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Excited state quantum phase transitions (ESQPTs) are generalizations of quantum phase transitions (QPTs)

to excited levels. They are associated with local divergences in the density of states. Here, we investigate how

the presence of an ESQPT can be detected from the analysis of the structure of the Hamiltonian matrix, the level

of localization of the eigenstates, the onset of bifurcation, and the speed of the system evolution. Our findings

are illustrated for a Hamiltonian with infinite-range Ising interaction in a transverse field. This is a version of

the Lipkin-Meshkov-Glick (LMG) model and the limiting case of the one-dimensional spin-1/2 system with

tunable interactions realized with ion traps. From our studies for the dynamics, we uncover similarities between

the LMG and the noninteracting XX models.

PACS numbers: 05.30.Rt; 64.70.Tg; 64.70.qj; 21.60.Fw

I. INTRODUCTION

Quantum phase transitions (QPTs) correspond to abrupt

changes in the character of the ground state of a system when

a control parameter reaches a critical point [1, 2]. Strictly,

they occur in the thermodynamic limit, but scaling analysis of

finite systems can indicate their presence. The nature of the

QPTs is determined according to Ehrenfest’s classification of

thermodynamic phase transitions as transitions of first order,

second order, and so on [3–5]. QPTs have received significant

attention by recent experiments with ultracold gases [6–8].

Excited state quantum phase transition (ESQPTs) refer to

QPTs that take place at the excited levels [9, 10]. In systems

that exhibit an ESQPT, the vanishing gap between the ground

state and the first excited state, characteristic of ground state

QPTs, does not occur in isolation, but in conjunction with the

clustering of the levels near the ground state. This local diver-

gence of the density of states propagates to higher excitation

energies as the control parameter increases beyond the ground

state critical point.

ESQPTs have been verified in various models, includ-

ing molecular vibron [10, 11], nuclear interacting bo-

son [12], Jaynes-Cummings [13, 14], kicked-top [15], Lipkin-

Meshkov-Glick (LMG) [12, 16, 17], and Dicke [13, 14, 18]

models. In the last two cases, the density of states was

found analytically [18, 19]. ESQPTs are not exclusive to inte-

grable models; precursors of the transition persist even in the

chaotic domain [14, 20–22]. Experimental signatures of ES-

QPTs were found in the bending motion of different molecular

species [23–26], superconducting microwave billiards [27],

and spinor condensates [28].

Few works exist about the effects of ESQPTs on the system

dynamics [13, 16, 29, 30]. In Refs. [31, 32], we showed that

the time evolution of an initial state with energy close to the

ESQPT critical point can be exceedingly slow. These results

are general and valid for any Hamiltonian with a U(n + 1)
algebraic structure that has limiting SO(n+ 1) and U(n) dy-

namical symmetries,

HU(n+1) = (1− ξ)HU(n) +
ξ

N
HSO(n+1), (1)

where ξ is the control parameter and N is the system size.

The U(n + 1) Hamiltonian in the bosonic form with n ≥
1 represents the one-dimensional [U(2)], two-dimensional

[U(3)], and three-dimensional [U(4)] limits of the vibron

model [11, 33–36]. These models are used to describe the

vibrational spectra of molecules. The U(2) Hamiltonian cor-

responds to the LMG model [37–39], introduced in nuclear

physics, and since then used in various contexts, from Bose-

Einstein condensates to entanglement.

In the present work, we focus on the LMG model and ex-

tend the results of Refs. [31, 32]. We concentrate on the

spin version of the model that corresponds to an infinite-

range Ising interaction in a transverse field. This limit of all

to all coupling is nearly reached with experiments with ion

traps [40, 41], where the range of the interaction can be tuned.

These experiments study the dynamics of the spin system for

the same initial states that we consider here.

We show that at the ESQPT critical point, the eigenstates

of the LMG model are highly localized in the ground state of

the U(1)-part of the Hamiltonian. As a consequence, the evo-

lution of this particular basis vector under the LMG Hamilto-

nian is very slow. The presence of the ESQPT can therefore

be detected by analyzing the structure of the eigenstates and

the speed of the evolution of U(1)-basis vectors. The second

alternative could be tested with the above mentioned experi-

ments with ion traps [40, 41].

A third alternative to identify the presence of the ESQPT

that we explore here is the bifurcation phenomenon. It refers

to the sudden change in the value of the total magnetization in

the direction of the transverse field, which occurs at the criti-

cal point. Below the energy of the ESQPT, the eigenstates are

degenerate, each having a positive or negative value of the to-

tal magnetization. Above the critical point, the magnetization

of all states becomes zero. Bifurcations similar to this one
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have been studied experimentally as a function of the control

parameter [42, 43]. Here, we analyze how the bifurcation de-

pends on the excitation energies, while the control parameter

is kept fixed and above the QPT critical point.

Our studies of the dynamics of the LMG model reveals sim-

ilarities between this model, which has infinite-range interac-

tion, and the XX model with a single excitation, which has

only nearest-neighbor couplings. Specifically, the energy dis-

tributions of several initial states corresponding to U(1)-basis

vectors are analogous for both systems, which results in equiv-

alent time evolutions. Relationships between the LMG and

other integrable models have been explored before [44, 45],

specially in the context of scaling behaviors of the entangle-

ment entropy [46, 47].

The analogy with the XX model motivated a closer look at

the structure of the Hamiltonian matrix of the LMG model.

From this study, we show that the ESQPT critical energy can

be identified even before diagonalization, by simply compar-

ing the spacings between neighboring energy levels and their

coupling strengths.

