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Abstract

We study entanglement generation and control in bi-directional waveguide QED driven by a two-

photon Gaussian wavepacket. In particular, we focus on how increasing the number of qubits affects

the overall average pairwise entanglement in the system. We also investigate how the presence of a

second photon can introduce non-linearities, thereby manipulating the generated entanglement. In

addition, we show that through the introduction of chirality and small decay rates, entanglement

can be stored and enhanced up to factors of 2 and 3, respectively. Finally, we analyze the influence

of finite detunnings and time-delays on the generated entanglement.
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I. INTRODUCTION

Entanglement generation, maintenance and control lies at the heart of quantum telepor-

tation, quantum communication, quantum cryptography and quantum computation [1, 2].

Several quantum information processing protocols rely on controlled light-matter interac-

tions which can entangle matter qubits through strongly or weakly interacting photons [3].

In this context, cavity QED [4] setups have been extensively studied with the aim of en-

abling entanglement transfer from photons to atoms [5–8]. However, for longer distance

quantum communication, coupling of qubits with flying photonic mode reservoirs is a more

advantageous approach. For this reason, the study of waveguide QED systems has gar-

nered considerable recent attention [9, 10]. In the standard setup of waveguide QED, qubits

(atoms, quantum dots, nitrogen vacancy centers in diamond or superconducting Joseph-

son junctions [11–14]) are placed near a waveguide (an optical fiber or a nanowire), and

long-distance waveguide mediated qubit-qubit entanglement can be established.

A related development is the study of two qubit entanglement in plasmonic waveguide

systems [15–17]. Recently, Otten et al. has considered up to four plasmonically entangled

quanum dots [18]. In such investigations, either an input coherent state pulse or a single

photon generated within the system serves as a generator of entanglement. Interestingly, it

has also been found that breaking the symmetry of qubit emission in chiral waveguides [19])

can lead to enhancement of the generated entanglement [20, 21].

The study of the propagation of quantum states of light through various material media

is a subject of both fundamental and applied interest. A few examples reflecting this in-

terest include: the observation of two-photon speckle patterns [22], radiative transport and

scattering of two-photon entangled light [23, 24], two-photon imaging [25] and two-photon

based quantum communications [26]. Two-photon waveguide QED has also been investi-

gated in recent years from the point of view of analyzing photon correlations and spectra.

The problem of qubit-qubit entanglement generation has been relatively less studied, mainly

due to the fact that a single photon can accomplish this task. However, the presence of a

second photon in the waveguide can alter qubit-qubit entanglement in non-trivial ways. For

instance, Ballestero et. al has shown that by launching two single-photon pulses from oppo-

site ends of a waveguide, it is possible to manipulate the pattern of two-qubit entanglement

by introducing a small time delay between the the pulses [27]. Moreover, such a scheme
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gives better control of the patterns of collapse and revival of qubit entanglement.

Motivated by the above considerations, in this paper we study two-photon entangle-

ment in multi-qubit waveguide QED systems. In contrast to utilizing a weak laser pulse or

other means to generate entanglement, here we consider a two-photon factorized Gaussian

wavepacket pulse as an entanglement generator. Our main focus in this work is to examine

how the presence of two simultaneously launched photons can introduce non-linearities in

the qubits and thus affect the resulting multi-qubit entanglement. To this end, we derive and

apply a two-photon bi-directional Fock state master equation. This approach differs from

the most common techniques that are used to study the quantum dynamics of waveguide

QED systems, namely Lehmberg type master equations [21, 28], the real space formalism

[29] and generalized input-out theory [30].

We find that for two qubit system, two photons produce a dip profile in the entanglement

which diminishes as the number of qubits N increases. In addition, the maximum value of

entanglement shows a reduction of approximately 10% for the N = 2 case compared to the

N = 5 case. However, preferential directional emission of photons into the waveguide modes

(chirality) can enhance the entanglement for the N = 5 case by a factor of 2. Similarly,

the choice of smaller decay rates can improve the entanglement storage times by a factor 3.

Finally, we note that finite detuning between the peak frequency of the two-photon drive

and the atomic transition frequency leads to a slight reduction in overall entanglement.

Moreover, smaller delays support larger entanglement independent of N .

The remainder of this paper is organized as follows. In Sec. II we describe the setup and

dissipative dynamics of the system under study. Next, in Sec. III we present and discuss our

results. Finally, in Sec. IV we formulate our conclusions. The derivation of the two-photon

master equation we employ is presented in the Appendix.

II. THEORETICAL DESCRIPTION

A. Setup

The system under investigation consists of a chain of two-level atoms (referred to as

qubits) coupled to an optical waveguide, as shown in Fig. 1. The atomic transition frequency

between the ground state |gi〉 and excited state |ei〉 of the ith atom is denoted by ωegi and
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FIG. 1: A bi-directional waveguide QED setup. Atoms are separated by a distance L

which produces a time delay τ = L/c for the photon to propagate between any two

consecutive atoms. The quantity c ≡ vg is the group velocity of the photons in the

waveguide medium. Atoms can absorb incoming photons and then photons can either

be emitted by the atoms into a free space channel (with rate Γi for the ith atom) or in

one of the two directions in the waveguide. Consequently, the coupling fraction

parameter βi = (γiL + γiR)/(γiL + γiR + Γi) has been set equal to unity throughout this

paper [21]. Neglecting free space losses, the processes of photon emission and

absorption result in the entanglement of the atoms in the chain.

