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Abstract

We study the generation of transient entanglement induced by a single-photon Gaussian

wavepacket in multi-atom bi-directional waveguide QED. In particular, we investigate the effect

of increasing the number of atoms on the average pairwise entanglement. We demonstrate by

selecting smaller decay rates and in chiral waveguide settings, that both entanglement survival

times and maximum generated entanglement can be increased by at least a factor of ∼ 3/2, inde-

pendent of the number of atoms. In addition, we analyze the influence of detuning and delays on

the robustness of the generated entanglement. There are potential applications of our results in

entanglement based multi-qubit quantum networks.
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I. INTRODUCTION

Quantum circuits are envisioned to play an indispensable role in the physical implemen-

tation of quantum computers [1]. In optical quantum computing and in several quantum

information processing protocols, controlled light-matter interactions are an essential re-

quirement [2, 3]. Two principal setups have been proposed to achieve such interactions:

cavity QED and waveguide QED systems. In cavity QED [4], matter in the form of qubits

interacts with one or a few discrete optical modes confined within an optical resonator. At

the same time, atoms can strongly couple with cavity modes thereby producing well-known

phenomena such as Rabi oscillations [5]. In contrast, in waveguide QED [6, 7], qubits interact

with flying photons which propagate through infinitely many waveguide modes. Such con-

figurations may serve as longer input-output quantum networks. In both types of systems,

atom-light interactions can generate qubit-qubit and qubit-photon entanglement, which is

a necessary resource for performing many key tasks in quantum information processing and

quantum computing.

Waveguide based structures are proving to be excellent platforms for quantum circuits.

Some appealing examples in this regard are: plasmonic waveguides [8], photonic crystals

[9, 10], superconducting circuits [11] and optical lattices [12]. In previous waveguide QED

studies, two qubit entanglement generation has been analyzed when either an input co-

herent field or a single photon (produced through an excited qubit) serve as a qubit-qubit

entanglement agent [13–15]. We note that in the context of cavity QED systems, single-

photon input-output based stationary entanglement generation schemes have also been pro-

posed [16, 17]. However, an actual quantum network will in general require multiple qubits,

wherein flying photons will serve as information carriers. In this setting, qubits become

entangled at specified nodes in the network.

Motivated by the above considerations, in this paper we study the impact of increasing

the number of atoms on single-photon multi-qubit entanglement in bi-directional waveguide

QED structures. Note that in order to establish stationary entanglement among qubits

(which is more useful for multi-qubit entanglement based quantum networks), one can em-

ploy so-called driven dissipative methods, in which photon decay is correctly balanced with

the aid of an input coherent drive. See references [18] and [19] for the application of these

methods in waveguide QED and cavity QED systems, respectively. In contrast, in this work
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we investigate how (without a constant coherent drive) flying qubits can transiently entangle

waveguide coupled stationary qubits and how such transient entanglement can be stored for

prolonged times. The theoretical model we consider is relevant to recent developments in

the subject of photonic interactions with a one-dimensional qubit array, mainly in circuit

QED and photonic crystal waveguide systems [9, 20, 21]. We focus specifically on the ques-

tion of how system parameters can be engineered to control waveguide mediated qubit-qubit

entanglement. As opposed to choosing a fixed atom as a single photon source [14], here we

consider the situation in which a single photon Gaussian wavepacket serves both as an input

drive and an entanglement generator. To this end, we derive and then utilize a single-photon

bi-directional Fock state master equation.

The three main approaches used in waveguide QED to study scattering of photons and

entanglement are: the real space formalism [22], the input-output formalism [23, 24] and

other master equation approaches [14, 25]. The main novelty of using the Fock state master

equation relies on the fact that it captures both the qubit dynamics and keeps track of

the state of the reservoirs at the same time, due to its non-markovian structure. Using

this approach, we first study the effect of increasing the number of atoms on the pairwise

concurrence. We find that the entanglement survival time markedly decreases. We also find

that the maximum concurrence decreases by a factor of ∼ 1/20 as the number of atoms

increases from two to five. However, we demonstrate that small decay rate and chirality can

resolve these issues. In addition, we introduce a finite detuning between the peak frequency

of the incoming single-photon wavepacket and the atomic transition frequency. We notice

that in comparison to the on resonance case, detuning does not affect the overall temporal

profile of the entanglement, but the maximum concurrence is reduced. Furthermore, when

inter-atomic delays are incorporated, we observe independent of N , that smaller delays

support an overall larger pairwise concurrence. Moreover, characteristic patterns of death

and revival of entanglement appear.