The work is divided as follows. Section II describes the

LMG model and gives the Hamiltonian elements in the U(1)-
and in the SO(2)-basis. Section III provides results for the

eigenvalues, structures of the eigenstates, and the magnetiza-

tions. It is at this point that we discuss the onset of localized

states and bifurcation. Section IV investigates the dynamics

under the LMG Hamiltonian for different initial states, estab-

lishes a connection between the LMG and XX models, and an-

alyzes the structure of the LMG Hamiltonian matrix. Details

about the XX model are found in Appendix A. Final remarks

are presented in Sec. V.

II. MODEL

One-dimensional lattices of interacting spins-1/2 described

by the following Hamiltonian,

H(α)
s = B

N
∑

i=1

σz
i +

∑

i<j

J

|i− j|α σ
x
i σ

x
j , (2)

have been recently realized with trapped ions [40, 41]. Above,

~ = 1, σx,z
i are Pauli matrices acting on sites i, N is the total

number of sites, B is the amplitude of the external field, and

J is the coupling parameter. In the experiments, the range of

the interaction, determined by α, can be tuned from α = 3
to α very close to zero. The case of infinite-range interaction,

α = 0, corresponds to a version of the LMG model [12, 17].

Hamiltonian (2) for α = 0 can be written in the form be-

low [12, 17],

H(α=0)
s = (1 − ξ)

(

N

2
+

N
∑

i=1

Sz
i

)

− 4ξ

N

N
∑

i,j=1

Sx
i S

x
j , (3)

where spin operators Sx,z
i are used. The necessary steps to

reach Eq. (3) are: multiply both terms in H
(α)
s by 2, add the

constants 2BN and JN , and then use a single control param-

eter ξ, so that 4B = (1 − ξ) and J = −ξ/N . Note that

to guarantee that H
(α=0)
s is intensive, the interaction term is

rescaled with 1/N .

In general, the Hamiltonian matrix from Eq. (2) has total

dimension 2N , but when α = 0 [Eq. (3)], its effective size

reduces toN+1. AllN !/(Nup!Ndown!) states withNup spins

pointing up in the z-direction andNdown spins pointing down

become degenerate. The Hamiltonian can now be written in

terms of the total spin in the z-direction, Sz =
∑N

i=1 S
z
i , and

the total spin in the x-direction, Sx =
∑N

i=1 S
x
i , as

Hs = (1− ξ)

(

N

2
+ Sz

)

− 4ξ

N
S2
x. (4)

The LMG Hamiltonian Hs (4) has a U(2) algebraic struc-

ture with two limiting dynamical symmetries represented by

the U(1) subalgebra, when ξ = 0, and the SO(2) subalgebra,

when ξ = 1. The eigenstates of the U(1) part of the Hamil-

tonian correspond to the states |smz〉 and those of the SO(2)
part are the states |smx〉, where s = N/2 is the total spin

quantum number and mz(x) is the total magnetization in the

z(x)-direction, with −N/2 ≤ mz(x) ≤ N/2.

The elements of the Hamiltonian matrix in the U(1)-basis

are given by

〈smz |Hs|smz〉 =
(

N

2
+mz

)(

1− 2ξ + 2
ξmz

N

)

− ξ,

〈smz + 2|Hs|smz〉 = − ξ

N

√

(

N

2
+mz + 2

)

×
√

(

N

2
+mz + 1

)(

N

2
−mz

)(

N

2
−mz − 1

)

.

Hs (4) conserves parity, (−)s+mz [12], so the matrix is split

in two blocks, one of dimension Deven = N/2 + 1 with even

parity and the other of dimensionDodd = N/2 and odd parity.

In the SO(2)-basis, the elements of the Hamiltonian matrix

are

〈smx|Hs|smx〉 = −4ξ

N
m2

x + (1− ξ)
N

2
,

〈smx + 1|Hs|smx〉 =
ξ − 1

2

√

(

N

2
−mx

)(

N

2
+mx + 1

)

.

Hamiltonian (4) may also be written in a bosonic form. The

Holstein-Primakoff mapping is not suitable here, because the

total number of bosons in this representation is not conserved.

Instead, the Schwinger representation is more appropriate,

Sz =

N
∑

i=1

Sz
i = t†t− N

2
= nt −

N

2
(5)

S+ =

N
∑

i=1

S+
i = t†s = (S−)†. (6)

The resulting Hamiltonian describes a system with two

species of scalar bosons, boson s and boson t,

Hb = (1− ξ)t†t− ξ

N
(t†s+ s†t)2, (7)
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where N is the conserved total number of bosons N = nt +
ns. The elements of the Hamiltonian matrix in the basis

|Nnt〉 =
(t†)nt(s†)N−nt

√

nt!(N − nt)!
|0〉, (8)

where 0 ≤ nt ≤ N and |0〉 is the vacuum state [17, 48–50],

are analogous to those for the |smz〉 basis, substituting mz

with nt −N/2.

The LMG Hamiltonian shows a second-order QPT at the

critical point ξc = 1/5. For ξ < ξc, the ground state coincides

with the U(1)-ground state, that is all the spins point down

in the z-direction or, equivalently, there are no bosons of the

t-type.