σ̂i is the corresponding atomic lowering operator, for i = 1, 2, . . . , N . The waveguide, which

is assumed to be lossless and dispersionless, consists of two oppositely directed continua,

referred to as left and right. Annihilation of a photon in right (left) going continuum is

described by the operator b̂R(ω1) (b̂L(ω2)). The nonvanishing commutation relations among

these operators are of the form

[b̂R(ω1), b̂R(ω
′

1)] = δ(ω1 − ω
′

1) , [σ̂†i , σ̂j] = σ̂ziδij,

[b̂L(ω2), b̂L(ω
′

2)] = δ(ω2 − ω
′

2) ,
(1)

where σ̂i = |gi〉 〈ei| is the atomic lowering operator and σ̂†i is the corresponding raising

operator and σ̂zi = |ei〉 〈ei| − |gi〉 〈gi|. The system is taken to be driven from both ends of

the waveguide. From the right hand side, it is driven by a reservoir R2, which is initially in

the pure vacuum state |ΨR2〉 = |vac〉R2
. On the left hand side, the system is driven by an

initial two-photon state |ΨR1〉, which has the form

|ΨR1〉 =
1√
2

∫ ∞
0

∫ ∞
0

g(ω1, ω
′

1)b̂†R(ω1)b̂†R(ω
′

1)|vac〉R1
dω1dω

′

1, (2)

where g(ω1, ω
′
1) is the spectral envelope of the two-photon wave packet. Note that normal-

ization of |ΨR1〉 requires that
∫∞

0

∫∞
0
|g(ω1, ω

′
1)|2dω1dω

′
1 = 1.
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B. Dissipative dynamics and Master equation

The above system is an open quantum system due to the interaction of the qubits with the

waveguide continua. The dynamics of the state of the system is described by the following

set of two-photon bi-directional Fock state master equations:

dρ̂s(t)

dt
= L̂cs[ρ̂s(t)] + L̂pd[ρ̂s(t)] + L̂cd[ρ̂s(t)] +

N∑
i=1

√
2γiR

(
eik0dig(t)[ρ̂12(t), σ̂†i ] + e−ik0dig∗(t)[σ̂i, ρ̂21(t)]

)
,

dρ̂21(t)

dt
= L̂cs[ρ̂21(t)] + L̂pd[ρ̂21(t)] + L̂cd[ρ̂21(t)] +

N∑
i=1

√
γiR

(
eik0di

√
2g(t)[ρ̂11(t), σ̂†i ] + e−ik0dig∗(t)[σ̂i, ρ̂

†
20(t)]

)
,

dρ̂20(t)

dt
= L̂cs[ρ̂20(t)] + L̂pd[ρ̂20(t)] + L̂cd[ρ̂20(t)] +

N∑
i=1

√
2γiRe

ik0dig(t)[ρ̂10(t), σ̂†i ],

dρ̂11(t)

dt
= L̂cs[ρ̂11(t)] + L̂pd[ρ̂11(t)] + L̂cd[ρ̂11(t)] +

N∑
i=1

√
γiR

(
eik0dig(t)[ρ̂01(t), σ̂†i ] + e−ik0dig∗(t)[σ̂i, ρ̂

†
01(t)]

)
,

dρ̂10(t)

dt
= L̂cs[ρ̂10(t)] + L̂pd[ρ̂10(t)] + L̂cd[ρ̂10(t)] +

N∑
i=1

√
γiRe

ik0dig(t)[ρ̂00(t), σ̂†i ],

dρ̂00(t)

dt
= L̂cs[ρ̂00(t)] + L̂pd[ρ̂00(t)] + L̂cd[ρ̂00(t)].

(3)

The above Liouvillian operators are defined by

L̂cs[%̂(t)] = − i
~

[Ĥsys, %̂(t)], Ĥsys = ~
N∑
i=1

∆iσ̂
†
i σ̂i ,

L̂pd[%̂(t)] = −
N∑
i=1

γiRL(σ̂†i σ̂i%̂(t)− 2σ̂i%̂(t)σ̂†i + %̂(t)σ̂†i σ̂i) ,

(4)

L̂cd[%̂(t)] = −
N∑

i 6=j=1

(
√
γiRγjRδi>j +

√
γiLγjLδi<j)

×{(σ̂†i σ̂j %̂(t)− σ̂i%̂(t)σ̂†j)e
−2πiD(i−j) − (σ̂j %̂(t)σ̂†i − %̂(t)σ̂†j σ̂i)e

2πiD(i−j)} .

(5)

Here δi≶j = 1 for all i ≶ j and γiL(γiR) is the ith atom decay rate into the left (right)

moving continuum. In addition, di specifies the location of any ith atom, ωeg is the common

atomic transition frequency for all atoms and D = L/λ0, with λ0 = 2π/k0 = 2πvg/ωeg

the wavelength of the emitted photon. The function g(t) is a Gaussian obtained from the

spectral profile function g(ω1, ω2), as discussed in the next section. The derivation of the

master equations (Eq. (3)) is presented in the Appendix.
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The first term on the right hand side of the master equation for ρ̂s(t) describes the

closed system dynamics, the second term (with prefactor γiRL = (γiR + γiL)/2) represents

the pure decay of energy from the atoms into the waveguide continua and finally the terms

multiplied by
√
γiRγjR,

√
γiLγjL are the cooperative decay terms, with j = 1, 2, . . . , N . These

cooperative decay terms originate from the coupling of the discrete energy levels of the atoms

to the two common waveguide continua. The operators appearing in Eq. (3) are of the form

ρ̂21(t) = TrR[Û(t− t0)ρ̂s(t)
∣∣∣2ω1ω

′
1

〉
R1R1

〈
Ψ1
∣∣ρ̂R2(t0)Û †(t− t0)], (6a)

