreciable benefit from

learning the photon-detection times of Bob’s channel monitor, she could take an altogether

different approach to breaking FL-QKD: an intercept-resend attack. By detecting the pho-

tons that Alice sends to Bob, Eve could transmit her own light—with photons concentrated

at those detection times—in the hope that Bob’s channel-monitor data will be indistin-

guishable from what he would get were she not present. Whether Eve could do so without

changing Alice and Bob’s fE measurement is unclear, as is whether Eve could do so while

simultaneously being able to retain a suitable reference beam for decoding Bob’s message,

but it is important to note that intercept-resend is not a frequency-domain collective attack,

although security against it would be included were we able to prove FL-QKD’s security

against a general coherent attack. Even without that coherent-attack analysis, Alice and

Bob’s can augment their channel monitors to at least detect an intercept-resend attack—and

hence turn it into a denial-of-service attack—by exploiting the entanglement between the

signal and idler outputs of Alice’s SPDC source. Alice and Bob’s coincidence-based channel

monitoring only relies on the photon-paired nature of those signal and idler beams, which is

why Eve could potentially duplicate that pairing. Entanglement, on the other hand, cannot

be spoofed. So, if Alice and Bob add either dispersive-optics (frequency-domain coincidence)

measurements (as in [27]), or a Franson interferometer (as in [10]), to their channel monitors,

it will be impossible for Eve to mount an intercept-resend attack without being detected.

In conclusion, existing single-channel QKD systems’ secret-key rates at 50 km are so low

that their Gbps WDM versions have overwhelming implementation and cost issues. With

Gbps FL-QKD, however, OTP encryption of large files becomes practical over metropolitan-

area networks using only a single channel. In this regard we emphasize that FL-QKD needs

no new technology: erbium-doped fiber amplifiers suffice for Alice’s ASE source and Bob’s

amplifier; high-quality SPDC’s are capable of the brightness that Alice requires; BPSK mod-

ulators capable of 10Gbps rates are readily available; Alice’s receiver can use commercially

available balanced mixers and need not be shot-noise limited [28]; and Alice and Bob’s

channel monitors can employ available superconducting nanowire detectors.
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Appendix A: Alice and Bob’s Terminals

In this section we will detail the equipment that Alice and Bob use in the FL-QKD setup

shown in Fig. 1.

1. Alice’s Transmitter

Alice uses both a spontaneous parametric downconverter (SPDC) and an amplified

spontaneous emission (ASE) source. For each bit interval, the SPDC source produces

M = TW ≫ 1 signal-idler mode pairs—where T = 1/R gives the bit duration in terms

of Bob’s modulation rate R, and W is the SPDC’s phase-matching bandwidth—with an-

nihilation operators { (âSPDC
Sm

, âSPDC
Im ) : 1 ≤ m ≤ M }. These SPDC mode pairs are in

independent, identically-distributed, zero-mean Gaussian pure states that are characterized

by the Wigner covariance matrix

ΛSPDC
SI =

1

4


 ASPDC CSPDC

CSPDC ASPDC


 , (A1)

where ASPDC = (2NSPDC + 1)I2, with I2 being the 2× 2 identity matrix, and

CSPDC =




CSPDC 0

0 −CSPDC



 , (A2)

with NSPDC ≪ 1 and CSPDC = 2
√

NSPDC(NSPDC + 1). For each bit interval, the ASE

source—whose W Hz bandwidth and center frequency match those of the SPDC’s signal

beam—produces M signal-reference mode pairs, with annihilation operators { (âASE
Sm

, âASE
Rm

) :

1 ≤ m ≤ M }. These ASE mode pairs are in independent, identically-distributed,
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completely-correlated thermal states that are characterized by the Wigner covariance matrix,

ΛASE
SR =

1

4




AASE CASE

CASE ALO



 , (A3)

where AASE = (2NASE + 1)I2, CASE = 2
√
NASENLO I2, and ALO = (2NLO + 1)I2, with

NASE = 1 ≪ NLO,

Alice sends her SPDC’s idler beam to a channel monitor, and combines her SPDC and

ASE source’s signal beams on an asymmetric beam splitter obtaining output modes,

âAm
=

√
κC âSPDC

Sm
+
√
1− κC âASE

Sm
. (A4)

Because she wants each of these modes to have average photon number NA ≪ 1, and she

wants their ASE-to-SPDC ratio to be n:1 with n ≫ 1, Alice uses κC = 1 − nNA/(n + 1),

and adjusts her downconverter’s pump power to obtain NSPDC = NA/[n(1−NA) + 1]. Note

that for NA ≤ 0.1 and n = 99, these choices imply κC ≥ 0.9.

Alice now directs a fraction κA of her ASE-SPDC signal light to a channel monitor and

sends the remaining portion to Bob; the latter’s M modes are governed by annihilation

operators

âSm
=

√
1− κA âAm

+
√
κA v̂Am

, (A5)

where the noise modes {v̂Am
} are in their vacuum states. It follows that the signal

modes Alice sends to Bob, her SPDC idler modes, and her ASE reference modes—i.e., the

{ (âSm
, âSPDC

Im , âASE
Rm

) : 1 ≤ m ≤ M }—are independent, identically-distributed mode triples.

Each such mode triple is in a zero-mean Gaussian state that is completely characterized by

the Wigner covariance matrix

ΛSIR =
1

4




AS C′
SPDC C′

ASE

C′
SPDC ASPDC 0

C′
ASE 0 ALO



, (A6)

where AS = (2NS + 1)I2, NS = (1 − κA)NA, C
′
SPDC =

√
(1− κA)κC CSPDC, and C′

ASE =
√

(1− κA)(1− κC)CASE.
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2. Bob’s Terminal

For each bit interval, Bob receives a collection of independent, identically-distributed

modes with annihilation operators { â′Sm
: 1 ≤ m ≤ M}. He first diverts a fraction κB

of each mode to his channel monitor before sending the remaining light—with annihilation

operators

â′′Sm
=

√
1− κB â′Sm

+
√
κB v̂Bm

, (A7)

where the noise modes {v̂Bm
} are in their vacuum states—to his binary phase-shift keying

(BPSK) modulator. Bob then amplifies the modulated modes with an erbium-doped fiber

amplifier (EDFA) with gain GB and output ASE NB ≥ GB − 1. The modes that Bob

transmits to Alice therefore have photon annihilation operators

âBm
= (−1)b

√
GB â′′Sm

+
√
GB − 1 n̂†

Bm
, (A8)

where b = 0 or 1 is Bob’s bit value and the noise modes {n̂Bm
} are in independent, identically-

distributed thermal states with 〈n̂Bm
n̂†
Bm

〉 = NB/(GB − 1) ≥ 1.