III. EIGENVALUES, EIGENSTATES, AND OBSERVABLES

ESQPTs are characterized by the clustering of the eigen-

values around the energy EESQPT of the critical point. This

is illustrated with the density of states for the LMG model in

Figs. 1 (a), (b), (c), and (d) for ξ = 0.2, 0.4, 0.6, 0.8, respec-

tively. There, and throughout this paper, we subtract from the

eigenvalues Ek the energy of the ground state E0 and deal

with E′
k = Ek − E0. From those four panels, one sees that

the peak of the distribution moves to higher energies as ξ in-

creases from the QPT critical point (ξc = 0.2) up. The value

of EESQPT therefore depends on ξ.
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FIG. 1: (Color online) Top panels: Normalized density of states for

Hs (4) with ξc = 0.2 (a), ξ = 0.4 (b), ξ = 0.6 (c) and ξ = 0.8
(d), N = 2000. The corresponding classical potentials [Eq. (11)]

are shown in the insets. Bottom panel (e): Normalized excitation

energies vs ξ, N = 100. The separatrix [Eq. (9)] is indicated with

the dashed line. All panels: even parity sector. Arbitrary units.

A. Separatrix and semiclassical approximation

The dependence of the value of EESQPT on the control pa-

rameter is visible also in Fig. 1 (e), where we plot the nor-

malized excitation energies E′
k/N for all levels versus ξ. The

dashed line in that panel follows the clustering of the eigen-

values. This line corresponds to the separatrix that marks the

ESQPT. Its equation,

EESQPT(ξ) =
(1 − 5 ξ)2

16 ξ
, (9)

is obtained in the mean-field approximation (limit of very

large N ), as summarized below [10, 11].

Using Glauber coherent states, we can write the classical

limit of Hamiltonian (7) in terms of coordinate and momenta

as ([10] and references therein),

Hclass =
1− ξ

2N2
p2 +

ξ

N2
x2p2 + V (x), (10)

where the potential is

V (x) =
1− 5ξ

2
x2 + ξx4. (11)

We can also use projective coherent states [50, 51] and put

momenta equal to zero to obtain the classical energy func-

tional associated with Hamiltonian (7), which is given by ([11]

and references therein),

Eξ(x) = (1 − ξ)
x2

1 + x2
− ξ

4x2

(1 + x2)2
. (12)

Either from Eq. (11) or from Eq. (12), we see that when

ξ ≤ ξc = 1/5, the potential has a minimum at x = 0,

which is quadratic for ξ < ξc and quartic for ξ = ξc [in-

set of Fig. 1 (a)]. For ξ > ξc, the potential has a double-

well shape [insets of Figs. 1 (b), (c), and (d)], with minima

at x = ±
√

(5ξ − 1)/(4ξ), while x = 0 is now a maximum.

The energy difference between the maximum value V (x = 0)

and the minimum value V (x = ±
√

(5ξ − 1)/(4ξ)) marks the

ESQPT critical energy and leads to the equation of the sepa-

ratrix [Eq. (9)]. At excitation energies equal to EESQPT(ξ) =

V (x = 0)−V
(

x = ±
√

(5ξ − 1)/(4ξ)
)

= (1−5ξ)2/(16ξ),

the origin, which was prohibited for E < EESQPT due to the

potential barrier, can now be reached.

The emergence of ESQPTs can therefore be understood

from the double-well potential. For energies very close to the

top of the potential barrier, the classical velocity becomes very

small, indicating that a system with energy ∼ EESQPT spends

a long time in the vicinity of x = 0. The appearance of such

stationary point is associated with the singularity in the den-

sity of states marked by the separatrix [9, 52, 53].

The above classical picture helps the understanding of the

structure of the eigenstates of the algebraic quantum model.

The U(1)-part of the Hamiltonian corresponds to a truncated

one-dimensional harmonic oscillator, where the ground state

nt = 0 (mz = −N/2) has a large probability to be found at
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the origin. Since, in analogy with the above discussion, the

eigenstates with energies very close to EESQPT are also likely

to be found around x = 0, they must be highly localized in

the U(1)-ground state. This is corroborated by our results for

the eigenstates in the next subsection.

B. Structure of the Eigenstates in the U(1)-basis

Written in the U(1)-basis, the eigenstates with energies be-

low the separatrix, E′
k/N < EESQPT, have a structure closer

to that of the eigenstates of the SO(2)-Hamiltonian, while

those with energies above the separatrix are more similar to

the eigenstates of the U(1)-Hamiltonian [10]. The eigenstates

with energy very close to the separatrix,E′
k/N ∼ EESQPT, are

the ones at the point of transition from one dynamical sym-

metry to the other and they are highly localized in the U(1)-
ground state, which has mz = −N/2 (nt = 0).

1. Components of the Eigenstates in the U(1)-basis

In Figs. 2 (a), (b), (c), and (d), we show the structures of

four eigenstates written in the U(1)-basis. |C(k)
mz

|2 is the prob-

ability to find the eigenstate |ψk〉 =
∑N/2

mz=−N/2C
(k)
mz

|smz〉
in the basis vector |smz〉 and e′mz

= 〈smz|Hs|smz〉−E0 is

the energy of the basis vector in the total Hamiltonian shifted

by the ground state energy of Hs. The energy of the eigen-

state in Fig. 2 (a) [(d)] is below [above] the separatrix; there

are several basis vectors contributing to this eigenstate and

they mostly have low [high] energies. In Figs. 2 (b) and (c)

we show, respectively, the eigenstate with the second closest

and the closest normalized energy to EESQPT. These states

are highly localized in the U(1)-ground state (mz = −N/2).

The point for |C(k)
−N/2|2 is indicated with an arrow in the fig-

ures. Compare also the y-axis scales in Figs. 2 (b) and (c) with

Figs. 2 (a) and (d).

