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An uncertainty relation is introduced for a symmetric arrangement of three mutually unbiased
bases in continuous variable phase space, and then used to derive a bipartite entanglement criterion
based on the variance of global operators composed of these three phase space variables. We test this
criterion using spatial variables of photon pairs, and show that the entangled photons are correlated
in three pairs of bases.

I. INTRODUCTION

Entanglement detection in bipartite continuous-
variable (CV) systems has typically been achieved using
one out of several entanglement criteria involving mea-
surement of two canonically conjugated variables, such as
position and momentum. These criteria are usually cast
in terms of the variance [1, 2], covariance matrix [3], mo-
ments matrix [4, 5] or entropy [6, 7] of global variables,
defined as linear combinations of the local variables.

In principle, bipartite separable quantum states can
be perfectly correlated in one basis. However, this per-
fect correlation implies that there is no correlation in
the conjugate basis. Entangled quantum states, on the
other hand, can be well correlated in both global position
and global momentum variables. The seminal example is
the Einstein-Podolsky-Rosen (EPR) state, which as origi-
nally proposed is a simultaneous eigenstate of the relative
position (x1 − x2) and total momentum (p1 + p2) [8].

Of course it is possible to investigate quantum corre-
lations in variables other than position and momentum.
For example, using dimensionless x and p, one can con-
sider rotated (dimensionless) operators of the form

qθ = cos θx + sin θp. (1)

Using superscripts 1 and 2 to refer to the two parts
of the bipartite system, it is well known that the EPR
state is an eigenstate of the relative coordinate q1θ1 − q2θ2
when θ1 + θ2 is an integer multiple of 2π, and an eigen-
state of the sum coordinate q1θ1 + q2θ2 when θ1 + θ2 is an
odd multiple of π. In the context of transverse spatial
correlations of photon pairs, this type of correlation was
demonstrated experimentally in Refs. [9, 10], where the

variances of canonically conjugate q
j
θj

and q
j
θ′

j
were cho-

sen such that θj − θ′j ≡ ±π/2 (mod 2π). However, as
will be discussed in the next section, for entanglement
detection it is not necessary to perform measurements
satisfying this restriction.

The sets of eigenstates corresponding to canonically
conjugate variables are examples of mutually unbiased

bases (MUBs) [11]. This means that, if a quantum sys-
tem is an eigenstate of the observable–say–x, then the
probability distribution of the state with respect to the
conjugate observable p is uniform. In other words, the
precise knowledge of the state in one basis corresponds
to complete ignorance in the conjugate basis. Indeed, as
we discuss in more detail below, any two CV operators
qθ and qθ′ of the form given in Eq. (1), with θ′ 6≡ θ
(mod π) define a pair of MUBs. This fact has been im-
plicitly used in CV measurement-based quantum compu-
tation [12–14]. Though it may have been known for some
time that any pair of bases composed of the eigenstates
of non-parallel (or non-antiparallel) phase space opera-
tors are MUBs, to our knowledge Weigert and Wilkinson
[15] were the first to show that one can define up to three
MUBs in the phase space of one CV bosonic mode.

In this work we study the use of a symmetric MUB
triple for the investigation of quantum entanglement. We
derive the relevant uncertainty relations for these vari-
ables and simple entanglement criteria based on the pos-
itive partial transpose (PPT) criterion [3, 16, 17], and use
it to identify entanglement experimentally between two
spatially entangled photons produced by Spontaneous
Parametric Down Conversion (SPDC).