3. Alice’s Receiver

For a bit interval in which Bob has transmitted the value b, Alice receives a collection

of independent, identically-distributed modes with annihilation operators { â′Bm
: 1 ≤ m ≤

M }. Alice detects them using a balanced-homodyne arrangement and decides on the value

of Bob’s bit by comparing the outcome of that

N̂hom =

M∑

m=1

(
â

′†
+mâ

′
+m − â

′†
−mâ

′
−m

)
(A9)

measurement with zero. She decides that Bob sent b = 0 if the measurement outcome

exceeds zero, and she decides b = 1 otherwise [29]. In this expression,

â′±m =
√
η

(
â′Bm

± â′Rm√
2

)
+
√
1− η v̂±m

, (A10)

where η is the homodyne detector’s efficiency, i.e., the product of its mode-mixing and

quantum efficiencies, and the noise modes {v̂±m
} are in their vacuum states.

The reference modes, {âRm
}, undergo optical amplification, with gainGR and output ASE

NR = GR, prior to being stored in a transmissivity-κI fiber spool—whose length is chosen
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so that its output will be delay matched to the light Alice receives from Bob—resulting in

â′Rm
=

√
κI

(√
GRâRm

+
√

GR − 1 n̂†
Rm

)
+
√
1− κI v̂Rm

, (A11)

with the amplifier-noise modes {n̂Rm
} being in independent, identically-distributed thermal

states with 〈n̂Rm
n̂†
Rm

〉 = NR/(GR−1) and the loss-noise modes {v̂Rm
} being in their vacuum

states. For NLO ≫ 1 and GR = 1/κI , this amplify-then-store procedure leaves the average

photon number of the reference almost unchanged and it preserves nearly-complete correla-

tion between the stored reference and the signal beam that Alice sent to Bob. In particular,

before storage we have that

〈â†Rm
âRm

〉 = NLO, (A12)

and

|〈â†Sm
âRm

〉|2

〈â†Sm
âSm

〉〈â†Rm
âRm

〉
=

(1− κC)NASE

κCNSPDC + (1− κC)NASE

= n/(n+ 1), (A13)

while after storage we find that

〈â′†
Rm

â′Rm
〉 = κIGRNLO + κINR

= NLO + 1 ≈ NLO, (A14)

and

|〈â†Sm
â′Rm

〉|2

〈â†Sm
âSm

〉〈â′†
Rm

â′Rm
〉

=
(1− κC)NASENLO

(κCNSPDC + (1− κC)NASE)(NLO + 1)

≈ n/(n + 1), (A15)

when NLO ≫ 1 [30]. For n = 99, as assumed in the paper’s secret key-rate calculations, we

see that Alice’s reference suffers almost no degradation.

Appendix B: Eve’s Frequency-Domain Collective Attack

Figure 5 shows the structure of Eve’s general frequency-domain collective attack that

we will use to place an upper bound on her Holevo information rate. Eve has replaced
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the low-loss (0.2 dB/km) fibers that Alice and Bob presume are connecting their terminals

with lossless fibers. For each of Alice’s M transmitted modes, { âSm
: 1 ≤ m ≤ M }, in

a bit interval, Eve then performs the same general unitary operation on K ancilla modes,

{ ê(k)Vm
: 1 ≤ k ≤ K }, and Alice’s âSm

, resulting in Bob’s receiving the â′Sm
mode. Here,

without loss of generality, we will assume that the {ê(k)Vm
} are in their vacuum states.
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FIG. 5: (color online). Schematic of Eve’s K-mode collective attack used to upper bound her

Holevo information rate. BPSK: binary phase-shift keying. GB amplifier gain. The dashed wavy

line represents an entanglement that purifies the state of the âSm mode.

For each bit interval, Eve retains the KM ancilla output modes, { ê(k)Im
: 1 ≤ k ≤ K, 1 ≤

m ≤ M }, from her unitary operation and the light she taps from the Bob-to-Alice channel

in a quantum memory. At the end of the key distribution session she then makes a collective

measurement in her attempt to capture all of Bob’s bit values. Because we will derive only

an upper bound on Eve’s Holevo information rate from this procedure, Fig. 5 shows Eve

as taking all the light Bob sends to Alice. Other concessions to Eve that will be used in

obtaining our upper bound are: (1) Bob will not divert any light to his channel monitor,

i.e., κB = 0; and (2) Bob’s amplifier will have quantum-limited ASE, viz., NB = GB−1. All

of these conditions increase Eve’s Holevo information rate. That said, in practice Eve will

not collect all the light that Bob sends to Alice, Bob will do channel monitoring (κB > 0),

and Bob’s amplifier may not be quantum limited (NB > GB − 1). Furthermore, in order

to minimize Alice’s ability to detect Eve’s presence by simple photon-flux and spectrum

monitoring, Eve will not inject any of her own light into Alice’s receiver and she will arrange

that the Bob-to-Alice channel still has transmissivity κS = 10−0.02L that Alice and Bob

expect.
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Appendix C: Upper Bound on Eve’s Holevo Information Rate

Let êI denote { ê(k)Im
: 1 ≤ k ≤ K, 1 ≤ m ≤ M } and âB denote { âBm

: 1 ≤ m ≤ M }.
Eve’s Holevo information rate for her general frequency-domain collective attack is bounded

above by

χEB = R

[
S(ρ̂êI ,âB

)−
1∑

b=0

S(ρ̂
(b)
êI ,âB

)/2

]
, (C1)

where S(·) denotes von Neumann entropy, ρ̂
(b)
êI ,âB

is the conditional joint density operator

for the êI and âB modes given Bob’s bit value, ρ̂êI ,âB
=

∑1
b=0 ρ̂

(b)
êI ,âB

/2 is their unconditional

joint density operator, and the bound is due to our assuming that Eve captures all the light

Bob sends to Alice.

Before going into details, we place two constraints on Eve’s attack. First, we assume that

Eve precludes her presence being detected from simple photon-flux and spectrum monitoring

at Bob’s terminal by requiring her attack to satisfy

〈â′†Sm
â′Sm

〉 = κSNS, (C2)

where κS = 10−0.02L is the transmissivity of the L-km-long connection Alice and Bob believe

they have and NS is the brightness of the light Alice sends to Bob. Second, Alice and Bob’s

channel monitors allow them to measure Eve’s intrusion parameter, fE, that, as shown in

App. E, measures Eve’s degradation of the phase-sensitive cross-covariance between Alice’s

âIm mode and Bob’s â′Sm
mode, i.e., we have that

| 〈â′Sm
âIm〉 |2 = (1− fE)κS| 〈âSm

âIm〉 |2. (C3)

Equations (C2) and (C3) both constrain what Eve’s general frequency-domain collective

attack does to the Wigner covariance matrix of the (â′Sm
, âIm) mode pair.