The localization of the eigenstates with E′
k/N ∼ EESQPT in

theU(1)-ground state can be anticipated by computing the en-

ergy e′−N/2/N , which is also very close to EESQPT. As shown

in Fig. 2 (e), e′−N/2/N follows the separatrix as ξ increases.

Note that for a given N , the difference EESQPT − e′N/2/N in-

creases with ξ, but at the same, for a fixed ξ > ξc, this differ-

ence decreases with N .

For ξ < ξc, |smz =−N/2〉 is the basis vector with the

lowest energy. As ξ increases above ξc, this state is carried up

in energy and e′−N/2/N gets above the energy of some of the

basis vectors with mz > −N/2. The number of states with

e′mz
< e′−N/2 increases with ξ. At ξ = 1, the energies of all

U(1)-basis vectors are below e′−N/2, apart from mz = N/2,

which becomes degenerate with it.

In Figs. 3 (a) and (b), we study the dependence of the largest

and the second largest components |C(k)
mz

|2 on the system size.

In Fig. 3 (a), we select the eigenstate that is most localized in

|smz=−N/2〉. The energy of this eigenstate is very close to

EESQPT, although for some system sizes, it is not the closest

FIG. 2: (Color online) Top panels: squared coefficients |C
(k)
mz

|2 of

the eigenstates |ψk〉 written in the U(1)-basis vs the energies of the

corresponding basis vectors; ξ = 0.6, N = 2000. The eigenstates

chosen have energies E′

k/N = 0.2515 (a), 0.4163 (b) [second clos-

est to the ESQPT critical point], 0.4166 (c) [closest one to the ES-

QPT critical point], and 0.5764 (d). Vertical lines indicate the sep-

aratrix, EESQPT = 0.4167. Bottom panel (e): Normalized energy of

the U(1)-basis vectors in the total Hamiltonian vs ξ, N = 100. The

separatrix [Eq. (9)] is indicated with the dashed line and the energy

of the U(1)-ground state e′
−N/2/N with the thick solid line. All

panels: even parity sector. Arbitrary units.
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FIG. 3: (Color online) Log-log plots of the largest components (filled

circles) and the second largest components (empty squares) |C
(k)
mz

|2

vs N for the eigenstate that is most localized in the U(1)-ground

state [its energyE′

loc/N is very close to theEESQPT] (a) and the same

components for the eigenstate at a position Deven/4 above E′

loc/N
(b). Solid lines are fittings with indicated powerlaw decays, ξ = 0.6
even parity.

one to the separatrix. The figure shows that the largest compo-

nent decays slower with N than the second largest one, indi-

cating that |smz=−N/2〉 is indeed the preferred basis vector

for any system size. In Fig. 3 (b), we choose an eigenstate

with energy above the separatrix. In this case, the magnitudes

of the largest and second largest components practically co-

incide, indicating no preference for a particular basis vector.

These components decrease much faster with N than those

two for the localized state.
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2. Level of Localization of the Eigenstates in the U(1)-basis

The change in the structure of the eigenstates written in

the U(1)-basis as they approach the separatrix signals the ex-

istence of an ESQPT. To evaluate this change, we may use

quantities, such as the participation ratio (PR) or the Shannon

(information) entropy [54–57], that measure the level of local-

ization of the eigenstates in a chosen basis. The PR is defined

as

PR
(k)
U(1) =

1
∑

mz
|C(k)

mz
|4
. (13)

A large value indicates an extended state in the chosen basis

and a small value, a localized state. When ξ = 0, the eigen-

states coincide with the U(1)-basis vectors, so PR
(k)
U(1) = 1.

FIG. 4: (Color online) Panels (a), (b), (c), and (d): Participation ratio

of all the eigenstates of the even parity sector written in the U(1)-
basis; N = 500 (dark curve) and 2000 (light curve). Vertical lines

mark the EESQPT obtained from Eq. (9). Panel (e): dependence on

N of the ratio Rmax
loc = PRmax

U(1)/PRloc
U(1) between the participation

ratio of the most delocalized state, PRmax
U(1), and the PR of the most

localized state in the U(1) ground state, PRloc
U(1). Arbitrary units.

In Figs. 4 (a), (b), (c), and (d), we show PR
(k)
U(1)/N for all

eigenstates [58]. Each panel has a different value of the con-

trol parameter. For 0 ≤ ξ ≤ ξc, PR is a smooth function of

energy, indicating more localized states at the edges, as seen

in Fig. 4 (a). Above the critical point [Figs. 4 (b), (c), and

(d)], the eigenstates remain localized at the edges of the spec-

trum, but the same happens also for the states with energies

close to EESQPT. This causes the dip in the value of PR
(k)
U(1)

for E′
k/N ∼ EESQPT, as seen in the figures. The PR serves

therefore as an order parameter for ESQPTs.

Overall, PR
(k)
U(1)/N decreases with system size for all

eigenstates, indicating that they are far from being ergodic.

Ergodicity implies that PR
(k)
U(1) ∝ N . However, the partic-

ipation ratio of the most localized state in the U(1) ground

state, PRloc
U(1), decays faster with N than the PR of the most

delocalized state, PRmax
U(1). This is clearly seen in Fig. 4 (e),

which shows the dependence on the system size of the ratio

Rmax
loc = PRmax

U(1)/PRloc
U(1). Thus, the level of localization of

the eigenstates with energies very close to the separatrix gets

more pronounced with N than for other generic eigenstates.