ρ̂20(t) = TrR[Û(t− t0)ρ̂s(t)
∣∣∣2ω1ω

′
1

〉
R1R1

〈vac|ρ̂R2(t0)Û †(t− t0)], (6b)

ρ̂11(t) = TrR[Û(t− t0)ρ̂s(t)
∣∣Ψ1
〉
R1R1

〈
Ψ1
∣∣ρ̂R2(t0)Û †(t− t0)], (6c)

ρ̂10(t) = TrR[Û(t− t0)ρ̂s(t)
∣∣Ψ1
〉
R1R1
〈vac|ρ̂R2(t0)Û †(t− t0)], (6d)

ρ̂00(t) = TrR[Û(t− t0)ρ̂s(t)|vac〉R1R1
〈vac|ρ̂R2(t0)Û †(t− t0)], (6e)

where
∣∣∣2ω1ω

′
1

〉
= |ΨR1〉. Here |ΨR1〉 has been defined in Eq. (2), |Ψ1〉 = b̂R(ω1) |ΨR1〉 is the

one-photon reservoir state and Û(t− t0) is the time evolution operator. Owing to their non-

hermitian nature, the operators ρ̂21(t), ρ̂20(t) and ρ̂10(t) cannot be categorized as physical

density operators, but they still obey the property ρ̂†21(t) = ρ̂12(t), ρ̂†20(t) = ρ̂02(t) and

ρ̂†10(t) = ρ̂01(t).

We note that Baragiola et al. [31] have derived a similar two-photon Fock state master

equation using the machinery of quantum stochastic differential equations. However, we

have not only followed a different route in derivation here, but our master equation also

incorporates bi-directionalities, which is the central feature in waveguide QED problems.

We note that the last three equations in Eq. (3) can describe the complete evolution of

the state of the system ρ̂s(t) ≡ ρ̂11(t), if a single-photon wavepacket drives the system.

Moreover, in the absence of any drive, the last master equation in Eq. (3) is sufficient to

describe the evolution of the atomic chain. Note that such a no-drive master equation can

also be derived using second order perturbation theory under the application of the standard

weak Born-Markov assumption, as originally described by Lehmberg [28].
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III. RESULTS AND DISCUSSION

In this section we utilize the master equations Eq. (3) to answer two questions. First,

how do the atomic state populations evolve in response to the input drive? Second, how

does the incoming two-photon wave packet generate and manipulate entanglement among

the qubits? To set the stage, we begin with the simplest possible situation, namely a system

consisting of only one atom.

A. One atom system

For this example, the system Hamiltonian becomes Ĥsys = ~ωegσ̂†σ̂ and we denote the

decay rates by γ1R = γ1L ≡ γ.
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FIG. 2: Time evolution of populations for a single side-coupled atom driven by a

two-photon wave packet with time-dependent strength Ω(t) =
√

2γg(t). Populations in

the ground state (Pg(t)) and excited state (Pe(t)) are represented by black dotted

dashed and blue longer dashed curves. The quantity PT (t) = Pg(t) + Pe(t) (green solid

line) is shown to demonstrate conservation of the total population and the temporal

pulse shape |Ω(t)|2 is shown in red with shorter dashing. The parameters used are

t = 5γ−1,∆t = 1.5γ−1 with zero detuning between the peak frequency of the incoming

wave packet and the atomic transition frequency.

We assume that initially the atom is in its ground state: ρ̂s(t0) = |g〉 〈g| and ρ̂21(t0) =

ρ̂20(t0) = ρ̂10(t0) = 0. As a useful consequence, we obtain ρ̂11(t0) = ρ̂00(t0) = |g〉 〈g|. The

spectral shape of the two-photon wave packet depends on the nature of the two-photon
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source. Here we assume that the two photons are produced by two independent single-

photon sources such that the function g(ω1, ω
′
1) can be factorized in a symmetrized fashion

using the Schmidt decomposition as

g(ω1, ω
′

1) =
1

2

(
g1(ω1)g2(ω

′

1) + g2(ω1)g1(ω
′

1)

)
. (7)

If we take each of the above factors to be Gaussian, then the two-photon wave packet will

have a two Gaussian function product profile. In that case, the inverse Fourier transform of

the spectral profile of any one of component functions is given by

g(t) =
1

(2π)1/4
√

∆t
e−(t−t)2/4(∆t)2 , (8)

where t and ∆t specify the mean value and width of the Gaussian distribution, respectively.

For experimental work related to the generation of two-photon states see references [32–34].

In Fig. 2 we plot the atomic state populations under conditions when a two-photon

wave packet strongly drives the atom (|Ω(t)|max > γ). The parameter choices have been

made according to reference [35] to obtain the highest probability of excitation. We note

that as the wave packet enters the waveguide, after a small waiting time . 0.5γ−1 the

population Pe(t) begins to grow. The highest value achieved by the excited state population

is approximately 48%. This value is smaller than the single atom excitation probability

reported in Ref. [35]. The difference between the values can be attributed to the presence

of bi-directional decays in our model. We also note that the overall temporal shape of the

excited state population (Pe(t)) follows a symmetric behavior around its maximum value.

Moreover, when the wavepacket amplitude |Ω(t)| vanishes at t ∼ 7γ−1, the atom still remains

excited up to 40% of its maximum value. The excited state population Pe(t) takes a further

time t ∼ γ−1 to completely diminish.