To proceed further, we first introduce âI = { âIm : 1 ≤ m ≤ M} that purifies âS =

{ âSm
: 1 ≤ m ≤ M}, i.e., the mode pairs { (âSm

, âIm) : 1 ≤ m ≤ M } are in independent,

identically-distributed, zero-mean Gaussian pure states that are characterized by the Wigner

covariance matrix

ΛSI =
1

4


AS CS

CS AS


 , (C4)

where

CS =


 2

√
NS(NS + 1) 0

0 −2
√
NS(NS + 1)


 . (C5)
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After Eve’s unitary operation, however, the {â′Sm
}modes will, in general, be in non-Gaussian

states. Next, we introduce the complement to the Eq. (A8) input-output relation for Bob’s

amplifier, i.e.,

n̂′
Bm

=
√

GB n̂Bm
+ (−1)b

√
GB − 1 â′′Sm

, (C6)

with â′′Sm
= â′Sm

because our upper bound will be found using κB = 0, and n̂Bm
in its

vacuum state because that bound will presume Bob’s amplifier is quantum limited. With

these assumptions, we have that the { âI , âS, êV , n̂B } modes—where êV = { ê(k)Vm
: 1 ≤ k ≤

K, 1 ≤ m ≤ M}, and n̂B = { n̂Bm
: 1 ≤ m ≤ M}—are in a zero-mean Gaussian pure state.

It then follows that the { âI , âB, êI , n̂
′
B } modes—where n̂′

B = { n̂′
Bm

: 1 ≤ m ≤ M}—are in

a (not necessarily zero-mean Gaussian) pure state given Bob’s bit value, because Eve and

Bob’s operations are unitary. An immediate consequence of this purity is

S(ρ̂
(b)
êI ,âB

) = S(ρ̂
(b)
âI ,n̂

′

B
). (C7)

Moreover, the unitarity of the phase modulation that Bob performs, given his bit value,

implies that these conditional entropies are independent of b. So, because the mode pairs

{ âIm, n̂′
Bm

: 1 ≤ m ≤ M } are in independent, identically-distributed states given Bob’s bit

value, we have that
1∑

b=0

S(ρ̂
(b)

âI ,n̂
′

B
)/2 = MS(ρ̂

(0)

âIm ,n̂′

Bm

). (C8)

Having obtained a simplified expression for the second entropy term on the right in (C1),

we use the subadditivity of von Neumann entropy to get

χEB ≤ R
[
S(ρ̂êI ) + S(ρ̂âB

)−MS(ρ̂
(0)
âIm ,n̂′

Bm

)
]
, (C9)

with equality when ρ̂êI âB
= ρ̂êI ⊗ ρ̂âB

. The {êI} modes are independent of Bob’s bit

value. Grouping them by mode index m, i.e., writing {êI} = { êIm : 1 ≤ m ≤ M } where

êIm = { ê(k)Im
: 1 ≤ k ≤ K }, we have that the {êIm} modes are independent and identically

distributed, so

S(ρ̂êI ) = MS(ρ̂êIm ). (C10)

Moreover, because Eve’s operation is unitary, the {êIm, âIm, â′Sm
} modes are in a pure state,

so we have

S(ρ̂êIm ) = S(ρ̂âIm ,â′
Sm

). (C11)
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Finally, since we are considering Eve’s frequency-domain collective attack, the {âBm
} modes

are independent and identically distributed, thus subadditivity gives us

S(ρ̂âB
) ≤ MS(ρ̂âBm

). (C12)

Putting the preceding results together gives us an upper bound on Eve’s Holevo infor-

mation rate:

χEB ≤ Rmin
{
M

[
S(ρ̂âBm

)− [S(ρ̂
(0)

âIm ,n̂′

Bm

)− S(ρ̂âIm ,â′
Sm

)]
]
, 1
}
, (C13)

where we have used the fact that Eve’s maximum Holevo information per bit interval is

one. Our next step is to place a lower bound on S(ρ̂
(0)
âIm ,n̂′

Bm

) − S(ρ̂âIm ,â′
Sm

) by recognizing

that term as the entropy output of a tensor-product quantum channel.

Definition: Entropy output

Let φ(·) be a quantum channel that maps states in H1 to states in H2. The entropy-output

function Eφ(·) of that channel quantifies the difference between the von Neumann entropies

of its output and input states, i.e., for input-state ρ̂ we have that

Eφ(ρ̂) = S[φ(ρ̂)]− S(ρ̂). (C14)

Using this definition (C13) can be rewritten as

χEB ≤ Rmin
{
M [S(ρ̂âBm

)−Eφ(ρ̂âIm ,â′
Sm

)], 1
}
. (C15)

Next, we prove that entropy output is superadditive for the quantum channel

φ(·) = φS(·)⊗ II(·) that maps the {â′Sm
, âIm} modes into the {n̂′

Bm
, âIm} modes, where II(·)

is the identity channel.

Theorem: Superadditivity of entropy output

Let A12 and B12 be bipartite quantum systems on H⊗2
A and H⊗2

B with components {A1, A2}
and {B1, B2}, respectively. For an arbitrary input state ρ̂A12,B12

in H⊗2
A ⊗ H⊗2

B , and an

arbitrary quantum channel φ(·) that maps states in HA ⊗ HB into states in H′
A ⊗ H′

B we

have that

Eφ⊗φ(ρ̂A12,B12
) ≥ Eφ(ρ̂A1,B1

) + Eφ(ρ̂A2,B2
), (C16)
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with equality when ρ̂A12,B12
= ρ̂A1B1

⊗ ρ̂A2B2
, i.e., entropy output is superadditive.

From entropy output’s definition, Ineq. (C16) is equivalent to

S[φ⊗ φ (ρ̂A12,B12
)− S(ρ̂A12,B12

) ≥ S[φ(ρ̂A1,B1
)]

− S(ρ̂A1,B1
) + S[φ(ρ̂A2,B2

)]− S(ρ̂A2,B2
). (C17)

This inequality can be rewritten as

I(A1B1 :A2B2) ≥ I[φ(A1B1) :φ(A2B2)], (C18)

where I(A :B) = S(ρ̂A)+S(ρ̂B)−S(ρ̂A,B) is the quantum mutual information. The validity

of Ineq. (C18) follows from the quantum data-processing inequality [31], because φ(·) acts
independently on (A1, B1) and (A2, B2).