C. Structure of the Eigenstates in the SO(2)-basis

An important aspect of the eigenstates below the separatrix

is that those with the same value of |mx| are degenerate. This

can be explained as follows. TheSO(2)-part ofHs is given by

the square of the operator Sx; the eigenstates of S2
x with the

same value of |mx| are degenerate. The same occurs to the

eigenstates of Hs that have energy below the separatrix, since

they are closer to the SO(2)-symmetry. In contrast, above the

separatrix, where the eigenstates ofHs are closer to the U(1)-
symmetry, the degeneracy is lifted. In this region mx = 0.

[This sudden change in the value of mx at the separatrix is

related to the bifurcation phenomenon that is described in the

next subsection.] In Fig. 5, we consider all N +1 eigenvalues

of the Hamiltonian Hs (4). The separatrix clearly marks the

point where pairs of eigenstates with different parity are dis-

tinguished by energy (above the separatrix), from those that

are degenerate (below the separatrix).
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FIG. 5: (Color online) Normalized excitation energies vs ξ for all

N + 1 eigenstates, including both parities, one parity is indicated

with solid lines and the other with dashed lines; N = 100.

In the top panels of Fig. 6, we show the structures of the

eigenstates with the same energies considered in Fig. 2, but

now written in the SO(2)-basis. |C(k)
mx

|2 is the probability

to find the eigenstate |ψk〉 =
∑N/2

mx=−N/2 C
(k)
mx

|smx〉 in the

basis vector |smx〉 and e′mx
= 〈smx|Hs|smx〉 − E0 is the

energy of the SO(2)-basis vector in the LMG Hamiltonian

shifted by the ground state energy of Hs. In Fig. 6 (a), the en-

ergy is below the separatrix, so there are two degenerate eigen-

states perfectly overlapping. They have contributions from ba-

sis vectors with energies belowEESQPT. Very close to the sep-

aratrix [Figs. 6 (b) and (c)], the two eigenstates shown in each

panel are very similar, but not exactly equal anymore. Above

the separatrix [Fig. 6 (d)], where eigenstates of different parity

have different energies, only one eigenstate is considered, the

same one from Fig. 2 (d). In this case, all contributing basis
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vectors have energy values above the separatrix.

FIG. 6: (Color online) Top panels: squared coefficients |C
(k)
mx

|2 of

the eigenstates |ψk〉 written in the SO(2)-basis vs the energies of the

corresponding basis vectors; ξ = 0.6, N = 2000. The eigenstates

shown have the energies considered in Fig. 2: two degenerate states

with E′

k/N = 0.2515 (a), two with E′

k/N ∼ 0.4163 (b) [second

closest energy to EESQPT], two with E′

k/N ∼ 0.4166 (c) [closest

energy to EESQPT], and one state with E′

k/N = 0.5764 (d). Vertical

lines mark the ESQPT energy E′

k/N = 0.4167. Bottom panel (e):

Normalized energy of the SO(2)-basis vectors in the total Hamilto-

nian vs ξ, N = 100. The separatrix [Eq. (9)] is indicated with the

dashed line. Both parities are included. Arbitrary units.

In the SO(2)-basis, there is no particularly localized eigen-

state, apart from those at the edges of the spectrum. None of

the basis vectors has a special role, as the U(1)-ground state

has. In Fig. 6 (e), we show the energies of all SO(2)-basis

vectors, e′mx
, vs the control parameter. The main effect of in-

creasing ξ is the spreading of the energies of these states. De-

spite this seemingly lack of special features of the eigenstates

in the SO(2)-basis, the participation ratio can still detect the

ESQPT, as discussed next.

In Figs. 7 (a), (b), (c), and (d), we show PR
(k)
SO(2)/N for all

eigenstates written in the SO(2)-basis. There is a discontinu-

ity at EESQPT, above which the eigenstates suddenly become

much more delocalized. This is somewhat expected, since

the eigenstates above the separatrix are closer to the U(1)-
symmetry than to the SO(2)-symmetry. The sudden jump to

higher values of PR
(k)
SO(2)/N , marked by a gap in the values

of the participation ratio at the separatrix, may be seen as a

signature of the ESQPT.

D. Observables

A natural consequence of the localization in the U(1)-
ground state of the eigenstates that have energy close to

the separatrix is their reduced value of the total magne-

tization in the z-direction. This is illustrated in Figs. 8

(a) and (b), which show the normalized z-magnetization,

〈m(k)
z 〉/N = 〈ψk|Sz|ψk〉/N , for all eigenstates. For the

states below the separatrix, the range of values of 〈m(k)
z 〉/N

FIG. 7: (Color online) Participation ratio of all N + 1 eigenstates

of both parity sectors written in the SO(2)-basis; N = 500 (dark

curve) and 2000 (light curve). Vertical lines mark the EESQPT ob-

tained from Eq. (9). Arbitrary units.

is quite limited and very close to zero. This reflects the

proximity of these states to the SO(2)-symmetry, for which

〈smx|Sz|smx〉/N = 0. At the separatrix, 〈m(k)
z 〉/N sud-

denly approaches −1/2, which is the value for the U(1)-
ground state. Above the separatrix, a broad range of values

are obtained up to 〈m(k)
z 〉/N ∼ +1/2. [Similar results were

shown for a U(3)-Hamiltonian in [59].]

FIG. 8: (Color online) Top: Normalized total magnetization in the

z-direction for all eigenstates with even parity. Bottom: Normalized

total magnetization in the x-direction for all eigenstates of both par-

ities. Vertical lines indicate the separatrix [Eq. (9)]; N = 2000.