B. Two atom chain and entanglement generation

Next, we consider the case of two atoms. The presence of the second atom in the chain

opens up the possibility of qubit-qubit entanglement. The two atoms in our system consti-

tute a mixed state. The concurrence C(ρ̂s) is an appropriate measure of entanglement in a

bipartite mixed state [36]. Following Wootters, we define the concurrence C(t) as

C(t) = max

(
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (9)
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where λi are the eigenvalues (in descending order) of the spin flipped density matrix ρ̃s =

ρ̂s(σ̂y ⊗ σ̂y)ρ̂
∗
s(σ̂y ⊗ σ̂y), with σ̂y being the Pauli spin flip operator. Note that 0 ≤ C ≤ 1

and that C = 1 corresponds to a maximumally entangled state while C = 0 indicates a

completely separable state.

In Fig. 3 we plot the population dynamics and the temporal profile of the entangle-

ment. We see that the presence of the second atom means that there are now different

possibilities available for the system to be excited. For instance, both atoms can be excited

simultaneously (P2) or only one of the atoms can be excited (P1). Since both atoms are

indistinguishable, we have plotted the sum of the probabilities of either one of the atoms to

be excited. We observe that the maximum probability of either of the atoms to be excited

is almost twice as high as the probability of both atoms to be excited simultaneously. More-

over, P2 vanishes when the drive vanishes, while P1 requires an additional time t ∼ γ−1 to

vanish.

To facilitate our discussion of the concurrence, we first specify some notation and provide

some details of our calculations. The relevant Hilbert space of the problem is spanned by the

two qubit basis {|g1g2〉 , |e1g2〉 , |g1e2〉 , |e1e2〉}, which we will refer to as {|1〉 , |2〉 , |3〉 , |4〉}.

The density matrix consists of 16 elements. Through numerical integration of the equations

of motion using the Runge-Kutta method of order 4 together with the initial condition

ρ̂s(t = 0) = |1〉 〈1|, we find that all density matrix elements are real and 9 elements remain

zero for all time. This leads us to the simplified form of the spin flip density matrix:

ρ̃s(t) =


ρ2

4(t) + ρ1(t)ρ16(t) 0 0 ρ1ρ4

0 2ρ2
6(t) 2ρ2

6(t) 0

0 2ρ2
6(t) 2ρ2

6(t) 0

ρ1ρ4 0 0 ρ1(t)ρ16(t)

 , (10)

where ρ1(t) ≡ 〈1| ρ̂s(t) |1〉 , ρ4(t) ≡ 〈1| ρ̂s(t) |4〉 , ρ6(t) ≡ 〈2| ρ̂s(t) |2〉 , ρ16(t) ≡ 〈4| ρ̂s(t) |4〉.

Diagonalization of ρ̃s(t) yields the following eigenvalues:

λ1 = 0, λ2 = 4ρ2
6(t), (11a)

λ3 = ρ1(t)ρ16(t) +
1

2
ρ4(t)

(
ρ4(t)−

√
ρ2

4(t) + 4ρ1(t)ρ16(t)

)
, (11b)

λ4 = ρ1(t)ρ16(t) +
1

2
ρ4(t)

(
ρ4(t) +

√
ρ2

4(t) + 4ρ1(t)ρ16(t)

)
. (11c)
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FIG. 3: Time evolution of (a) populations and (b) entanglement for a system of two

identical atoms (qubits) coupled to a waveguide and driven by a two-photon wave

packet. For simplicity, we have assumed all decay rates (pure and cooperative) to be

equal. That is γ1L = γ2L = γ1R = γ2R ≡ γ. All other paramaters are the same as in

Fig. 2. In the inset of Fig. 3(a) we use the notational convention that the first (second)

slot specifies the state of the first (second) atom.

Inserting these eigenvalues into the definition of the concurrence, we obtain the required

entanglement, which is plotted in Fig. 3(b). We find that the two photon wave packet

generates entanglement between qubits while the highest value of the concurrence is 12%.

In addition, the temporal profile of entanglement shows a dip in between the two maxima.

The first maximum appears at the time when the input drive reaches its highest value, at

t = 5γ−1). The second maximum appears after a gap t = 2γ−1 when the wave packet

has died out. We can explain these results by noting that when the two photon input drive

enters the system, both atoms are excited simultaneously (we have neglected any time delays

between the qubits). The atoms then gradually form a (|00〉 + |11〉)/
√

2 Bell state and the

entanglement correspondingly increases. Later, one of the atoms loses a photon and the

system forms a (|10〉+ |01〉)/
√

2 Bell state. The gap between the peaks in the concurrence

can be interpreted as the time required for a single photon to be lost after shuttling between

the qubits. Finally, at time ∼ t = 9γ−1 the qubits becomes unentangled.

10



0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Γt

HaL

P5
H2LHtLP4

H2LHtLP3

H2LHtLP5
H1LHtLP4

H1LHtLP3

H1LHtLP5
HGLHtLP4

HGLHtLP3

HGLHtLÈWHtLÈ 2

Printed by Wolfram Mathematica Student Edition

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Γt

HbL

C5HtL
C4HtL
C3HtL
ÈWHtLÈ 2

Printed by Wolfram Mathematica Student Edition

FIG. 4: Time evolution of (a) populations and (b) average pairwise concurrences for a

system of 3, 4 and 5 qubits. All decay rates are chosen to be equal, with the remaining

parameters the same as in Fig. 3. Here we use the notation that for P
(l)
k (t) and Ck(t),

l = G, 1, 2. In addition G, 1, 2 correspond to zero, one and two excitations in the

system, while k = 3, 4, 5 is the number of qubits in the chain.