The subadditivity of von Neumann entropy and the superadditivity of entropy output

imply that S(ρ̂âBm
)−Eφ(ρ̂âIm ,â′

Sm
) is subadditive. Moreover, von Neumann entropy is con-

tinuous. So, if we can show that entropy output for Gaussian channels is invariant under

passive symplectic operations then we could apply Gaussian extremality [32] and obtain

S(ρ̂âBm
)−Eφ(ρ̂âIm ,â′

Sm
) ≤

SG(ΛB)− [SG(Λ
(0)
IB′)− SG(ΛIS′)], (C19)

where SG(Λ) denotes the von Neumann entropy of a Gaussian state with Wigner covariance

matrix Λ, and ΛB, Λ
(0)
IB′ , and ΛIS′ are the Wigner covariance matrices of ρ̂âBm

, ρ̂
(0)
âIm ,n̂′

Bm

,

and ρ̂âIm ,â′
Sm

, respectively. It would then follow that, Eve’s Holevo information rate for her

general frequency-domain collective attack satisfies

χEB ≤ Rmin
{
M [SG(ΛB) + SG(ΛIS′)− SG(Λ

(0)
IB′)], 1

}
, (C20)

which means that we only need to maximize this rate when Eve makes a collective frequency-

domain Gaussian attack. Note that ΛB and Λ
(0)
IB′ are obtained from ΛIS′ by applying Bob’s

modulator and amplifier transformations, and that Eqs. (C2) and (C3) place constraints

on ΛIS′ when Eve mounts her frequency-domain collective attack. The rest of this section

is devoted to: (1) proving that entropy output for Gaussian channels is invariant under

passive symplectic transformations; and (2) placing an explicit upper bound on Eve’s Holevo

information rate for her optimum frequency-domain collective Gaussian attack under the

preceding covariance constraints.
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To show that entropy output for Gaussian channels is invariant under passive symplectic

transformations, we rely on the fact that Gaussian channels and symplectic transformations

are both linear Bogoliubov mode transformations. Also, because the {âIm} modes are in

Gaussian states, we only need to consider symplectic transformations of the {â′Sm
} modes.

Consider a Gaussian channel φG(·) whose input modes are â1 and â2 and whose output

modes satisfy

b̂1 = c1â1 + c2â
†
1 + c3n̂1 + c4n̂

†
1, (C21)

b̂2 = c1â2 + c2â
†
2 + c3n̂2 + c4n̂

†
2, (C22)

where the {ck} are complex-valued coefficients associated with φG(·) and the {n̂k} are

vacuum-state ancilla modes. Now suppose that the input modes are applied to the input

ports of a 50–50 beam splitter whose outputs,

â± = (â1 ± â2)/
√
2, (C23)

become the inputs to φG(·). Now the output modes will be

b̂+ = c1â+ + c2â
†
+ + c3n̂1 + c4n̂

†
1, (C24)

b̂− = c1â− + c2â
†
− + c3n̂2 + c4n̂

†
2. (C25)

Because unitary operations do not change von Neumann entropy, we can apply another

50–50 beam splitter to these output modes and obtain

b̂′1 = (b̂+ + b̂−)/
√
2, (C26)

b̂′2 = (b̂+ − b̂−)/
√
2 (C27)

whose von Neumann entropy will be the same as that of the {b̂+, b̂−} modes. With some

algebra, we can verify that

b̂′1 = c1â1 + c2â
†
1 + c3n̂+ + c4n̂

†
+, (C28)

b̂′2 = c1â2 + c2â
†
2 + c3n̂− + c4n̂

†
−, (C29)

where the n̂± = (n̂1± n̂2)/
√
2 are in their vacuum states. Hence the {b̂′1, b̂′2} modes have the

same von Neumann entropy as {b̂1, b̂2} modes. A similar analysis will demonstrate entropy
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invariance for waveplate transformations, completing the proof that the entropy output for

Gaussian channels is invariant under passive symplectic transformations.

Having shown the last condition we needed for Gaussian extremality to hold, we turn our

attention to Eve’s collective frequency-domain Gaussian attack. In such an attack, Eve’s

unitary operation in Fig. 5 is a K + 1-mode Bogoliubov transformation [33], resulting in

â′Sm
= u0âSm

+ v∗0 â
†
Sm

+
K∑

k=1

(ukê
(k)
Vm

+ v∗kê
(k)†
Vm

) + α. (C30)

A direct consequence of Gaussian extremality is that the optimum displacement is α = 0,

because only when α = 0 will the unconditional state ρ̂âBm
be Gaussian. So, setting α = 0,

we need to maximize the right-hand side of Ineq. (C20) over the parameters { uk, vk : 1 ≤
k ≤ K} and α, subject to the following constraints.

First, so that Eq. (C30) yields a proper free-field commutator bracket for â′Sm
, we require

that the coefficients { uk, vk : 0 ≤ k ≤ K } satisfy

K∑

k=0

(|uk|2 − |vk|2) = 1. (C31)

Second, the security-monitoring constraint in Eq. (C2) implies that Eve’s attack parameters

{ uk, vk : 0 ≤ k ≤ K } must obey

(|u0|2 + |v0|2)NS +
K∑

k=0

|vk|2 = κSNS. (C32)

Because the first term on the left is Alice’s light injection into Bob while the second terms

is due to Eve, the constraint in Eq. (C3) can be rewritten as

fE =

∑K
k=0 |vk|2
κSNS

, (C33)

which shows that under Eve’s collective frequency-domain Gaussian attack the intrusion pa-

rameter fE equals the fraction of light entering Bob’s terminal that is due to Eve. In App. E

we will show that Alice and Bob’s photon-coincidence channel monitoring can measure fE.

Hence Eve will constrain her attack parameters to yield an fE value that Alice and Bob will

tolerate in the FL-QKD protocol. (Eve’s using an fE value that exceeds what Alice and

Bob will tolerate would constitute a denial-of-service attack.)
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1. Evaluating Eve’s Holevo Information Rate Upper Bound

We can evaluate the bound in (C20) by symplectic diagonalization of the Wigner covari-

ance matrices of { âIm, n̂′
Bm

}, {âIm , â′Sm
}, and âBm

conditioned on the value of Bob’s bit.

From App. B we can easily show that

ΛIS′ =
1

4


 AS CIS′

CIS′ BIS′


 , (C34)

where

BIS′ = 2


 B + Re(w) Im(w)

Im(w) B − Re(w)


 , (C35)

and

CIS′ = 2
√
NS(NS + 1)


 Re(u0 + v0) Im(u0 − v0)

Im(u0 + v0) −Re(u0 − v0)


 , (C36)

with B = 1/2 + κSNS, w = v†u + (2NS + 1)v∗0u0, v† ≡
[
v∗1 v∗2 · · · v∗K

]
and u =

[
u1 u2 · · · uK

]T
and T denoting transpose. We also find that

Λ
(b)
IB′ =

1

4


 AS C

(b)
IB′

C
(b)
IB′ BIB′


 , (C37)

where

BIB′ =


 B′ + Re(x) −Im(x)

−Im(x) B′ − Re(x)


 , (C38)

C
(b)
IB′ = (−1)b2

√
(GB − 1)NS(NS + 1)

×


 Re(u0 + v0) −Im(u0 − v0)

Im(u0 + v0) Re(u0 − v0)


 , (C39)

with B′ = 1 + 2(GB − 1)(κSNS + 1) and x = 2(GB − 1)w. The last Wigner covariance that

we need is

Λ
(b)
B =

1

4


 B′′ + 2GBRe(w) 2GBIm(w)

2GBIm(w) B′′ − 2GBRe(w)


 , (C40)

where B′′ = −1 + 2GB(κSNS + 1). Because this covariance matrix is independent of b, we

have ΛB = Λ
(b)
B and the unconditional state of âBm

is Gaussian.
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After evaluating all the symplectic eigenvalues of the preceding Wigner covariances, we

have that

χEB ≤ Rmin

{
M

[
g

(
4ξIS′+ − 1

2

)
+ g

(
4ξIS′− − 1

2

)

+ g

(
4ξB − 1

2

)
− g

(
4ξIB′+ − 1

2

)

− g

(
4ξIB′− − 1

2

)]
, 1

}
, (C41)

where g(x) = (x+ 1) log2(x+ 1)− x log2(x) is the von Neumann entropy of a thermal state

with average photon number x. Here ξIS′+ ≥ ξIS′− and ξIB′+ ≥ ξIB′− are, respectively, the

symplectic eigenvalues of ΛIS′ and Λ
(b)
IB′ , and ξB is the symplectic eigenvalue of ΛB.