For the normalized total magnetization in the x-direction,

〈m(k)
x 〉/N = 〈ψk|Sx|ψk〉/N , a discontinuity also occurs at

the separatrix, as seen in Figs. 8 (c) and (d). For energies

below the separatrix, pairs of degenerate eigenstates have the

same magnitude of |〈m(k)
x 〉|/N . In this energy region, the

eigenstates have structures similar to those of the eigenstates

of the S2
x operator, that is the SO(2)-part of the Hamilto-

nian. Above the separatrix, where the eigenstates are closer
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to the U(1)-symmetry, the value of the x-magnetization be-

comes zero. This is an example of the bifurcation phe-

nomenon [42, 43, 60, 61], which has been associated with the

presence of QPTs. Figures 8 (c) and (d) indicate that it also

detects the presence of ESQPTs.

IV. QUENCH DYNAMICS

From the previous results for the eigenstate expectation val-

ues of the magnetizations and the structures of the eigen-

states, we may anticipate the dynamics of the LMG model

and other systems exhibiting ESQPTs. For instance, due

to the localization of the eigenstates with E′
k ∼ EESQPT in

|smz〉 = |s −N/2〉, this basis vector should evolve slowly

under Hs (4). We also expect the total x-magnetization of

an initial state corresponding to |smx〉 = |s 0〉 to be dynam-

ically frozen under Hs. These predictions, as well as other

results, are explored in this section. The main motivation for

studying dynamics comes from current experiments with ion

traps [40, 41] and optical lattices [62, 63], where dynamics is

routinely analyzed.

Here, we study the evolution of differentU(1)-basis vectors

and SO(2)-basis vectors under the LMG Hamiltonian Hs (4)

with ξ above the QPT critical point. Having as initial state a

U(1)-basis vector is equivalent to performing an abrupt per-

turbation (quench), where ξ is initially 0 and is then suddenly

changed to a value ξ > ξc. Using the SO(2)-basis vector as

initial state corresponds to quenching the control parameter

from ξ = 1 to ξ > ξc.

The quantities considered for the time evolution analysis

are: the survival probability and the total magnetizations in

the z- and x-directions. The survival probability of the initial

state, also called non-decay probability or fidelity, is given

by the absolute square of the overlap between the initial state

|Ψ(0)〉 = |s ini〉 (where ini stands for a value of mz or mx)

and the evolved state |Ψ(t)〉, as

F (t) ≡ |〈Ψ(0)|Ψ(t)〉|2 =
∣

∣〈Ψ(0)|e−iHst|Ψ(0)〉
∣

∣

2
(14)

=

∣

∣

∣

∣

∣

∑

k

|C(k)
ini |2e−iEkt

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫

dEe−iEtρini(E)

∣

∣

∣

∣

2

.

Above, ρini(E) =
∑

k |C
(k)
ini |2δ(E − Ek) is the energy distri-

bution of |Ψ(0)〉 weighted by the components |C(k)
ini |2. One

often refers to ρini(E) as strength function [64] or local den-

sity of states (LDOS); we use the latter term. It is evident from

Eq. (14) that the survival probability is the absolute square of

the Fourier transform of the LDOS.

A. Initial state from the U(1)-basis: |smz〉

The dynamics can be anticipated by examining the struc-

ture of the initial states projected onto the energy eigenba-

sis, that is |Ψ(0)〉 = |smz〉 =
∑

k C
(k)
mz

|ψk〉. As expected

from the previous analysis of the eigenstates, the U(1)-ground

state (mz = −N/2) is highly localized in the eigenstate with

E′
k/N ∼ EESQPT, as seen in Fig. 9 (a). Its evolution should

therefore be very slow, even though the energy e′−N/2/N of

this state may be very high. As mz increases from −N/2, the

U(1)-states become more and more delocalized in the energy

eigenbasis, with higher contributions occurring at the edges of

their energy distributions. The evolution should consequently

become faster. Notice that due to this steady spreading in en-

ergy, theU(1)-basis that has energy e′mz
/N closest toEESQPT,

after the state with mz = −N/2, is actually a very delo-

calized state with similar contributions from eigenstates be-

low and above the separatrix. This is the state in Fig. 9 (h).

Once the energies e′mz
/N get above the separatrix, the U(1)-

states gradually localize again, with higher contributions from

eigenstates with large energies, that is those closer to the right

edge of the spectrum [Figs. 9 (i), (j), (k), and (l)].

FIG. 9: (Color online) Structure of the U(1)-basis vectors projected

onto the eigenstates of the total Hamiltonian Hs; even parity, N =
2000, ξ = 0.6. The values of mz are: -1000 (a), -960 (b), -900 (c),

-800 (d), -600 (e), -400 (f), -200 (g), 334 (h), 600 (i), 800 (j), 900 (k),

980 (l). Vertical dashed lines mark EESQPT. The states with energy

closest to the separatrix are (a), with e−1000/N = 0.4164, and (h),

with e334/N = 0.4166.

The symmetric shape of the U(1)-basis vector in Fig. 9 (h)

is similar to that found for the eigenstate in Fig. 2 (d), which is

written in the U(1)-basis and is above the separatrix, and for

the eigenstate in Fig. 6 (a), which is written in the SO(2)-basis

and is below the separatrix. A closer look at the structures of

these states reveal sinusoidal oscillations approximately mod-

ulated by a function ∝ (constant − E2)−1/2. Interestingly,

this envelope also coincides with the density of states of the

XX model, as discussed below. This suggests a connection

between the XX model and the LMG model, which is useful

since several analytical results exist for the first one [44, 65].