The remainder of this paper is organized as follows. In Sec. II we introduce the details of

the system and its dissipative dynamics. In Sec. III we report our results. Finally, in Sec. IV

we close by summarizing our conclusions. In the Appendix, we outline the derivation of the

bi-directional master equation that is our main tool in this work.

3



FIG. 1: Illustrating a single-photon wavepacket driving a system of N two-level atoms

side coupled to a waveguide. Any two consecutive atoms are separated by the distance

L (or time delay τ = L/vg, vg = c being the group velocity of a single photon in the

waveguide). Two-mode waveguide continua serve as channels for the wavepacket to

propagate through. The atom-waveguide coupling causes atoms to be excited, but also

generates qubit-qubit entanglement. The quantity Γi is the emission rate of the ith

atom into the free space channel; such decays are ignored in the present analysis.

Consequently, the coupling fraction parameter [14] βi = (γiL + γiR)/(γiL + γiR + Γi)

has been set equal to unity throughout this paper.

II. THEORETICAL DESCRIPTION

A. Setup

The system under consideration consists of a chain of two-level emitters (atoms, quantum

dots, artificial atoms, or Nitrogen vacancy centers in diamond [26–29]) side coupled to a

dispersionless and lossless waveguide. See Fig. 1. The frequency of the ground state |gi〉 and

excited state |ei〉 of the ith atom in the chain is denoted by ωgi and ωei , for i = 1, . . . , N .

The process of de-excitation of the ith atom is described by the atomic lowering operator

σ̂i = |gi〉 〈ei|. All atoms are coupled to a common waveguide which has two continua of

modes: a left moving continuum and a right moving continuum. Destruction of a single

photon in the left (right) moving continuum is described by the annihilation operator b̂L(ω2)

(b̂R(ω2)). The waveguide continua are treated as two reservoirs or baths. We will assume

that initially the right moving reservoir is in a single-photon pure state |ΨR1〉, while the left

moving reservoir is in the vacuum state, with |ΨR2〉 = |vac〉. The explicit form of |ΨR1〉 is
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given by

|ΨR1〉 =

∫ ∞
0

g(ω1)b̂†R(ω1) |vac〉 dω1 , (1)

where g(ω1) represents the spectral profile of the single-photon wavepacket. Note that the

normalization condition on |ΨR1〉 requires that
∫∞

0
|g(ω1)|2dω1 = 1. The non-vanishing

commutation relations among operators describing the system are given by

[b̂R(ω1), b̂R(ω
′

1)] = δ(ω1 − ω
′

1) ,

[b̂L(ω2), b̂L(ω
′

2)] = δ(ω2 − ω
′

2) ,

[σ̂†i , σ̂j] = σ̂ziδij ,

(2)

where σ̂zi = |ei〉 〈ei| − |gi〉 〈gi|.

B. Dissipative dynamics and bi-directional Fock state master equation

The system shown in Fig. 1 is an open quantum system due to the interaction of the atoms

with the waveguide continua. However, the dissipative dynamics of the system cannot be

described by traditional Born-Markov master equations (Lehmberg type) [30, 31]. This

follows from the fact that once a single photon is absorbed by one of the atoms in the chain,

the state of the right moving reservoir changes, which may introduce non-Markovian effects.

In view of this observation, we re-derive the single-photon Fock state master equation, which

describes the bi-directional coupling between atoms, accounting for decoherence effects. The

derivation is outlined in the Appendix A. We thus obtain the following master equation for

the evolution of the system density operator ρ̂s:

dρ̂s(t)

dt
= L̂cs[ρ̂s(t)] + L̂pd[ρ̂s(t)] + L̂cd[ρ̂s(t)]

+
N∑
i=1

√
2γiR

(
eik0dig(t)[ρ̂01(t), σ̂†i ] + e−ik0dig∗(t)[σ̂i, ρ̂10(t)]

) (3)