II. MUTUALLY UNBIASED PHASE SPACE

TRIPLE

Two bases {|e〉} and {|f〉} are mutually unbiased if all
of their eigenstates have the same overlap |〈e|f〉|. Posi-
tion and momentum eigenstates are related via a Fourier
transform, and consequently they satisfy |〈x|p〉| = 1/

√
2π

(we set ~ = 1). The position and momentum operators x
and p satisfy the well-known Heisenberg-Robertson un-
certainty relations [18]

1

2
[(∆x)2 + (∆p)2] ≥ ∆x∆p ≥ 1

2
|[x, p]| =

1

2
. (2)

Consider now two operators q and q′ given by Eq.
(1). These operators are related via a rotation in phase



2

FIG. 1: Three phase space variables x, r and s defining
a mutually unbiased triple. Each variable is rotated

120◦ from the other two.

space, which is equivalent to a fractional Fourier trans-
form (FRFT) [19, 20]. Let us define θd = θ′ − θ. Then
we have

qθ′ = F
†
θd
qθFθd , (3)

where Fθd is the FRFT operator. Moreover, it is straight-
forward to show that

∆qθ′∆qθ ≥ 1

2
|[qθ′ , qθ]| =

1

2
|i sin θd|. (4)

The scalar product between eigenstates gives the kernel
to the FRFT [19],

〈qθ′ |qθ〉 =

√

ieiθd

2π| sin θd|
exp

[

i
cot θd

2
(q2θ + q2θ′) − i

qθqθ′

sin θd

]

.

(5)
One sees immediately that |〈qθ′ |qθ〉| = (2π| sin(θ′ −

θ)|)−1/2, which does not depend on qθ nor qθ′ , indicating
that these two bases are mutually unbiased when sin(θ′−
θ) 6= 0 [35].

Recently, Weigert and Wilkinson [15] have shown that
one can define three mutually unbiased bases in the phase
space of one bosonic mode. For example, consider the
dimensionless operators x, r, and s corresponding to the
phase space variables illustrated in Fig. 1. Explicitly,

r = cos
2π

3
x + sin

2π

3
p, (6)

and

s = cos
4π

3
x + sin

4π

3
p. (7)

These operators define a set of MUBs, since their eigen-
states satisfy

|〈x |r〉| = |〈x |s〉| = |〈r |s〉| =
1

√

2π sin 2π
3

=
1

√

π
√

3
. (8)

Using Eqs. (6) and (7) and (4), these operators satisfy
the uncertainty relations

∆x∆r ≥ 1

2
|[x, r]| =

1

2

∣

∣

∣

∣

i sin
2π

3

∣

∣

∣

∣

=

√
3

4
, (9a)

∆x∆s ≥ 1

2
|[x, s]| =

1

2

∣

∣

∣

∣

i sin
4π

3

∣

∣

∣

∣

=

√
3

4
, (9b)

and

∆r∆s ≥ 1

2
|[r, s]| =

1

2

∣

∣

∣

∣

i sin
2π

3

∣

∣

∣

∣

=

√
3

4
. (9c)

We note that, up to a rotation of the entire phase-
space, x, r and s constitute the only possible normalized
set of three MUBs. Nevertheless, if we allow for individ-
ual scaling of the variables, there are other sets of three
variables that satisfy the condition of MUBs [15]. Here
we focus on the operators defined in Eqs. (6) and (7),
since they can be obtained by simple rotations in phase
space, which can be achieved experimentally with rela-
tive ease in a number of systems [9, 10, 21, 22].

A. Uncertainty relations for the symmetric phase

space triple

A number of uncertainty relations can be derived for
the variables shown in Fig. 1 a). Some of these follow
trivially from the usual uncertainty relations for pairs of
operators (9). For example, taking the product of all
three pairwise URs (9) gives

(∆x)2(∆r)2(∆s)2 ≥ 3
√

3

64
≈ 0.08, (10)

which does not appear to be tight, since for the vacuum
state the triple product above is 1/8 = 0.125.

A tight uncertainty relation for three phase-space vari-
ables was recently demonstrated by Kechrimparis and
Weigert [23, 24]. In that work, they use the asymmet-
ric phase-space triple x, p and q = −x − p, which is
equivalent to the one we use here through a symplectic
transformation and scaling. While a tight triple product
relation for (∆x)2(∆r)2(∆s)2 could be obtained directly
from the result in Ref. [23], it is illustrative to present
the alternative derivation that follows.