C. Multi-qubit chain and average pairwise concurrence

We now extend our study to include many-atoms in the chain. The main novelty of this

section is the departure from a bipartite to a multipartite mixed state. We note that the

entanglement quantification for multipartite mixed states is an open problem [37, 38]. Here,

we use the pairwise average concurrence as an entanglement measure [37, 39–41]. To this end,

we divide the system into all possible bipartite pairs of atoms, where the concurrence of the

ith pair is given by Ci(t) and the total concurrence C(t) is given by: C(t) = (
∑n

i=1 Ci(t))/n

where n = N/2 is the total number of qubit pairs. We note that this definition of the

concurrence has the same properties (including bounds on the highest and lowest values) as

obeyed by the concurrence of a pair of atoms.

In Fig. 4(a) we present the population dynamics. We observe that as we increase the

number of atoms in the chain, the probability that one or two atoms are excited decreases.

Moreover, the populations show a fast decay with increasing number of atoms. This ob-

servation can be attributed to the availability of more decay channels when the number of

qubits in the system increases.

The pairwise entanglement (Fig. 4(b)) also attains smaller maxima and begins to decay
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FIG. 5: Influence of small decay rate on the time evolution of (a) populations and (b)

pairwise concurrence for a 2, 3, 4 and 5 qubit system. All parameters are the same as

used in Fig. 4 except we have chosen smaller coopertaive as well as pure decay rates

i.e. γ̃iL = γ̃iR = γ̃ while γ̃ = 0.1γ. (c) Engantlement survival time ∆tc in terms of the

pulse duration time ∆tp as a function of N , plotted for both the γ̃ and γ scenarios.

quickly for an increasing number of qubits. Approximately 1/3 and 1/2 of the concurrence

remains as we increase the number of qubits from three to four and four to five. In addition,

the dip profile observed in the two qubit case also vanishes. This happens due to the

availability of more qubits in the system which can absorb a photon emitted by one of

the atoms. Thus later in time, it is possible to partially generate both type of Bell states

((|00〉+ |11〉)/
√

2 and (|10〉+ |01〉)/
√

2) in any one of the qubit pairs, which cannot happen

in the two-qubit case.

D. Small decays

We now direct our attention to the case of small decay rates, which can be obtained by

making use of reservoir engineering techniques (see for instance [42, 43]). The main goal here

is to optimize qubit decay rates so that the entanglement survival times can be increased.

To this end we set the decay rate γ̃ = γ/10. The corresponding results are presented in

Fig. 5. In Fig. 5(a) we see that the single and double excitations remain in the system for

more than double the time compared to Fig. 4. Similarly, we notice in Fig. 5(b) that the

concurrence also survives longer.

The key point learned from Fig. 5 is that using small decay rates, the entanglement

12



survival times can be increased without compromising the maximum entanglement achieved.

This point is illustrated in Fig. 5(c), where the concurrence survival time ∆tc is plotted as

a function of pulse duration ∆tp as the number of qubits in the chain is increased. We find

that for small decay rates the entanglement survives for nearly twice as long compared to

the results in Fig. 4. Finally, we point out that such a longer sustained entanglement is

necessary in performing certain quantum information processing protocols (see Refs.[44–46]

and applications mentioned therein).

E. Chirality in atom-waveguide coupling

There have been exciting recent developments in the subject of preferential atomic emis-

sion in waveguide QED systems due to spin-orbit interaction of light (chirality) [19, 20, 47,

48]. In this section we analyze the ways in which chirality can impact the entanglement.

To this end, we set the parameters γR = 5γL, γiR = γR and γiL = γL for all i. Note that

this choice of parameters lies within the recently acheieved 90% directionalities and 98%

atom-waveguide coupling strengths in photonic crystal systems [49].

As shown in Fig. 6, there is a marked effect of chirality on the populations as well as on

the entanglement dynamics of the system. In Fig. 6(a), we see that the single excitation

populations become twice as large as in the non-chiral case (compare to Fig. 4(a)) and there is

a corresponding increase in the survival time. Most interestingly, the two photon excitation

population becomes almost five times larger than in the non-chiral case, especially when

there are higher numbers of qubits in the chain. Finally, we note that in the populations

plot for the 5 qubit chain, at the time t ∼ 6γ−1
L the system is fully excited and the ground

state population vanishes. This novel feature is a pure chirality effect.

The above described enhancement in the populations also translates into higher and

longer survival of the entanglement, as shown in Fig. 6(b). We note that independent of

the number of qubits, the pairwise concurrence displays an irregular oscillatory behavior.

Moreover for the case of two qubits, the phenomenon of entanglement death and revival [50,

51] appears. Along with the longer storage of entanglement, which can also be obtained using

small decay rates, the main advantage chirality offers is the enhancement of the achievable

maximum entanglement. This point is emphasized in Fig. 6(c) where we have plotted the

maximum entanglement for the chiral and non-chiral cases. We see that for all N , under
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FIG. 6: Illustrating the effect of breaking the symmetry in the atomic emission

directions for a multi-qubit waveguide system. (a) Population and (b) entanglement

dynamics. We have chosen the parameters γ1L = γ2L = γ3L = γ4L = γ5L ≡ γL

(similarly for all γiR, for i = 2, 3, 4, 5) except γiR/γiL = 5. The remainder of the

parameters are the same as in Fig. 2. In order to emphasize the fact that chirality

enhances the maximum entanglement generated in the system, we have also plotted

the maximum concurrence (Cmax) as a function of N for both chiral and no-chiral

(γiR = γiL = 1) situations.

chiral conditions, the maximum concurrence provides an upper bound on the non-chiral

maximum concurrence, and for some N can cause the entanglement to be even twice as

large as in the non-chiral case. Note that Ballestero et al [21] have reported that chirality

can enhance the single-photon entanglement in a two-qubit waveguide system by a factor of

approximately 1.5. We, on the other hand, we have shown that using two-photon Gaussian

wavepackets leads to a twice enhancement in entanglement in two-qubit chiral waveguide

systems.