Here for any density operator %̂(t), the action of the aforementioned Liouvillian super oper-

ators is given by:

L̂cs[%̂(t)] = − i
~

[Ĥsys, %̂(t)], Ĥsys = ~
N∑
i=1

∆iσ̂
†
i σ̂i ,

L̂pd[%̂(t)] = −
N∑
i=1

γiRL(σ̂†i σ̂i%̂(t)− 2σ̂i%̂(t)σ̂†i + %̂(t)σ̂†i σ̂i) ,
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L̂cd[%̂(t)] = −
N∑

i6=j=1

(
√
γiRγjRδi>j +

√
γiLγjLδi<j)

×{(σ̂†j σ̂i%̂(t)− σ̂i%̂(t)σ̂†j)e
−2πiD(i−j) − (σ̂j %̂(t)σ̂†i

− %̂(t)σ̂†i σ̂j)e
2πiD(i−j)} ,

where g(t) is the temporal profile of the wavepacket obtained by Fourier transformation of

g(ω1) and ∆i = ωegi − ωp is the detunning between ωegi and the peak frequency ωp of the

single photon input drive. The parameters γiL and γiR are the spontaneous emission rates

of the ith atom to decay into the left and right moving waveguide continua, respectively and

γiRL = (γiR + γiL)/2. We also define k0 = ωeg/vg to be the wavenumber of the waveguide

emitted photon. Finally, di specifies the position of the ith atom such that D(i − j) =

2π(di − dj)k0. The first term on the right hand side of (3) (with subscript “cs”) describes

the closed system dynamics, the second term (with subscript “pd”) represents the pure

decay of energy from the atoms into the waveguide continua and the terms multiplied with
√
γiRγjR and

√
γiLγjL (terms with subscript “cd”) are the cooperative decay terms (with

j = 1, 2, 3, ..., N). The operator ρ̂10, which appears in (3) is defined as

ρ̂10(t) = TrR[Û(t− t0)ρ̂s(t) |vac〉 〈ΨR1|ρ̂R2(t0)Û †(t− t0)] ,

which obeys the equation of motion

dρ̂10(t)

dt
= L̂cs[ρ̂10(t)] + L̂pd[ρ̂10(t)] + L̂cd[ρ̂10(t)] +

N∑
i=1

√
2γiRe

−ik0dig∗(t)[ρ̂00(t), σ̂†i ] . (4)

Here

ρ̂00(t) = TrR[Û(t− t0)ρ̂s(t) |vac〉 〈vac| ρ̂R2(t0)Û †(t− t0)]

obeys the no drive (or vacuum) Lehmberg master equation

dρ̂00(t)

dt
= L̂cs[ρ̂00(t)] + L̂pd[ρ̂00(t)] + L̂cd[ρ̂00(t)] . (5)

In Eq. (5) ρ̂R2(t0) is the initial vacuum state of the second reservoir and Û(t− t0) is the time

evolution operator of the global (qubits plus reservoirs) system. It is worthwhile to note

that unlike the usual non-Markovian master equations in which time-dependent decay rates

and frquency shifts carry the memory effects [32, 33], the single-photon Fock state master

equation (Eq. (3)) we derived is also non-markovian, but from a different point of view. The

non-Markovian property is due to the appearance of a novel ρ̂01(t) density operator in Eq. (3),

6



which carries information about the change in the reservoir state after the absorption of a

single-photon. Note that, following the idea of the Markov approximation, the Markovian

master equation does not keep track of changes in the state of the reservoirs.

In their study of a continuous mode N -photon wavepacket interacting with a quantum

system, Baragiola et. al. have derived a similar master equation for the case N = 1 [34].

In their work, they utilized the machinery of quantum stochastic differential equations. We

note that the main novelty of our master equation (3) relies on its bi-directional nature,

which is more suitable for waveguide QED problems. Eqs. (3), (4) and (5) provide a set of

equations needed to obtain a closed form solution for the system density operator ρ̂s(t).

III. RESULTS AND DISCUSSION

In principle, we can use the bi-directional single-photon Fock state master equation to

calculate any observable of interest. In what follows, we will concentrate on how the incident

single photon populates the atomic chain, with the concomitant generation of entanglement.

In particular, we will study the evolution of measures of entanglement and the influence of

bi-directional waveguide mediated coupling.