First, let us use Eqs. (6) and (7) and the definition of
variance to write

(∆r)2 =
1

4
(∆x)2+

3

4
(∆p)2−

√
3

4
〈{x, p}〉+

√
3

2
〈x〉〈p〉, (11)

and

(∆s)2 =
1

4
(∆x)2 +

3

4
(∆p)2 +

√
3

4
〈{x, p}〉 −

√
3

2
〈x〉〈p〉,

(12)
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which multiplied together give

(∆r)2(∆s)2 =
1

16
[(∆x)2 + 3(∆p)2]2−

3

16
(〈{x, p}〉 − 2〈x〉〈p〉)2 . (13)

The Schrödinger-Robertson UR for operators x and p,
which is a state-dependent generalization of (2), reads
[18]

(∆x)2(∆p)2 ≥ 1

4
+

1

4
(〈{x, p}〉 − 2〈x〉〈p〉)2 . (14)

which can be rewritten in the form

− (〈{x, p}〉 − 2〈x〉〈p〉)2 ≥ 1 − 4(∆x)2(∆p)2. (15)

Using this expression in Eq. (13), and performing some
algebra, we have

(∆r)2(∆s)2 ≥ 3 + ((∆x)2 − 3(∆p)2)2

16
, (16)

which means the triple product of the variances is then

(∆x)2(∆r)2(∆s)2 ≥ (∆x)2
3 + [(∆x)2 − 3(∆p)2]2

16
. (17)

Optimizing the right-hand side over all positive values
of the x and p variances respecting the Heisenberg UR
(∆x)2(∆p)2 ≥ 1/4 gives (see Appendix A)

(∆x)2(∆r)2(∆s)2 ≥ 1

8
. (18)

Contrary to the usual Heisenberg uncertainty relation,
which can also be saturated by Gaussian squeezed states,
inequality (18) is saturated exclusively by the set of co-
herent states, as we show in Appendix A.

III. ENTANGLEMENT CRITERION WITH

TRIPLES

Quantum mechanical uncertainty relations combined
with the positive partial transpose argument [16, 17] can
be used to derive entanglement criteria [3, 6, 25]. Let us
define the global phase space operators

X± = x1 ± x2, (19a)

R± = r1 ± r2, (19b)

and

S± = s1 ± s2. (19c)

Note that we can also write

R± = cos
2π

3
X± + sin

2π

3
P±, (20)

and

S± = cos
4π

3
X± + sin

4π

3
P±, (21)

where P± = p1 ± p2, and we note that [X±,P±] = 2i and
[X±,P∓] = 0. Following the derivations in section II A, it
is straightforward to show that the global operators (19)
satisfy the uncertainty relation

(∆X±)2(∆R±)2(∆S±)2 ≥ 1, (22)

where either the top row of all plus signs or the bot-
tom row of all minus signs is considered. These URs can
be used to develop entanglement criteria following argu-
ments previously given in Refs. [6, 7, 25–27].

Naturally, any bipartite state ρ12 satisfies either of the
uncertainty relations (22). Now suppose its partial trans-

pose with respect to–say–system two, ρT2

12 , is positive. In

this case we can say for sure that ρT2

12 is a bonafide quan-
tum state and also satisfies the uncertainty relations (22).
Following this argument, the PPT criterion establishes
that if a bipartite state ρ12 has a negative partial trans-
pose, then it cannot be separable and must be entangled
[16, 17]. For continuous variables, Simon has shown that
the partial transpose is equivalent to a mirror reflection,
transforming the phase space variable p2 −→ −p2 and
leaving all others unchanged [3]. This means taking the
global variable P∓ −→ P±.