Because FL-QKD operates with NB ≫ 1, we shall replace (C41) with its leading-order

expansion in that regime, namely

χEB ≤ Rmin{M [g(2ξIS′+ − 1/2) + g(2ξIS′− − 1/2)

− g(2ξ̃IB′− − 1/2) +O(N
−1/2
B )

]
, 1
}
, (C42)

where ξIS′± is independent of NB and ξ̃IB′− is the NB ≫ 1 leading-order, O(1), approxima-

tion to ξIB′−. Our next task is to maximize the right-hand side of (C42) over all possible

values of Eve’s attack parameters, { uk, vk : 0 ≤ k ≤ K }, subject to the commutator-

preservation constraint (C31), the photon-flux constraint (C32), and the injection-fraction

constraint (C33). The first of these constraints is an absolute requirement on frequency-

domain collective Gaussian attacks, the second is set by Eve’s desire to elude Bob’s detecting

her by simple photon-flux and spectrum monitoring, and the third is a consequence of Alice

and Bob’s photon-coincidence monitoring.

The preceding attack-parameter optimization can be accomplished more readily by sat-
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isfying (C31), (C32), and (C33) by means of

|v0| =
√
(1− fE)κS cos(γv),

with γv ∈ [0, π/2] and cos2(γv) ≤ fENS/(1− fE) (C43)

|u0| =
√
(1− fE)κS sin(γv) (C44)

v†v = [fEκSNS − (1− fE)κS cos
2(γv)] (C45)

u†u = fEκSNS + 1− (1− fE)κS

+ (1− fE)κS cos
2(γv), (C46)

|v†u| =
√
(v†v)(u†u) cos(δ), with δ ∈ [0, π/2]. (C47)

Next, we further simplify (C42) by restricting it to FL-QKD’s desired long-distance operating

regime, wherein κS ≪ 1. Here we find that

χEB ≤ Rmin
(
M

{
κS[fENS − (1− fE) cos

2(γv)] sin
2(δ)

× {1/ ln(2)− log2[sin
2(δ)κS[fENS − (1− fE) cos

2(γv)]]}

+ (1− fE)κS log2(1 + 1/NS)[(2NS + 1) cos2(γv) +N2
S]

+ O(κ
3/2
S ) +O(N

−1/2
B )

}
, 1
)
. (C48)

Neglecting the O(·) terms, we find that the derivative of the right-hand side of (C48) with

respect to sin2(δ) will be positive if ln[2fEκSNS] < 0, a condition that will always be satisfied

when κSNS ≪ 1. Thus we conclude that δ = π/2 is Eve’s best choice. Next, using δ = π/2

in (C48), neglecting the O(·) terms, and differentiating (C48)’s right-hand side with respect

to cos2(γv), we find that it will be negative if

ln(2fEκS) < −max
NS≤1

[ln(NS) + (1 + 2NS) ln(1 + 1/NS)]

≈ −2, (C49)

where the NS constraint is due to FL-QKD’s operating at low brightness. Alice and Bob’s

constraining Eve to fE ≪ 1 combined with κS ≪ 1 ensures that (C49) is obeyed, making

γv = π/2 optimum.

At this point, using δ = γv = π/2 in Eqs. (C44)–(C47), we have that Eve’s optimum
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frequency-domain collective Gaussian attack is to use the Fig. 5 setup with

v0 = 0 (C50)

|u0| =
√
(1− fE)κS (C51)

α = 0 (C52)

v†v = fEκSNS (C53)

u†u = fEκSNS + 1− (1− fE)κS (C54)

v†u = 0. (C55)

Her Holevo information rate for this optimum frequency-domain collective Gaussian attack

obeys

χEB ≤ χUB
EB =

Rmin[M(κSNS{fE [1/ ln(2)− log2(fEκSNS)] +

(1− fE)NS log2(1 + 1/NS)}) , 1] , (C56)

This result omits the O(κ
3/2
S ) and O(N

−1/2
B ) terms in (C48), so it is important to note that:

(1) in computing the paper’s secret-key rate results we used the exact form from (C41)

with the attack parameters from Eqs. (C50)–(C55); and (2) numerically maximizing the

right-hand side of (C42) over Eve’s attack parameters for the path lengths considered in the

paper yielded δ = γv = π/2 [34].

2. Physical Realization of Eve’s Optimum Frequency-Domain Collective Attack

At this juncture it is instructive to exhibit a physical implementation for Eve’s optimum

frequency-domain collective attack, namely her Fig. 5 Gaussian attack with attack parame-

ters given by Eqs. (C50)–(C55). That attack can be realized with Eve’s using only two ancilla

and choosing u1 =
√

fEκSNS + 1− (1− fE)κS, v1 = 0, u2 = 0, and v2 =
√
fEκSNS. Then,

because Alice and Bob must do phase tracking—FL-QKD is an interferometric protocol—no

loss of generality ensues from setting u0 =
√
(1− fE)κS. With these parameter values, Eve’s

optimum frequency-domain collective Gaussian attack becomes the SPDC beam-splitter at-

tack, shown in Fig. 2. Here, Eve uses an SPDC source identical to Alice’s with the exception
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of its brightness being NE = fEκSNS/[1− (1− fE)κS]. She retains her idler and injects her

signal into the Alice-to-Bob channel through a beam splitter with Alice-to-Bob transmis-

sivity
√

(1− fE)κS. Eve then performs a collective measurement on the light she collects

from that beam splitter’s other output port, her retained idler, and the light she taps from

the Bob-to-Alice channel in which she has inserted a beam splitter with Bob-to-Alice trans-

missivity κS. To see that this identification is correct, we exhibit its three-mode Bogoliubov

transformation,

â′Sm
=

√
(1− fE)κS âSm

+
√
fEκSNS + 1− (1− fE)κS ê

(1)
Vm

+
√
fEκSNS ê

(2)†
Vm

(C57)

ê
(1)
Im

=

√
fEκSNS

1− (1− fE)κS
ê
(1)†
Vm

+

√
fEκSNS + 1− (1− fE)κS

1− (1− fE)κS
ê
(2)
Vm

(C58)

ê
(2)
Im

=
√
1− (1− fE)κS âSm

+

√
(1− fE)κS(fEκSNS + 1− (1− fE)κS)

1− (1− fE)κS
ê
(1)
Vm

+

√
(1− fE)κS(fEκSNS)

1− (1− fE)κS
ê
(2)†
Vm

. (C59)

and recognize â′Sm
and ê

(2)
Im

as the beam splitter outputs in Fig. 2 and ê
(1)
Im

as Eve’s retained

idler.