A. Influence of the number of atoms on population transfer and pairwise entan-

glement

For the remainder of this paper, we assume that the temporal shape of the single-photon

wavepacket is a Gaussian function of time of the form

g(t) =
1√

2π∆t
e−(t−t)2/2(∆t)2 , (6)

where t and ∆t are the mean and width of the Gaussian. Next, as an initial condition, we

take all atoms to be in their ground state. That is ρ̂s(t0) = |G〉 〈G|, ρ̂00(t0) = |G〉 〈G| and

ρ̂10(t0) = 0 for some initial time t0, where |G〉 denotes the state in which all atoms occupy

their ground state. We also denote by |E1〉 the state where any one of the atoms is excited.

We first calculate the probability P
(1)
i (t) = Tr[ρ̂s(t) |E1〉 〈E1|] that any one of the atoms in

the chain is excited, for i = 1, 2, . . . , 5. We also calculate the corresponding probability that

all atoms are in the ground state, denoted P
(G)
i (t) = Tr[ρ̂s(t) |G〉 〈G|]. The main focus of
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this section will be to investigate how increasing the number of atoms in the chain impacts

these probabilities.

Under the above initial conditions and for a single atom in the chain, we obtain a closed

form expression for the excitation probability P
(1)
1 (t). To this end, we assume that a single

atom is initially unexcited and as an advantageous consequence we observe from Eq. (5)

that the ρ̂00(t) doesn’t evolve in time i.e.

ρ̂00(t) = eL(t−t0)ρ̂00(t0) = σσ†, (7)

where, L̂[%̂(t)] = L̂cs[%̂(t)] + L̂pd[%̂(t)] + L̂cd[%̂(t)]. We can then integrate Eq. (4) to obtain

ρ̂01(t) = −
∫ t

t0

Ω∗(t
′
)e(iωeg−γ)(t−t′ )σ̂dt

′
, (8)

where Ω(t) ≡
√

2γ1Rg(t). Inserting the above solution into Eq. (3) we find the required atom

density operator:

ρ̂s(t) = ρ̂s(t0) + [σ̂†, σ̂]

∫ t

t0

∫ t
′

t0

Ω(t
′
, t

′′
)e−2γ(t−t′ )dt

′
dt

′′
, (9)

where Ω(t, t
′
) = 2Re[Ω(t)Ω∗(t

′
)e(iωeg−γ)(t−t′ )]. To proceed further, we express the temporal

profile of the single-photon wavepacket as Ω(t) = µ(t)eiωp(t), where µ(t) is assumed to be

slowly varying on the time scale of γ−1 and is related to g(t) through µ(t) =
√

2γ1R|g(t)|.

Carrying out the above integral, we obtain

ρ̂s(t) ' ρ̂s(t0) +

(
2γ|g(t)|2

(ωeg − ωp)2 + γ2

)
[σ̂†, σ̂]. (10)

Utilizing this result [35], the quantity P
(1)
1 (t) can then be obtained.

Along with the population dynamics, we will also study the generation and evolution

of qubit-qubit entanglement. For the entanglement calculations, we begin with the two-

atom chain. For such a bipartite mixed state, the concurrence C(ρ̂s) is a useful measure of

entanglement [36]. Following Wootters, we define the concurrence C(t) as

C(t) = max

(
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (11)

where λi’s are the eigenvalues (in descending order) of the spin-flipped density matrix ρ̃s =

ρ̂s(σ̂y ⊗ σ̂y)ρ̂
∗
s(σ̂y ⊗ σ̂y), with σ̂y being the Pauli spin flip operator. The upper and lower
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We now return to our numerical results. In Fig. 2, we plot the single excitation population

dynamics and the temporal profile of the entanglement. We find that a single atom in the

chain can be excited with probability P
(1)
1 up to 35%. This probability remains to one third

of its maximum value at the time (t ∼ 7γ−1) when the single-photon pulse vanishes. It

takes a further time t = γ−1 for P
(1)
1 to vanish completely. This value of P

(1)
1 is less than

half of what is reported for a single photon Gaussian input state that is on resonance [42].