Let us now define two new global operators

U± = cos
2π

3
X± + sin

2π

3
P∓ = r1 ± s2 (23)

and

V± = cos
4π

3
X± + sin

4π

3
P∓ = s1 ± r2. (24)

The standard deviations (square roots of variances)
of operators X±, U± and V± for the original state can
be related to the standard deviations of variables X±,
R± and S± on the transposed state as ∆X±,T = ∆X±,
∆R±,T = ∆U±, ∆S±,T = ∆V±, where again T stands
for partial transposition. Thus, using the UR (22), any
separable state ρ12 will satisfy the inequalities

(∆X±)2(∆U±)2(∆V±)2 ≥ 1. (25)

A state that violates either of the inequalities (25) has
a negative partial transpose and is thus entangled. More-
over, the operators Xj , Uj and Vj (j = + or −) commute.
This means they share a common eigenstate, namely, the
EPR state [8], for which all of the variances are zero.

Let us now give a real world example of a quantum
state that violates criteria (25). Under appropriate con-
ditions, the spatial variables of photon pairs produced
from SPDC are well described by the double Gaussian
wave function [28–30]

Ψ(x1, x2) = A exp

(

− (x1 + x2)2

4σ2
+

)

exp

(

− (x1 − x2)2

4σ2
−

)

,

(26)
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FIG. 2: Experimental setup. Twin photons produced
by the process of SPDC are subjected to rotations of
π/3 (depicted by a single pink lens) and of π (depicted
by a pair of yellow lenses). The SLMs are spatial light
modulators used to automatically scan a slit across the
transverse distribution of the down-converted photons.

where A = 1/
√
πσ+σ− and the variables x refer to

the transverse position variables at the exit face of the
nonlinear crystal. Here we consider the simple case of
one spatial dimension. This state is entangled when
σ− 6= σ+. The SPDC state (26) is analogous to the
two-mode squeezed state when σ− = 1/σ+. Though the
EPR state mentioned above is unphysical, it is a limiting
case of the two-mode squeezed state in the case of infinite
squeezing, when σ− −→ 0.

Under usual experimental conditions, we have σ− <<
σ+ and the two-photon state shows position correlation
at the exit face of the crystal. Using lenses or free-
propagation, it is possible to observe correlations in other
phase space variables. For example, an optical Fourier
transform system allows one to observe the momentum
anti-correlations of this state [31]. Using other optical
systems, correlations in other (rotated) variables can be
observed. It has been shown [9, 10] that entangled states
of the form (26) with σ− < σ+ display position correla-
tions when the sum of the phase-space rotation angles θ1
and θ2, with respect to x1 and x2, respectively, is an even
multiple of π, and anti-correlation when the sum is an
odd multiple of π. From the definitions (6) and (7), the
r variables are given by a rotation of 2π/3 and the s vari-
ables by a rotation of 4π/3. Noting that U± = r1±s2 and
V± = s1 ± r2, we can see that θ1 + θ2 = 2π in both cases.
Since x1 and x2 are also correlated, with θ1 + θ2 = 0,
the state (26) should show correlations in all three sets
of variables, leading to a violation of the entanglement
criteria (25).

IV. EXPERIMENT AND RESULTS

To test the entanglement criteria derived, we observed
the transverse spatial variables of twin photons gener-
ated by the process of SPDC [29]. A 2-mm thick beta-
barium borate (BBO) crystal cut for type-I phase match-
ing SPDC was pumped by a continuous-wave 325-nm He-
Cd laser beam, producing collinear frequency degenerate
converted beams at a wavelength of 650 nm. The two
down-converted beams were separated at a 50/50 beam
splitter and each directed by mirrors and lenses to Holo-
eye Pluto phase-only spatial light modulators (SLM),
which were used to perform position correlation measure-
ments by scanning a phase slit in the transverse profile
of the beams, as described in Ref. [32].

Both beams were scanned in the horizontal direction of
the transverse detection planes over a region of interest
of 12 mm. Using slits of 80 µm (equivalent to 10 pixels of
our SLM), this procedure totalled 150×150 = 22500 data
points per measurement. Each data point was sampled
for 3 s, leading to the estimated joint detection proba-
bilities. After reflection by the SLMs, the beams were
sent through 10-nm FWHM interference filters centered
at 650 nm, and were then coupled into multi-mode op-
tical fibers connected to single-photon avalanche diodes
(SPAD).