1. Energy distribution of the initial state

In what follows, we focus on the evolution of three initial

states with even parity. They are the ones with mz = −N/2
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and mz = −N/2 + 2, and the one with the second closest

e′mz
/N to EESQPT. The LDOS for these states are shown in

Fig. 10. For mz = −N/2 and mz = −N/2+ 2, the LDOS is

highly localized on the eigenstates close to the separatrix. For

the initial state with the second closest e′mz
/N to EESQPT, the

LDOS in Fig. 10 (c) is very similar to that found for the XX

model with a single excitation.
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=-4998
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FIG. 10: (Color online) LDOS for initial states corresponding to

U(1)-basis vectors with mz = −N/2 (a), mz = −N/2 + 2 (b),

and the one with the second closest e′mz
/N to EESQPT (c); N = 104,

ξ = 0.6. In (c), the dashed line represents Eq.(17) with A2 ∼ 0.27
and e′mz

/N = EESQPT.

The Hamiltonian of the XX model is given by

H =
∑

i

J
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

, (15)

where J is the coupling strength between nearest-neighbor

spins. This is a noninteracting Hamiltonian that simply moves

excitations along the chain. An excitation corresponds to a

spin pointing up in the z direction. For periodic boundary con-

ditions and a single excitation, it is straightforward to obtain

analytically the eigenvalues and eigenstates of this Hamilto-

nian, as shown in Appendix A. From these results, we can

show that the LDOS for an initial state |φl〉 where all spins

point down, except for one, is given by

ρ|φl〉(E) =
1

π
√
J2 − E2

. (16)

This expression, shifted by the energy e′mz
/N ∼ EESQPT, as

ρini(E) =
1

π
√

A2 − (e′mz
/N − E)2

, (17)

fits the curve in Fig. 10 (c) extremely well. The only fitting

parameter is A, which is related with the range of energies

sampled by the initial state. It is interesting that the LDOS for

a model with infinite-range interaction can coincide with that

for a model with only nearest-neighbor couplings.

2. Survival Probability

The survival probability is shown in Fig. 11 (a) for N =
104. As predicted, the decay is very slow for mz = −N/2
[top curve in Fig. 11 (a)] and it becomes much faster as mz

increases from −N/2 + 2 [middle curve] to 1668 [bottom

curve]. The latter is the state with the second closest e′mz
/N

to EESQPT, for the parameters considered in the figure.

Figure 11 (b) reinforces the localization of themz = −N/2
state: the F (t) curves for N = 103 and N = 104 fall on top

of each other. In contrast, the short-time evolution of initial

states with larger mz does accelerate (figure not shown).

FIG. 11: (Color online) Survival Probability vs time. In (a) from top

to bottom: initial states corresponding to U(1)-basis vectors with

mz = −N/2, mz = −N/2+2, and the one with the second closest

e′mz
/N to EESQPT; N = 104. In (b): mz = −N/2 for N = 103

(first curve to show revival) and N = 104. In (c): initial state with

the second closest e′mz
/N to EESQPT; N = 103 (top) and N =

104 (bottom); dashed lines give F (t) ∝ 1/t. All panels: ξ = 0.6.

Arbitrary units.

In Fig. 11 (c), we show the long-time evolution of the de-

localized initial state with e′mz
/N ∼ EESQPT for system sizes

N = 103 and N = 104. The dashed lines represent a pow-

erlaw decay ∝ t−1, which matches the numerical curves very

well. This algebraic decay at long times can be justified by

studying the Fourier transform of Eq. (17). It leads to the fol-

lowing expression for the survival probability,

F (t) =

∣

∣

∣

∣

∣

∣

∣

∣

1

πA

∫ e′
mz

/N+A

e′
mz

/N−A

e−iEtdE
√

1−
(

E−e′
mz

/N

A

)2

∣

∣

∣

∣

∣

∣

∣

∣

2

(18)

= |J0(At)|2 , (19)

where J0 is the Bessel function of the first kind. For very long

times,

F (t≫ A) ≃ 2

πAt cos
2
(

At− π

4

)

, (20)
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from where the algebraic decay ∝ t−1 is evident. Beyond this

decay, the survival probability fluctuates around a saturation

value [66–71].

The dynamics for the LMG model starting with a delocal-

ized U(1)-state with energy away from the ESQPT is there-

fore analogous to that impinged by the closed XX model on

any initial state |φl〉 with a single excitation. There are, how-

ever, evident differences between the two systems. (i) The

speed of the evolution under the LMG Hamiltonian depends

on the initial state, while for the XX case, it is the same for

any |φl〉. (ii) For the LMG model, the density of states di-

verges at EESQPT, while the shape of the level density for the

XX model is equivalent to that of the LDOS in Eq. (16), where

divergences occur only at the edges of the spectrum [72]. (iii)

The Hamiltonian matrices for both models written in the ba-

sis of spins aligned in the z-direction are tridiagonal, but the

structure of the LMG matrix is richer. From its analysis one

can, in fact, identify the energy of the ESQPT critical point,

as discussed below.