The difference can be attributed to the presence of bi-directional decays in our model. As

the number of atoms in the chain increases, we note that the maximum value of population

decreases. In particular, for the cases of two, three, four and five atoms in the chain, the

maximum population drops down to 24%, 18%, 14% and 11%, respectively. Moreover, the

temporal shape of the excited state populations P
(1)
k is symmetric about the maximum value

induced by the drive.

For entanglement calculations, we begin with the case of two qubit concurrence. The spin

flip density matrix in this case takes the following form:

ρ̃s(t) =


|ρ1|2 0 0 ρ∗1ρ4

0 |ρ6|2 + |ρ7|2 |ρ6|2 + |ρ7|2 0

0 |ρ10|2 + |ρ11|2 |ρ10|2 + |ρ11|2 0

0 0 0 0

 , (12)

where ρ1 = 〈g1g2| ρ̂s |g1g2〉 , ρ4 = 〈g1g2| ρ̂s(t) |e1e2〉, ρ6 = 〈e1g2| ρ̂s(t) |e1g2〉 , ρ7 = 〈e1g2| ρ̂s(t) |g1e2〉,

ρ10 = 〈g1e2| ρ̂s(t) |e1g2〉 and ρ11 = 〈g1e2| ρ̂s(t) |g1e2〉. Here we employ the notation that the

first (second) slot in the ket describes the state of the first (second) atom. We have observed

numerically that various entries of ρ̃s(t) vanish. We have verified this observation by directly

integrating the equation of motion for ρ̂10(t) using the fact that ρ̂00(t) does not evolve in

time if both atoms are initially in their ground states. To proceed, we inserted the obtained

from of ρ̂10(t) into (3). We found that up to fourth order in γ, only certain density matrix

elements of ρ̂s(t) which appear in (12) survive. Diagonalization of ρ̃s(t) then yields the

following set of eigenvalues:

λ1 = 0, λ2 = 0, λ3 = |ρ4|,

λ4 = |ρ6|2 + |ρ7|2 + |ρ10|2 + |ρ11|2 = 4|ρc|2 .

By numerical integration of (3), (4) and (5), we find that for a system of identical atoms

driven by a symmetric Gaussian pulse ρ6 = ρ7 = ρ10 = ρ11 = ρc. Inserting these eigenvalues
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in (7), we obtain a rather compact form of the concurrence: C(t) = 2ρc − ρ4. We have

plotted this form of the concurrence in Fig. 2(b).

We notice that even in the presence of pure and cooperative decays, an incoming single pho-

ton wavepacket generates entanglement between two qubits up to 20.8%. The entanglement

takes ∼ γ−1 time to grow after the initial growth of the input drive. For the present choice

of parameters, we find that the atoms remain entangled for a time 5γ−1. As the number of

atoms is increased, the pairwise concurrence takes on smaller maximum values. As a result,

for the cases of 3, 4 and 5 atoms, the pairwise concurrence attains the values 5.6%, 2.2%

and 1.1%, respectively. In addition, the entanglement survives for a corresponding time of

(almost) 4γ−1, 3γ−1 and 2.5γ−1.

B. Entanglement storage and small decay rates

As pointed out above, if we increase the number of atoms in the chain the entangle-

ment is quickly lost. However, for certain quantum information processing protocols, the

entanglement survival for prolonged times is one of the key requirements. See Refs. [43–45]

and the applications mentioned therein. One straightforward way to accomplish this task

is to isolate the system from the environment, that is, by setting γiL = γiR = 0. However,

such a choice comes at the price of diminishing qubit-qubit interactions in the system. This

includes terms with the pre-factor
√
γiRγjR,

√
γiLγjL in Eq. (3), which influences entangle-

ment generation and evolution. Keeping these points in mind, in the present subsection we

consider the example of small decay rates. Such rates, for instance, can be obtained in an

experiment exploiting reservoir engineering techniques [46, 47]. Indeed the smaller decay

rates we consider here lie within the range of decay rates discussed in Refs. [14, 48]. In

Figs. 3(a) and (b), we consider small decay rates, which results in a longer survival of both

the single-excitation populations as well as the pairwise concurrence among atoms. The

highest values achieved by the population almost remain the same as found in Fig. 2, but

the entanglement tends to achieve smaller maximum for a bipartite system. Moreover, the

case of two atoms also shows the phenomenon of entanglement death and revival [49, 50].