Non-confocal lenses were used in an optical fractional
Fourier transform arrangement [9, 10, 19, 33, 34] to
achieve the phase-space rotations described in section
II. As can be seen in the sketch of our experimental
setup displayed in Fig. 2, between the BBO crystal and
the beam splitter either two 100-mm confocal lenses were
used to achieve a phase-space rotation of π, or a single
400-mm lens was used to perform a π/3 rotation. After
the beam splitter, similar sets of lenses were used in or-
der to achieve 2π, 2π/3 or 4π/3 in each converted beam,
depending on the lenses chosen.

In order to interpret the lens systems used as frac-
tional Fourier transforms and therefore as rotations in
phase space, dimensionless variables must be used. These
variables are achieved through the scaling factor d =
√

f sin(θ)/k, where f is the focal length of the lens, θ is
the phase-space rotation angle and k is the wavenumber
of the down-converted beams [20]. Choosing θ = π/3, we
were able to use the same scaling factor for both the π/3
and the π rotations. In this experiment, this corresponds
to d = 189µm.

The measurement results can be seen in Fig. 3. On
the top row the reconstructed joint distributions of the
dimensionless variables are shown, from which one can
clearly see the intensity correlations in all three pairs of
spatial variables. We note that the usual momentum
anti-correlations are never observed, though they play a
crucial role in the r1, s2 and s1, r2 correlations, as can be
seen in Eqs. (23) and (24). The blue points in the plots
on the bottom row are the marginal distributions of the
relevant global variables. The error bars correspond to
error due to Poissonian count statistics, which attributes
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FIG. 3: Measurement results. On the top row we can see the reconstructed joint distributions of the dimensionless
variables as obtained experimentally, and on the bottom row are their marginal distributions. The curves shown

correspond to Gaussian best fits. The error bars correspond to the square root of the photon counts, due to the fact
that the photon-count distribution is Poissonian.

W (∆W−)
2 (∆W+)

2 CW

X 0.74 ± 0.02 321± 29 21± 2

U 0.2455 ± 0.0006 554± 69 55± 3

V 0.225 ± 0.001 598± 66 52± 3

TABLE I: Variances of global variables W±

(W = X,U, V ) obtained from gaussian fits of marginal
distributions of coincidence plots shown in Fig. 3. The
last column is the correlation coefficient, defined in the

text.

a standard deviation equal to the square root of the count
rate. The red curves correspond to Gaussian best fits
of the marginal distributions, from which we are able to
obtain the variances that are shown in the second column
of Table I.

With these results, inequality (25) is

(∆X−)2(∆U−)2(∆V−)2 = (0.041 ± 0.001) � 1, (27)

showing that the correlations in the state are sufficient
to violate the inequality. As can been seen in the table,
the variance (∆X−)2 is larger than the other two. This
is to be expected, as one can see from inspection of Eqs.
(23) and (24) that the variances in the rotated global
variables in fact depend on both the variance in the posi-
tion as well as the momentum. Indeed, since our state is
not symmetric, meaning σ− 6= 1/σ+ in the wavefunction
(26), we do not expect (∆X−)2 to be equal to (∆U−)2

nor (∆V−)2.
However, we should see the same amount of correla-

tion in each set of measurements, as we will now explain.

Following [30], let us define a correlation coefficient CW

(W = X,U, V ) as CW = ∆W+/∆W−. Using the double
Gaussian wavefunction in Eq. (26), together with the
variances defined in Eqs. (23) and (24), and performing
a little algebra we find