In the paper, we not only report our upper bound on the Holevo information rate for

Eve’s optimum frequency-domain collective Gaussian attack, as realized by the SPDC beam-

splitter arrangement, but also upper bounds on her Holevo information rates for her collective

passive and collective active attacks with that arrangement. The upper bound on the Holevo

information rate of Eve’s collective passive attack is trivially obtained from the development

presented earlier in this section: her optimum collective frequency-domain Gaussian attack

becomes her collective passive attack when fE = 0. Eve’s optimum collective active attack

is realized, in the Fig. 2 setup, by her only making a collective measurement on her retained
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idler and the light she taps from the Bob-to-Alice channel. That rate bound, which can be

derived by a procedure similar to what we have just presented, is as follows:

χUBact
EB = Rmin

{
M

[
SG(ΛIB)−

1∑

b=0

SG(Λ
(b)
IB)

]
, 1

}
, (C60)

where

Λ
(b)
IB =

1

4



 AE C
act(b)
IB

C
act(b)
IB AB



 , (C61)

with AE = (2NE + 1)I2, AB = [2(GBNS +NB) + 1]I2, and

C
act(b)
IB =


 (−1)bCact

IB 0

0 (−1)b+1Cact
IB


 , (C62)

with Cact
IB = 2

√
GB(1− fEκS)NE(NE + 1), is the conditional Wigner covariance matrix of

the {ê(1)Im
, âBm

} mode pair given Bob’s bit value. That mode pair’s unconditional Wigner

covariance matrix is then

ΛIB =
1∑

b=0

Λ
(b)
IB/2. (C63)

As before, the von Neumann entropies in this bound can be found in terms of thermal-state

von Neumann entropies via symplectic diagonalization of the Wigner covariances.

Appendix D: Alice’s Error Probabilities and Alice and Bob’s Shannon Information

Rates

Because M ≥ 200 for all the performance evaluations presented in the paper, we can

use the Central Limit Theorem to justify the following Gaussian-approximation formula for

Alice’s error probability [14] when Bob’s bit value is equally likely to be 0 or 1 and Eve

mounts her optimum frequency-domain collective Gaussian attack using the Fig. 2 setup:

Pr(e)homAlice = Q

(
µ0 − µ1

σ0 + σ1

)
, (D1)

where

Q(x) =

∫ ∞

x

dt
e−t2/2

√
2π

. (D2)

Here, µb and σb are the conditional mean and conditional standard deviation of the N̂hom

measurement given the value of Bob’s message bit, b. Once Alice’s error probability is found,
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Alice and Bob’s Shannon-information rate follows immediately from

IAB = R
[
1 + Pr(e)homAlice log2(Pr(e)

hom
Alice)

+ (1− Pr(e)homAlice) log2(1− Pr(e)homAlice)
]
, (D3)

hence all that remains is to determine the conditional means and standard deviations needed

to instantiate our error-probability formula.

The conditional moments we require are easily calculated from the Fig. 2 setup and its

associated state characterizations, so we will merely present the results. We have that

µb = 2(−1)bMηκS

√
GBN ′

ASENLO, (D4)

and

σb =
√

M{ηN1 + 2η2[NAlice
R NLO + κ2

SGBN
′
ASENLO]}, (D5)

where N ′
ASE = (1−κB)(1−fE)(1−κA)(1−κC)NASE, N1 = NAlice

R +NLO, N
Alice
R = κSGB(1−

κB)κSNS+κSNB, and perfect reference storage has been assumed [35]. At this point we can

obtain the asymptotic (NB ≫ 1, NLO ≫ 1) form of Pr(e)homAlice that was used for illustrative

purposes in the paper, albeit not in the performance-evaluation figures. In this asymptotic

regime we have that

σK →
√

2Mη2κSNBNLO, (D6)

whence

Pr(e)homAlice → Q

(√
2MκSGBN ′

ASE/NB

)
. (D7)

Neglecting the small amount of SPDC light that Alice sent to Bob, we can replace (1 −
κA)(1− κC)NASE with NS. Using M = TW = W/R, and replacing (1− κB) with 1 because

Bob’s channel monitor will withdraw only a small amount of the light he receives from Alice,

we then get

Pr(e)homAlice → Q
(√

2MκSGB(1− fE)NS/NB

)

≤ exp(−WGB(1− fE)NS/RNB)/2, (D8)

in the NB ≫ 1, NLO ≫ 1 regime, where we have used the well-known bound Q(x) ≤
exp(−x2/2)/2. In the paper, this expression was quoted for ideal equipment, which presumes

unity homodyne efficiency (η = 1). The derivation we have just given verifies that in this
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asymptotic regime Pr(e)homAlice is not sensitive to the homodyne efficiency. Thus the η = 0.9

homodyne efficiency assumed in the paper is not a critical value.

We have now obtained upper bounds on the Holevo information rates of Eve’s optimum

frequency-domain collective attack, her collective passive attack, and her collective active

attack, all of which are realizable with the beam-splitter arrangement shown in Fig. 2. In

the paper we plot upper bounds for these attacks’ Holevo informations in bits per mode,

rather than bits per second. The bits per mode bounds are trivially obtained by dividing

the bits per second bounds by the illumination bandwidth W , which specifies the number of

modes per second that are being employed on the Alice-to-Bob and Bob-to-Alice channels.

Appendix E: Channel monitoring for general states

Alice and Bob measure the singles rates at their channel monitors, i.e., SI for Alice’s idler

beam, SA for Alice’s tap on her transmitted beam, and SB for Bob’s tap on his received

beam. They also measure CIA and C̃IA, the time-aligned and time-shifted coincidence rates

between Alice’s idler and the tap on her transmitted beam, and CIB and C̃IB, the time-

aligned and time-shifted coincidence rates between Alice’s idler and Bob’s tap on his received

beam, in both cases after accounting for the relevant propagation delays as described below.

Their monitors will be assumed to have detectors with quantum efficiencies ηI , ηA and ηB,

respectively, and identical jitter-limited coincidence-gate durations, Tg ∼ 100 ps. When the

average number of photons illuminating each monitor in a gate time is much smaller than

one—as will be the case for our performance evaluation—the average values of the preceding

rates can be taken to be [36]

SK =
ηK
TR

∫ TR/2

−TR/2

dt 〈Êmon†
K (t)Êmon

K (t)〉, (E1)

for K = I, A,B, and

CIK =
ηIηK
TR

∫ TR/2

−TR/2

dt

∫ t+Tg/2

t−Tg/2

du

× 〈Êmon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)〉, (E2)

C̃IK =
ηIηK
TR

∫ TR/2

−TR/2

dt

∫ t+Ts+Tg/2

t+Ts−Tg/2

du

× 〈Êmon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)〉, (E3)
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for K = A,B, where Êmon
K (t), for K = I, A,B, are the positive-frequency,

√
photons/s-

units field operators entering Alice’s idler and transmitter tap monitors and Bob’s monitor,

respectively. Here, the time-origins for the {Êmon
K (t)} have been chosen to ensure that true

coincidences and accidental coincidences will be counted in the time-aligned coincidences

CIK , but only accidental coincidences will be counted in the time-shifted coincidences C̃IK .