However, when three, four or five atoms are included in the chain, the highest values of

the entanglement for both small decay rates (γ̃ = 0.1γ) and large decay rates (γ) almost

matches.
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while utilizing the fact that the single-photon drive is also launched towards the right in the

waveguide which enhances the interaction of the first atom with its partners towards right.

Note that these chiral decay rates values and β ∼ 1 lies within the experimental reported

values [48].

In Fig. 4(a) we plot the population dynamics. We observe that the effect of chiralty is

marked as compared to the non-chiral setting shown in Fig. 2. Chirality supports better

single excitation transfer to the system. It also supports longer population trapping as

the number of atoms is increased. This can be quantitatively understood by noticing that

compared to single atom case, in the case of two, three, four and five atoms, the maximum

population attained by the system becomes 24.7%, 25.7%, 25.9% and 26.5%, respectively.

Besides the longer overall survival of a single photon in the system as a function of the

number of atoms, a plateau emerges around the maximum value of the single excitation

population, becoming more pronounced as the number of atoms are increased.

As shown in Fig. 4(b), chirality also enhances entanglement. For the two qubit case,

this enhancement is more than three times greater than the corresponding non-chiral case

(see Fig. 4(c)). For the multi-qubit cases, the maximum pairwise concurrence remains 3/2

times as large as in the non-chiral case. In such multipartite situations, we also note the

appearance of an oscillatory pattern in C. Such a pattern, which eventually turns into an

entanglement plateau, exhibits the fact that with a larger number of atoms in the system,

a single photon transfers back and forth among qubits with unequal probability, such that

the overall pairwise entanglement survives for an extended period of time.

The reason that chirality increases the maximum entanglement in the system relies on

the fact that for the non-chiral case (γiL = γjL = γiR = γjR ≡ γ) the Liouvillian responsible

for waveguide mediated qubit-qubit interaction (L̂cd[%̂(t)]) takes the form

L̂cd[%̂(t)] = −γ
N∑

i6=j=1

(δi>j + δi<j)[σ̂
†
j σ̂i%̂(t)− σ̂i%̂(t)σ̂†j ] + h.c. .

It follows that the application of this Liouvillian will only contribute to real (or so-called

incoherent [14, 31]) terms in qubit-qubit interactions. However, in the chiral case along with

the above terms, the Liouvillian also contains pure imaginary qubit-qubit interaction terms.

These terms result in the availability of an additional coherent photon transfer channel

among the qubits, leading to overall entanglement enhancement compared to the non-chiral

setting.
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Fig. 5(b) we have plotted the quantity C(t) including the effects of delays. In the two-atom

case, we observe that as we decrease the separation from L to L/8 (dashed black curve)

and finally to L/16 (dotted black curve in Fig. 5(b)), the entanglement exhibits a slight

enhancement. In the three atom case, we point out that as the separation is reduced, the

entanglement shows two regions of growth and decay. For d = L/8, L/16, the entanglement

shows a partial decay after an initial growth, while later in time the entanglement decays

slowly. Similarly, in the 4 atom case, the smallest separation produces the largest maxi-

mum entanglement (for 3 atoms ∼ 0.06 while for four atoms it becomes ∼ 0.08). For the

four atom example, the entanglement is more than three times the maximum entanglement

gained for the case of the largest separation (∼ 0.024). This behavior suggests that by de-

creasing the distance between the atoms, the width of the photonic wave packet emitted by

the first atom becomes larger than the qubit-qubit separation. As a result, before the decay

of the first qubit, the population reaches the second qubit, and from the second qubit this

process extends to the third qubit and so on. Hence, the overall concurrence becomes more

pronounced with increasing number of qubits. Finally, we remark that the revival profile of

the pairwise concurrence that is observed for smaller separations provides a means to probe

the temporal pattern of entanglement by varying the atomic separation.

IV. CONCLUSIONS

In this paper, we have studied the manner in which a single-photon wavepacket with a

Gaussian spectral profile can distribute its population and stimulate entanglement among

atoms in lossless waveguide QED. By applying a bi-directional single-photon Fock state

master equation, we report several findings. First, as the number of atoms increases, both

the single-excitation population as well as the average pairwise concurrence are considerably

reduced. Second, the problem of short entanglement survival time is somewhat mitigated by

the utilization of small decay rates. Third, we have found that the introduction of chirality

can increase the entanglement and population by more than a factor of 3/2 compared to

the non-chiral case. Fourth, nonzero detuning has only a modest effect on entanglement.