CU = CV =

√

σ2
+ + 3/σ2

−

σ2
− + 3/σ2

+

=
σ+

σ−

, (28)

which is exactly the correlation ratio CX = ∆X+/∆X−.
The value σ+/σ− is related to the Schmidt coefficient of
the two-photon state, and thus to the amount of entangle-
ment. The values of the variances in the sum coordinates
(∆W+)2, as well as the correlation coefficients are shown
in Table I. One can see from the table that we observe
less correlation in the position (x1, x2) measurements, by
roughly a factor of 2.5 compared to the measurements in
the other planes. This is clearly observable in the coin-
cidence plots of Fig. 3. The reduced correlation in the
position measurements is in most part due to two fac-
tors. First, there is extra noise that appears (see Fig. 3)
in the near-field measurements, owing to fluorescence of
the laser beam on the dichroic filter, which is then im-
aged onto the detection planes. The rotated variables do
not suffer from this noise as drastically, which is an ad-
vantage to not working in the image plane of the source
[9]. Second, the near-field correlations are governed by a
non-Gaussian function that is not separable in the x1−x2

and y1 − y2 coordinates [29]. Ignoring the y component
essentially causes mixing of the state describing the corre-
lations in the x1−x2 direction, which leads to broadening
of the corresponding probability distribution. This fact
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is ignored by the double-gaussian approximation that we
have used. The other measurements do not reveal this
mixing as much since they are also dependent on the
far-field correlations, which are governed by the Gaus-
sian profile of the pump beam, and are thus separable
in the x and y directions. Experimentally characterizing
this non-separability of our source is a subject for future
work.

V. CONCLUSION

We have derived uncertainty relations and entangle-
ment criteria for continuous variables using three mutu-
ally unbiased bases. By measuring the spatial correla-
tions between photon pairs generated by SPDC we were
able to show that the photons were correlated in three
pairs of variables, and that these correlations lead to vi-
olation of a separability criterion. Considering entangle-
ment detection in three mutually unbiased bases could
be interesting for quantum key distribution, and might
improve the sensitivity to an eavesdropper.
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Appendix A: Derivation of Eq. 18

Let us introduce the shorthand notation: η = (∆x)
2

and ξ = (∆p)
2
. According to (17), we aim to find a

minimum of the function

g (η, ξ) =
η

16

[

3 + (η − 3ξ)2
]

, (A1)

given the inequality constraint ηξ ≥ 1/4 coming from the
Heisenberg Uncertainty Relation (HUR). The function
g(η, ξ) is sketched in Fig. 4.

FIG. 4: The function g(η, ξ) in the domain ηξ ≥ 1/4
(red surface), and the lower bound 1/8 (green plane).
We can see that the function g reaches its lowest value

1/8 at the point (0.5, 0.5).

Consider first the sharp-inequality case ηξ > 1/4. We
can calculate the derivatives

∂g

∂η
=

3

16

(

1 + η2 − 4ηξ + 3ξ2
)

, (A2)

∂g

∂ξ
=

3η

8
(3ξ − η) , (A3)

and easily see that the system of equations

∂g

∂η
= 0,

∂g

∂ξ
= 0, (A4)

has no solutions.
In the second case, when the HUR is saturated, the

function to be minimized becomes

gsat (η) ≡ g (η, 1/4η) =
η

16

[

3 +

(

η − 3

4η

)2
]

. (A5)

We find

dgsat
dη

=
3

256

(

16η2 − 3

η2
+ 8

)

, (A6)

and this derivative is equal to 0 when η = ±1/2 or η =

±i
√

3/2. Since the parameter η is real and non-negative,
we are left with the single solution η = 1/2. This solution
corresponds to the Gaussian coherent state as in this case
also ξ = 1/2. Obviously g (1/2, 1/2) = 1/8. Finally, we
check that the second derivative

d2gsat
dη2

=
9

128η3
+

3η

8
, (A7)

is always positive, so the solution is a true minimum.
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One might imagine some non-gaussian state with ap-
propriate symmetry, or gaussian squeezed state that sat-
urates the triple product UR. However, the solution
above dictates explicitly that (∆x)2 = (∆p)2 = 1/2,
which is only attainable by the vacuum state and by dis-
placed vacuum states–the set of coherent states. In other

words, there are no non-gaussian states that saturate the
triple product UR. Moreover, it is impossible to apply a
squeezing operation such that the variances in both the
x and p (or any perpendicular directions) remain equal
to 1/2.
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