F. Detuning and Delays

We now consider the situation in which ωp (two photon wavepacket peak frequency) is

slightly detuned from ωeg. In particular, we focus on how detunning alters the on-resonance

entanglement among qubits. In Fig. 7(a) we plot our results. We notice that in all cases, de-

tuning preserves the qualitative features of the concurrence but the entanglement is slightly

reduced. Beginning with the two-atom case, we observe that detuning reduces the maxi-
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FIG. 7: (a) Effect of detuning on the entanglement evolution. All atoms in the chain

are assumed to have the same resonant frequency ωeg, which is 0.5γ detuned from ωp.

We are using the notation that CkN and CkD are the concurrence for the no-detuning

and finite detuning cases, respectively, where k = 2, 3, 4, 5. (b) Entanglement dynamics

in the presence of time delays between the atoms. Three cases are plotted, namely

d1 = L, d2 = L/8 and d3 = L/16. The remaining parameters are the same as in Fig. 2.

mum entanglement by a factor of ∼ 8%, while the dip profile is preserved. Moreover, the

difference between C2N and C2D tends to be greater for the second maximum, which causes

the concurrence to die out quickly. As we increase the number of qubits in the chain, we

note that the maximum entanglement difference becomes ∼ 17%, 10% and 6% for the 3, 4

and 5 qubit cases, respectively.

Next, we consider the effect of delays on entanglement. Although we have neglected the

time delays between the qubits originating form the input-output relations (see the Appendix

), there are still phases that appear in the atom-waveguide interaction Hamiltonian which

carry information about the atomic positions. The two-photon master equation we have

derived retains memory of the reservoir state and hence has a non-Markovian structure (see

Appendix). To this end, we have considered three cases of inter-atomic separations, keeping

in mind the already reported condition (γD ≤ vg) for Markovian dynamics to hold [52, 53].

In Fig. 7(b) we study entanglement in the presence of finite delays. In the two-qubit case, we

observe that as the separation is reduced from L/8 to L/16 the oscillatory profile survives,

but the dip is suppressed. Note that even for L/16, the dip vanishes completely and a

dark period of entanglement between t = 5.5 to 8γ−1 emerges. Around t = 8γ−1, the
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entanglement revives and after quickly reaching a maximum value it decays steadily.

In the case of N ≥ 2 qubits, the smallest separation produces an overall larger entan-

glement accompanied by dark and bright periods of entanglement. For instance, for the

N = 4 example Cmax ∼ 0.125, which is more than two times greater than the maximum

entanglement in the largest separation case (∼ 0.055). Note that in all of these plots, the en-

tanglement decay and revival patterns originate from the delays. Therefore, through proper

tuning of qubit-waveguide interaction phases, one can control the entanglement revival times

which may find applications in quantum networks based on multi-qubit waveguide QED.

IV. CONCLUSIONS

In summary, we have calculated and analyzed two-photon induced entanglement in multi-

qubit waveguide QED. Using a bi-directional Fock state master equation together with the

average pairwise concurrence as a measure of entanglement, we found that an incoming

two-photon wave packet can entangle 2 qubits up to ≈ 12% and that the entanglement

survives even after the passage of the driving wavepacket. However, the maximum pairwise

entanglement decreases and decays rapidly as the number of qubits increases. The entan-

glement survival times can be increased by a factor of two with almost the same maximum

entanglement, by using smaller decay rates γ̃ = γ/10.

The maximum value of the entanglement decreases by increasing the number of qubits.

This problem can be mitigated by making use of chiral waveguide networks. We concluded

that by choosing a five times larger decay rate in the direction of the incoming two-photon

wave packet, we can achieve up to a factor of two greater maximum entanglement compared

to the non-chiral situation.

Finally, we studied the effects of detunings and delays. We found that detuning does

not change the overall temporal profile of the entanglement, but a slight reduction in en-

tanglement does occur. In contrast, delays independent of the value of N , produce death

and revival patterns of entanglement, where the smallest inter-qubit separations support an

overall higher entanglement.
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APPENDIX: TWO PHOTON MASTER EQUATION

In this Appendix we derive the two-photon master equation that we use throughout the

paper. We begin by dividing a system of N qubits coupled to a bi-directional waveguide into

N subsystems, where each subsystem consists of a single atom (or the ith quantum system

with operators ĉi,∀i = 1, 2, 3, ..., N) and X̂i is an arbitrary operator.

We begin by deriving the dissipative dynamics of the first subsystem in the Heisenberg

picture while ĉ1 = σ̂1. The Hamiltonian of the first system interacting with two reservoirs

is given by

Ĥ = Ĥsys1 +

∫ ∞
−∞

~ω1b̂
†
R(ω1)b̂R(ω1)dω1 +

∫ ∞
−∞

~ω2b̂
†
L(ω2)b̂L(ω2)dω2 − i~

√
γ1R

2π

∫ ∞
−∞

(eik0d1 ĉ†1b̂R(ω1)

− e−ik0d1 b̂†R(ω1)ĉ1)dω1 − i~
√
γ1L

2π

∫ ∞
−∞

(e−ik0d1 ĉ†1b̂L(ω2)− eik0d1 b̂†L(ω2)ĉ1)dω2.