Inclusion of smaller delays leads to higher maximum entanglement. Finally, entanglement

death and revival patterns appear which allow some control of the overall temporal profile

of the entanglement. Such control is important for practical implementation of the proposed
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model.
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APPENDIX A: DERIVATION OF BI-DIRECTIONAL SINGLE-PHOTON FOCK

STATE MASTER EQUATION

We decompose the N -system chain into N subsystems. The dissipative dynamics of the

first subsystem can be described in the Heisenberg picture through the following quantum

Langevin equation [58, 59]:

dX̂1(t)

dt
=

−i
~

[X̂1(t), Ĥsys1]− [X̂1(t), ĉ†1(t)]

(
√
γ1Re

ik0d1 b̂
(1R)
in (t) +

√
γ1Le

−ik0d1 b̂
(1L)
in (t) + (

γ1R + γ1L

2
)ĉ1

)
+ h.c. ,

(A1)

where X̂1(t) and ĉ1(t) are arbitrary Heisenberg picture operators belonging to system-1 and

h.c. stands for the hermitian conjugate of the terms whose prefactor is the commutator

[X̂1(t), ĉ†1]. In writing this equation, we have identified two “input” operators:

b̂
(1R)
in (t) =

1√
2π

∫ ∞
−∞

b̂R(ω1, t0)e−iω1(t−t0)dω1 , (A2a)

b̂
(1L)
in (t) =

1√
2π

∫ ∞
−∞

b̂L(ω2, t0)e−iω2(t−t0)dω2 , (A2b)

where t0 represents an initial time, which can be set equal to zero without loss of generality.

The input operators obey the causality condition as indicated by the commutation relation:

[b̂
(1j)
in (t), b̂

†(1j)
in (t

′
)] = δ(t− t′), j = R,L. Following along the same lines, one can express the

dissipative dynamics of each individual subsystem through a similar Langevin equation.

To combine the independent Langevin equations for each atom, we note that for each of

the input operators appearing in Eq. (A2), there exist two output operators. For subsystem

17



1 these input and output operators are linked through the input-output relations [59]:

b̂
(1R)
out (t) = b̂

(1R)
in (t) +

√
γ1Re

−ik0d1 ĉ1(t) , (A3a)

b̂
(1L)
out (t) = b̂

(1L)
in (t) +

√
γ1Le

ik0d1 ĉ1(t) , (A3b)

where t1 is a future time. We define the output operators as

b̂
(1R)
out (t) =

1√
2π

∫ ∞
−∞

b̂R(ω1, t1)e−iω1(t−t1)dω1 , (A4a)

b̂
(1L)
out (t) =

1√
2π

∫ ∞
−∞

b̂L(ω2, t1)e−iω2(t−t1)dω2 . (A4b)

Next, we note that the output from one subsystem feeds into the nearest subsystems as a

time-delayed input. For instance, for just two subsystem example we have

b̂
(2R)
in (t) = b̂

(1R)
out (t− τ) = b̂

(1R)
in (t− τ) +

√
γ1Re

−ik0d1 ĉ1(t− τ) , (A5a)

b̂
(1L)
in (t) = b̂

(2L)
out (t− τ) = b̂

(2L)
in (t− τ) +

√
γ1Re

ik0d1 ĉ2(t− τ) . (A5b)

If we neglect the time-delays, assuming that each subsystem evolves on a time scale much

slower than the time a photon takes to travel between the subsystems: ωegi, γil � 1/τ =

L/c, l = R,L, we arrive at the following bi-directional combined Langevin equation for an

arbitrary operator X̂(t):

dX̂(t)

dt
=
−i
~

[X̂, Ĥsys]

−
N∑
i=1

{
[X̂, ĉ†i ]

(
√
γiRe

ik0di b̂
(iR)
in +

√
γiLe

−ik0di b̂
(iL)
in + (

γiR + γiL
2

)ĉi +
N∑

j 6=i=1

eik0(di−dj)(
√
γiRγjRδi>j ĉj

+
√
γiLγjLδi<j ĉj)

)
+ h.c.