The latter condition is ensured by taking the time shift Ts to satisfy WTs ≫ 1, Ts ≫ Tg,

and Ts ≪ TR, where W is Alice’s source bandwidth and t ∈ [−TR/2, TR/2] is the duration

of the FL-QKD protocol’s quantum communication. In practice, Ts ∼ 10 ns will suffice for

W = 2THz and Tg = 100 ps.

If we assume that Eve mounts a collective frequency-domain Gaussian attack, then all of

the fields appearing in our singles and coincidence rates are in a zero-mean, jointly-Gaussian

state and we can evaluate these rates by means of Gaussian moment factoring [37]. However,

because we seek security against the general frequency-domain collective attack, we will show

that Alice and Bob’s channel monitors can determine Eve’s intrusion parameter, fE , even

when her attack in not Gaussian. Toward that end it is convenient to introduce Fourier-series

decompositions for the field operators { Êmon
K (t) : K = I, A,B } over the entire duration of

FL-QKD’s quantum communication, viz.,

Êmon
I (t) =

e−iωI t

√
TR

WTR/2∑

m=−WTR/2

âmon
Im e−i2πmt/TR , (E4)

Êmon
K (t) =

e−iωSt

√
TR

WTR/2∑

m=−WTR/2

âmon
Km

ei2πmt/TR , (E5)

for K = A,B, where ωS and ωI are the center frequencies of Alice’s signal and idler beams

and we have limited the series to Alice’s source bandwidth, i.e., to the frequency modes that

are in non-vacuum states. The behaviors of the modes appearing in these Fourier series can

be gotten from App. A by presuming that the Fourier expansions in that appendix were

made on the [−TR/2, TR/2] interval and making the following identifications:

âmon
Im = âIm (E6)

âmon
Am

=
√
κA âAm

−
√
1− κA v̂Am

(E7)

âmon
Bm

=
√
κB â′Sm

−
√
1− κB v̂Bm

. (E8)

Note that Eve’s mounting a frequency-domain collective attack makes the mode triples

33



{ (âmon
Im , âmon

Am
, âmon

Bm
) : −WTR/2 ≤ m ≤ WTR/2 } independent and identically distributed

with the {âIm} modes being in zero-mean states.

For the singles rates we find that

SK =
ηK
TR

WTR/2∑

n=−WTR/2

WTR/2∑

m=−WTR/2

〈âmon†
Kn

âmon
Km

〉

× sin[π(n−m)]

π(n−m)
(E9)

=
ηK
TR

WTR/2∑

n=−WTR/2

〈âmon†
Kn

âmon
Kn

〉 (E10)

= ηKW 〈âmon†
Kn

âmon
Kn

〉, (E11)

for K = I, A,B. Using this result in conjunction with Eqs. (E6)–(E8) then gives us

SI = ηINSPDCW, (E12)

SA = ηAκANAW, (E13)

SB = ηBκBκSNSW. (E14)

Finding the time-aligned and time-shifted coincidence rates is more complicated than

what we have just done for the singles rates. We start from the photon-flux cross-correlation

function,

RIK(t, u) = 〈Êmon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)〉, (E15)

for K = A,B, which, employing the Fourier series given earlier and grouping terms, can be

reduced to

RIK(t, u) =

3∑

k=1

R
(k)
IK(t, u), (E16)

where

R
(1)
IK(t, u) =

1

T 2
R

[
∑

n,m

〈âmon†
In

âmon†
Kn

〉〈âmon
Im âmon

Km
〉

× ei2π(n−m)(t−u)/TR
]
, (E17)

R
(2)
IK =

1

T 2
R

[
∑

n,m

〈âmon†
In

âmon
In 〉〈âmon†

Km
âmon
Km

〉
]
, (E18)
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and

R
(3)
IK(t, u) =

1

T 2
R

{
∑

n

[
〈âmon†

In
âmon†
Kn

âmon
In âmon

Kn
〉 − |〈âmon

In âmon
Kn

〉|2

− 〈âmon†
In

âmon
In 〉〈âmon†

Kn
âmon
Kn

〉
]}

, (E19)

because of the independence of the mode triples and the zero-mean nature of the {âmon
Im }

modes, with all indices are summed from −WTR/2 to WTR/2.

The time-independence of R
(2)
IK(t, u) and R

(3)
IK(t, u) implies that these terms will not con-

tribute to CIK − C̃IK . Moreover the independence and identical distribution of the mode

pairs {âmon
Im , âmon

Am
âmon
Bm

} makes R
(1)
IK)(t, u) vanish when |t− u| ≫ 1/W . Hence we find that

CIK − C̃IK =
ηIηK
TR

|〈âmon
Im âmon

Km
〉|2

×
∑

n,m

Tg

TR

sin[π(n−m)Tg/TR]

π(n−m)Tg/TR
. (E20)

In the main text we claimed that Alice and Bob’s channel monitors will enable them to

measure Eve’s intrusion parameter,

fE ≡ 1− |〈â′Sm
âIm〉|2

κS|〈âSm
âIm〉|2

, (E21)

via

fE = 1− [CIB − C̃IB]/SB

[CIA − C̃IA]/SA

. (E22)

Using Eqs. (E13), (E14), and (E20) we get

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
|〈âmon

Im âmon
Bm

〉|2
|〈âmon

Im
âmon
Am

〉|2
〈âmon†

Am
âmon
Am

〉
〈âmon†

Bm
âmon
Bm

〉
. (E23)

From Eqs. (E6)–(E8) we can reduce this result to

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
|〈âImâ′Sm

〉|2
|〈âImâAm

〉|2
〈â†Am

âAm
〉

〈â′†Sm
â′Sm

〉
. (E24)

Use of Eqs. (A5) and (C2) then yields

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
|〈â′Sm

âIm〉|2
κS|〈âSm

âIm〉|2
. (E25)
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Although this result appears to verify the agreement of Eqs. (E21) and (E22), there is an issue

with that identification. The modes appearing in Eq. (E21) were obtained from Fourier-series

decompositions of the relevant continuous-time field operators on a duration-1/R s interval,

whereas those in Eq. (E25) come from Fourier-series decompositions of those field operators

on a duration-TR s interval. Because of the independent, identical distribution of the mode

operators, however, their second moments—which are all that appears in Eqs. (E21) and

(E22)—will be the same regardless of whether the Fourier series’ time interval has duration

1/R or TR.