(A1)

Next, we transform to the Heisenberg picture, where the right-moving continuum evolves as

db̂R(ω1; t)

dt
= −iω1b̂R(ω1; t) +

√
γ1R

2π
e−ik0d1 ĉ1(t). (A2)

For some initial time t0, we obtain the solution at time t in the form

b̂R(ω1; t) = b̂R(ω1; t0)e−iω1(t−t0) +

√
γ1R

2π
e−ik0d1

∫ t

t0

c1(t
′
)e−iω1(t−t′ )dt

′
. (A3)

Similarly, for the left-moving continuum we find

b̂L(ω2; t) = b̂L(ω2; t0)e−iω2(t−t0) +

√
γ1L

2π
eik0d1

∫ t

t0

c1(t
′
)e−iω2(t−t′ )dt

′
. (A4)

Next, we introduce an arbitrary operator X̂1(t) which obeys the Heisenberg equations of

motion

dX̂1(t)

dt
=
−i
~

[X̂1(t), Ĥsys1]−
√
γ1R

2π
eik0d1

∫ ∞
−∞

[X̂1(t), c†1(t)]b̂R(ω1)dω1 +

√
γ1R

2π
e−ik0d1

∫ ∞
−∞

b̂†R(ω1)×

[X̂1(t), c1(t)]dω1 −
√
γ1L

2π
e−ik0d1

∫ ∞
−∞

[X̂1(t), c†1(t)]b̂L(ω2)dω2 +

√
γ1L

2π
eik0d1

∫ ∞
−∞

b̂†L(ω2)[X̂1(t), c1(t)]dω2.

(A5)
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After eliminating the continua in the above equation, we arrive at

dX̂1(t)

dt
=
−i
~

[X̂1(t), Ĥsys1]− [X̂1(t, ĉ†1(t)]

(
√
γ1Re

ik0d1 b̂
(1R)
in (t) +

√
γ1Le

−ik0d1 b̂
(1L)
in (t) + (

γ1R + γ1L

2
)ĉ1

)

+

(
√
γ1Re

−ik0d1 b̂
†(1R)
in (t) +

√
γ1Le

ik0d1 b̂
†(1L)
in (t) + (

γ1R + γ1L

2
)ĉ†1

)
[X̂1(t), ĉ1(t)].

(A6)

The above quantum Langevin equation [54]) describes the dissipative dynamics of the first

subsystem in the Heisenberg picture. In writing this equation we have identified two input

operators

b̂
(1R)
in (t) =

1√
2π

∫ ∞
−∞

b̂R(ω1, t0)e−iω1(t−t0)dω1, (A7a)

b̂
(1L)
in (t) =

1√
2π

∫ ∞
−∞

b̂L(ω2, t0)e−iω2(t−t0)dω2. (A7b)

The input operators obey the causality condition manifested by the commutation relation:

[b̂
(1j)
in (t), b̂

†(1j)
in (t

′
)] = δ(t − t

′
), with j = R,L. We note that corresponding to each input

operator there exists an output operator with corresponding input-output relations. For

system 1 coupled to the right- and left-moving continua, the input-output relation takes the

form

b̂
(1R)
out (t) = b̂

(1R)
in (t) +

√
γ1Re

−ik0d1 ĉ1(t), (A8a)

b̂
(1L)
out (t) = b̂

(1L)
in (t) +

√
γ1Le

ik0d1 ĉ1(t), (A8b)

we have defined the output operator as

b̂
(1R/L)
out (t) =

1√
2π

∫ ∞
−∞

b̂R/L(ω1, t1)e−iω1(t−t1)dω1, (A9)

where t1 is some future time. Following along the same lines, one can derive a quantum

Langevin equation obeyed by each member in the atomic chain. Next, we note that the

output from one subsystem feeds into the nearest subsystems as a time-delayed input. For

instance, for the case of two subsystems, we have

b̂
(2R)
in (t) = b̂

(1R)
out (t− τ) = b̂

(1R)
in (t− τ) +

√
γ1Re

−ik0d1 ĉ1(t− τ) ,

b̂
(1L)
in (t) = b̂

(2L)
out (t− τ) = b̂

(2L)
in (t− τ) +

√
γ1Re

ik0d1 ĉ2(t− τ) .

Thus, for N subsystems we arrive at the following form of the combined Langevin equations:
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FIG. 8: Bi-directional coupling among qubits caused by intra-waveguide input-output

relations, where the output from one atom serves as the input to another.

dX̂(t)

dt
=
−i
~

[X̂(t), Ĥsys]−
N∑
i=1

{
[X̂(t), ĉ†i (t)]

(
√
γiRe

ik0di b̂
(iR)
in (t) +

√
γiLe

−ik0di b̂
(iL)
in (t) + (

γiR + γiL
2

)ĉi

+
N∑

j 6=i=1

eik0(di−dj)(
√
γiRγjRδi>j ĉj(t) +

√
γiLγjLδi<j ĉj(t))

)
+

(
√
γiRe

−ik0di b̂
†(iR)
in (t) +

√
γiLe

ik0di b̂
†(iL)
in (t)

+(
γiR + γiR

2
)ĉ†i +

N∑
j 6=i=1

e−ik0(di−dj)(
√
γiRγjRδi>j ĉ

†
j(t) +

√
γiLγjLδi<j ĉ

†
j(t))

)
[X̂(t), ĉi(t)]

}
.