}
.

(A6)

Here bidirectionality is manifested by terms with prefactors
√
γilγjl, l = R,L and δi≶j = 1,

only when i ≶ j. Next, we transform to the Schrödinger picture using the identity:

TrS⊕R

[
dX̂(t)

dt
ρ̂s(t0)

]
= TrS

[
X̂(t0)

dρ̂s(t)

dt

]
, (A7)
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where ρ̂s(t) is the system reduced density matrix. Therefore, we obtain

dρ̂s(t)

dt
= L̂cs[ρ̂s(t)] + L̂pd[ρ̂s(t)] + L̂cd[ρ̂s(t)]

− TrS⊕R

[
N∑
i=1

(
√
γiR(eik0di [X̂(t), ĉ†i (t)]b̂

(1R)
in (t)ρ̂(t0)− e−ik0di b̂†(1R)(t)

in [X̂(t), ĉi(t)]ρ̂(t0))

−√γiL(e−ik0di [X̂(t), ĉ†i (t)]b̂
(NL)
in (t)ρ̂(t0)− eik0di b̂†(NL)(t)

in [X̂(t), ĉi(t)]ρ̂(t0))

)]
,

(A8)

where D = L/λ0. We now focus our attention on the input operator terms. We note that a

considerable simplification arises from the fact that the state of the left moving continuum

is initially the vacuum. As a result, all terms involving the b̂
(NL)
in (t) operator must vanish:

TrS⊕R

[
[X̂(t), ĉ†i (t)]b̂

(iL)
in (t)ρ̂(t0)

]
= TrS⊕R

[
[X̂(t), ĉ†i (t)]ρ̂s(t0)⊗ ρ̂R1(t0)⊗ b̂(iL)

in (t) |vac〉 〈vac|

]
= 0 ,

where we have assumed that the initial state of the global system is factorizable into system

and bath initial states. Note that the right moving continuum input terms does not vanish

due to the presence of a single photon in the initial state of the reservoir.

For the single-photon wavepacket in (1), we find that b̂
(iR)
in (t)|ΨR1〉 = g(t) |vac〉 and hence

TrS⊕R

[
[X̂(t), ĉ†i ]b̂

(iR)
in (t)ρ̂(t0)

]
= TrS⊕R

[
[X̂(t), ĉ†i (t)]ρ̂s(t0)⊗ b̂(iR)

in (t)|ΨR1〉〈ΨR1| ⊗ ρ̂R2(t0)

]
= g(t)TrS[X̂(t0)[ĉ†i , ρ̂01(t)]] ,

with g(t) being the temporal shape of the single-photon wavepacket. The density matrix

element ρ̂01(t) is a novel and a non-physical density operator; it follows that ρ̂†01(t) = ρ̂10(t).

The form of ρ̂10(t) has already been mentioned in Sec. II(B). Putting everything together,

we obtain the required bi-directional single photon Fock state master equation

dρ̂s(t)

dt
= L̂cs[ρ̂s(t)] + L̂pd[ρ̂s(t)] + L̂cd[ρ̂s(t)]+

N∑
i=1

√
2γiR(eik0dig(t)[ρ̂01(t), σ̂†i ] + e−ik0dig∗(t)[σ̂i, ρ̂10(t)]) .

(A9)

In order to obtain the equation of motion obeyed by ρ10, we use the identity mentioned in

(A7) to obtain

TrS⊕R

[
dX̂(t)

dt
ρ̂10(t0)

]
= TrS

[
X̂(t0)

dρ̂10(t)

dt

]
. (A10)
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Consequently, we find that

dρ̂10(t)

dt
= L̂cs[ρ̂10(t)] + L̂pd[ρ̂10(t)] + L̂cd[ρ̂10(t)] +

N∑
i=1

√
γiRe

−ik0dig∗(t)[ρ̂00(t), σ̂†i ] . (A11)

Likewise, we see that ρ̂00(t) obeys

dρ̂00(t)

dt
= L̂cs[ρ̂00(t)] + L̂pd[ρ̂00(t)] + L̂cd[ρ̂00(t)] . (A12)
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