Appendix F: Eve’s Entanglement-Assisted Capacity

When Eve mounts a collective active attack, we can regard her use of the SPDC’s idler

beam she has retained and the modulated, amplified, noisy version of her SPDC’s signal

beam she collects from her tap on the Bob-to-Alice fiber as an entanglement-assisted com-

munication channel from Bob to her. Consequently, her collective active attack’s Holevo

information per mode cannot exceed the single-mode entanglement-assisted capacity for

that channel, CE [38, 39], because entanglement-assisted capacity is known to be additive.

From [38, 39] we have that

CE = g[(1− κB)[1− (1− fE)κS]NE ]

+ g[GB(1− κB)[1− (1− fE)κS]NE +NB]

− g[(1 + (1− κB)[1− (1− fE)κS]NENB]. (F1)

We have been somewhat conservative in Eq. (F1) in that this result assumes that Alice

does not inject any light into Bob and that Eve collects all the light that Bob sends on the

Bob-to-Alice fiber. Neither of these assumptions is of great consequence, but they make it

easier to obtain the result in Eq. (F1). In particular, Alice’s injection into Bob acts as noise

for Eve’s active attack. Moreover, because Alice’s injection into Bob has low brightness, it

is dwarfed by the ASE from Bob’s amplifier. Finally, because Fig. 4(b) plots CE for a 50-

km-long path, Eve is already getting 90% of the light Bob sends to Alice. Hence increasing

that value to 100% is not a major change, especially since Bob’s amplifier gain is sufficient

to overcome return-path loss.
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Appendix G: Bounding Eve’s information gain from knowing the output of Bob’s

channel monitor

Bob sends Alice the times at which his channel monitor has detected photons so that

she can use that data to estimate Eve’s intrusion parameter. To do so he uses a tamper-

proof classical channel that Eve can monitor. So far, we have not included the information

that Eve could glean from that classical transmission in bounding her Holevo information

rate. Here we will show that the extra information that Eve might gain from knowing those

detection times is inconsequential.

The mean photon-number per bit at Bob’s monitor detector is MκBκSNS ≃ κB ≪ 1,

owing to FL-QKD’s operating with MκSNS ∼ 1 (∼1 ppb at Bob’s terminal), we will only

consider two leading-order possibilities: no photon is detected (probability of occurrence =

p0) or one photon is detected (probability of occurrence = p1 = 1− p0).

Let us use χUB
EB|n, for n = 0, 1, to denote an upper bound on Eve’s Holevo information rate

given that Bob’s monitor has detected n photons and, if there has been a detection, that Eve

knows from which frequency mode it came. (This frequency-mode knowledge is not available

to Eve from her eavesdropping on Bob’s classical-channel transmission, so assuming she has

this knowledge increases her Holevo information rate.) Then, averaged over Bob’s monitor

result, the upper bound on Eve’s Holevo information rate for her optimum frequency-domain

collective attack is

χ̄UB
EB = p0χ

UB
EB|0 + p1χ

UB
EB|1. (G1)

Because all M modes are independent, we have that χUB
EB|0 = Mχ0, where χ0 is the per-mode

upper bound on Eve’s Holevo information rate when Bob’s monitor failed to detect a photon

[40]. When Bob’s monitor does detect a photon, and Eve knows which frequency mode has

lost a photon to that detection, the upper bound on her conditional Holevo information rate

will be

χUB
EB|1 = (M − 1)χ0 + χ1, (G2)

where χ1 is the per-mode upper bound when Bob’s monitor detected a photon in that mode.

We now have that

χ̄UB
EB = Mχ0 + p1(χ1 − χ0), (G3)

which we need to compare to our upper bound from App. C, which neglected any informa-

tion Eve might gain from learning the times at which Bob’s channel monitor made photon
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detections.

For χUB
EB being the App. C upper bound we will use χ ≡ χUB

EB/M ,to denote its per-mode

contribution. We now have that

χ̄UB
EB

χUB
EB

=
χ0

χ
+ p1

(χ1 − χ0)

Mχ
. (G4)

Figure 4(a) shows that Bob will receive ∼1 ppb for one-way path lengths less than 200 km,

and our secret-key rate calculations assume that Bob’s monitor taps 1% of that light. To-

gether these conditions imply that p1 ≈ 0.01. Figure 4(a) also implies that Mχ ≈ 0.8 for

a 50 km one-way path length. So, taking the very conservative upper limit of unity for

χ1 − χ0, we have that the second term on the right in Eq. (G4) is at most 0.013. Thus it

only remains for us to address the first term on the right in that equation. We will do so

within the App. C.2 framework, i.e., for Eve’ frequency-domain collective Gaussian attack.

Eve gains her information from measuring the mode triples {ê(1)Im
, ê

(2)
Im
, âBm

}. To assess the

impact of Eve’s having Bob’s channel-monitor data, we focus our attention on what that data

implies about conditional state of the {â′′Sm
} modes, viz., the modes that enter Bob’s BSPK

modulator and, after modulation and subsequent amplification, become the {âBm
} modes.

Moreover, to do so we will presume that the {â′Sm
} modes that arrive at Bob’s terminal are

in independent, identically-distributed thermal states with average photon number κSNS,

as is the case in Eve’s optimum frequency-domain Gaussian collective attack. Using the

beam-splitter relation that converts these modes and the vacuum-state {v̂Bm
} modes into

the {âmon
Bm

, â′′Sm
} mode pairs, we find that those mode pairs are in independent, identically-

distributed Gaussian states whose coherent-state decomposition is

ρ̂âmon

Bm
,â′′

Sm
=

∫
d2α

πκSNS

e−|α|2/κSNS |√κB α〉BB〈
√
κB α|

⊗ |
√
1− κB α〉SS〈

√
1− κB α| . (G5)

Given that Bob’s monitor did not detect a photon, the {â′′Sm
} modes are still independent

and identically distributed, with conditional density operator

ρ̂â′′
Sm

|0 =
B〈0| ρ̂âmon

Bm
,â′′

Sm
|0〉B

Tr
(
B〈0| ρ̂âmon

Bm
,â′′

Sm
|0〉B

) . (G6)

After some algebra, we have the ρ̂â′′
Sm

|0 is a thermal state whose mean photon number,

(1 − κB)κSNS/(1 + κBκSNS), is less than that mode’s unconditional photon number, (1 −
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κB)κSNS. Thus we conclude conditioning on Bob getting no count, the mean photon number

in the return mode decreases, but the quantum state is still Gaussian. Similar results hold

for Eve’s {ê(1)Im
, ê

(2)
Im
} modes, and we conclude that χ0/χ < 1, hence χ̄UB

EB/χ
UB
EB < 1.013 at

50 km one-way path length.
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R. V. Penty, and A. J. Shields, Opt. Express 21, 24550–24565 (2013).

[7] D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, Opt. Express

23, 17511–17519 (2015).

[8] A passive attack therefore has fE = 0 while an active attack has fE > 0.
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