(A11)

Here we have neglected all intra-atom time delays under the assumption that the system

evolves on a time scale much slower than the time a photon takes to travel between the

atoms. That is ωegi, γil � 1/τ = L/c, l = R,L. Next, we transform to the Schrödinger

picture using the identity

TrS⊕R

[
dX̂(t)

dt
ρ̂(t0)

]
= TrS

[
X̂(t0)

dρ̂s(t)

dt

]
, (A12)

where ρ̂s(t) is the system reduced density matrix we are seeking. Using the cyclic property

of the trace, we finally arrive at the master equation
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dρ̂s(t)

dt
= − i

~

[
Ĥsys, ρ̂s(t)

]
−

N∑
i=1

(
γiR + γiL

2
)(ĉ†i ĉiρ̂s(t)− 2ĉiρ̂s(t)ĉ

†
i + ρ̂s(t)ĉ

†
i ĉi)−

N∑
i 6=j=1

(
√
γiRγjRδi>j +

√
γiLγjLδi<j)(e

−ik0(di−dj)(ĉ†i ĉj ρ̂s(t)− ĉiρ̂s(t)ĉ
†
j)− eik0(di−dj)(ĉj ρ̂s(t)ĉ

†
i − ρ̂s(t)ĉ

†
j ĉi))

− TrS⊕R

[
N∑
i=1

(
√
γiR(eik0di [X̂(t), ĉ†i (t)]b̂

(1R)
in (t)ρ̂(t0)− e−ik0di b̂†(1R)(t)

in [X̂(t), ĉi(t)]ρ̂(t0))−

√
γiL(e−ik0di [X̂(t), ĉ†i (t)]b̂

(NL)
in (t)ρ̂(t0)− eik0di b̂†(NL)(t)

in [X̂(t), ĉi(t)]ρ̂(t0))

)]
.

(A13)

We now focus our attention to the input terms. First, we notice a considerable simplifi-

cation, namely that the left moving continuum is initialy in a vacuum state. As a result, all

terms involving the b̂
(NL)
in (t) operator vanish:

TrS⊕R

[
[X̂(t), ĉ†i (t)]b̂

(NL)
in (t)ρ̂(t0)

]
= TrS⊕R

[
[X̂(t), ĉ†i (t)]ρ̂s(t0)⊗ ρ̂R1(t0)⊗ b̂(NL)

in (t) |vac〉 〈vac|

]
= 0,

(A14)

where we have taken the initial system-environment state to be factorizable. Next, we focus

on the right-moving continuum input terms; these do not vanish due to the presence of

two-photons in the initial state of this reservoir:

b̂
(1R)
in (t)

∣∣∣2ω1ω
′
1

〉
= 2

∫ ∞
0

gR(ω1, t)b̂
†
1(ω1) |vac〉 dω1, (A15)

where

gR(ω1, t) =
1√
2π

∫
g(ω1, ω

′

1)e−iω
′
1(t−t0)dω

′

1. (A16)

Note that the action of the input operator causes the reservoir state to collapse to a single

photon state, but that the resultant state is still time dependent, due to the presence of

g1(ω1, t)). The function g1(ω1, t) introduces a memory effect in the reservoir which gives a

non-Markovian structure to the final master equations. Finally, we note that for a sym-

metrized and factorized two-photon spectral envelope we obtain

√
γiRTrS⊕R

[
[X̂(t), ĉ†i (t)]b̂

(1R)
in (t)ρ̂(t0)

]
= Ω(t)TrS

[
X̂(t0)[ĉ†i , ρ̂12(t)]

]
, (A17)

20



where Ω(t) ≡
√

2γiRg(t). Using this result in the above master equation and replacing ĉi with

the atomic lowering operator σ̂i, we c obtain the required two-photon bi-directional Fock

state master equation for ρ̂s(t). The master equations obeyed by the remaining operators

ρ̂ij can also be derived analogously, by using the identity

TrS⊕R

[
dX̂(t)

dt
ρ̂ij(t0)

]
= TrS

[
X̂(t0)

dρ̂ij(t)

dt

]
. (A18)
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H. El-Ella, E. H. Lee, J. D. Song, et al., “Deterministic photon–emitter coupling in chiral

photonic circuits,” Nature nanotechnology, vol. 10, no. 9, pp. 775–778, 2015.

[50] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and

sudden birth of entanglement in common structured reservoirs,” Physical Review A, vol. 79,

no. 4, p. 042302, 2009.

[51] J.-S. Xu, C.-F. Li, M. Gong, X.-B. Zou, C.-H. Shi, G. Chen, and G.-C. Guo, “Experimental

demonstration of photonic entanglement collapse and revival,” Physical review letters, vol. 104,

no. 10, p. 100502, 2010.

[52] Y.-L. L. Fang, H. U. Baranger, et al., “Waveguide qed: Power spectra and correlations of two

photons scattered off multiple distant qubits and a mirror,” Physical Review A, vol. 91, no. 5,

p. 053845, 2015.

[53] T. Tufarelli, M. Kim, and F. Ciccarello, “Non-markovianity of a quantum emitter in front of

a mirror,” Physical Review A, vol. 90, no. 1, p. 012113, 2014.

[54] C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian

quantum stochastic methods with applications to quantum optics, vol. 56. Springer Science &

Business Media, 2004.

25


	 Two-photon entanglement in multi-qubit bi-directional waveguide QED
	Abstract
	Introduction
	Theoretical description
	Setup
	Dissipative dynamics and Master equation

	Results and Discussion
	One atom system
	Two atom chain and entanglement generation
	Multi-qubit chain and average pairwise concurrence
	Small decays
	Chirality in atom-waveguide coupling
	Detuning and Delays

	Conclusions
	Acknowledgments
	Appendix: Two photon master equation
	References