3. Structure of the LMG Hamiltonian matrix

For the LMG model written in the U(1)-basis with the di-

agonal elements ordered from the lowest to the highest value

of mz , the structure of the matrix for ξ ≤ ξc differs from that

for ξ > ξc. This difference is explained in Fig. 12.
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FIG. 12: (Color online) Structure of the Hamiltonian matrix of the

LMG model, Hs [Eq. 4], written in the U(1)-basis; only even par-

ity is considered. In (a): coupling strength between two neigh-

boring levels vs spacing between those levels; from top to bottom:

ξ = 0.2, 0.4, 0.6, 0.8, 1.0. In (b)-(f): ratio of the spacing between

neighboring levels and their coupling strength; the value of ξ is indi-

cated in the panels. Absolute ratio> 1 indicates ineffective coupling.

Arbitrary units.

Figure 12 (a) depicts the coupling strength between two

neighboring levels, Hmz

mz+2
= 〈mz |Hs|mz+2〉, vs the

spacing between the same two levels, e′mz+2
− e′mz

=

〈mz+2|Hs|mz+2〉 − 〈mz |Hs|mz〉. For ξ ≤ ξc, the spacing

is always positive, which indicates that for any mz , e′mz+2
>

e′mz
[see the top curve of Fig. 12 (a)]. The spacing is min-

imum at the edges of the matrix: for mz = −N/2, where

e′mz
has the lowest value, and for mz = N/2, where e′mz

has the highest value. In both cases, the magnitude of the

coupling is close to zero and therefore ineffective. The ratio
(

e′mz+2
− e′mz

)

/〈mz|Hs|mz+2〉 between the level spacing

and the coupling strength as a function of e′mz
is shown in

Fig. 12 (b) for ξ = ξc. The absolute value of this ratio is in-

deed very large at the edges, so one expects the eigenstates to

be highly localized at the borders of the spectrum.

For ξ > ξc, the magnitude of the coupling strengths for

the pairs of states (mz = −N/2 and mz = −N/2 + 2) and

(mz = N/2 and mz = N/2 − 2) remain very close to zero

and the absolute values of their spacings further increase [see

Fig. 12 (a)]. Once again, one therefore expects the eigenstates

with energies close to e′mz=−N/2 and e′mz=N/2 to be very lo-

calized. The difference with respect to the case where ξ ≤ ξc
is that the spacings formz’s close to −N/2 have now negative

values, indicating that e′mz=−N/2 is not the lowest energy any-

more. The absolute value of the ratio |(e′mz+2
−e′mz

)/Hmz

mz+2
|

for mz = −N/2 is still very large, but e′mz=−N/2 is now

shifted to high values [see Figs. 12 (c)-(f)]. Analogously, the

energy of the localized eigenstate with mz ∼ −N/2 is now

expected to be away from the edge of the spectrum. The pres-

ence of the ESQPT can therefore be anticipated even before

diagonalization by performing this simple analysis of the ma-

trix elements.

4. Total magnetization in the z-direction

The different speeds of the evolution of U(1)-basis vectors

seen in Fig. 11 must be reflected also in the dynamics of the

total magnetizationmz(t). In Fig. 13 , we show the evolution

of the absolute value of the normalized difference |mz(t) −
mz(0)|/N starting with the same initial states considered in

Fig. 11. The dynamics for the state with mz = −N/2 is, as

expected, very slow and it further slows down as the system

size increases fromN = 103 [Fig. 13 (a)] toN = 104 [Fig. 13

(b)]. In contrast, the behavior of the state with the second

closest energy to EESQPT, mz = 168 in (a) and mz = 1668
in (b), is very similar for different system sizes. The slow

evolution of mz(t) signals the presence of the ESQPT.
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FIG. 13: (Color online) Evolution of the total magnetization in the

z-direction. The values ofmz(0) are indicated in the panels; they are

mz(0) = −N/2, mz(0) = −N/2 + 2, and the one with the second

closest e′mz
/N to EESQPT. In (a): N = 103 and (b): N = 104. Both

panels: ξ = 0.6. Arbitrary units.
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B. Initial state from the SO(2)-basis: |smx〉

We now consider as initial state, an eigenstate of the

SO(2)-part of the Hamiltonian, |Ψ(0)〉 = |smx〉 =
∑

k C
(k)
mx

|ψk〉. Equivalently to the analysis developed in

Sec. IV A, we start by studying in Fig. 14 the dependence of

the components |C(k)
mx

|2 on the eigenvalues of Hs. The struc-

ture is the same for states with a negative or positive value of

mx, so only negative values and mx = 0 are shown.
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FIG. 14: (Color online) Structure of the SO(2)-basis vectors pro-

jected onto the eigenstates of the total Hamiltonian Hs; N = 200,

ξ = 0.6. The values ofmx are: -100 (a), -75 (b), -58 (c), -39 (d), -10

(e), -5 (f), -3 (g), -1 (h), 0 (i). Circles are numerical results and thin

black lines are guides for the eye. Vertical dashed lines markEESQPT.

Arbitrary units.

The state with |mx| = N/2 is rather localized at the low

eigenvalues ofHs. As |mx| increases, the states become more

spread out and they move towards higher energies. Eventu-

ally, eigenstates with energies below and above the separatrix

give significant contributions to |smx〉. The structures of the

components below and above the separatrix are clearly differ-

ent. As seen in Fig. 14 (c), the damping of the oscillations

above the separatrix is smoother and the frequency of the os-

cillations is smaller than below the separatrix.

As |mx| approaches zero, the main contributions come

from eigenstates with energies aboveEESQPT and very regular

structures are formed [Figs. 14 (f)-(h)]. At mx = 0 [Fig. 14

(i)], all contributing eigenstates have E′
k/N > EESQPT and

the nonzero values of |C(k)
mx

|2 have a dependence on energy

very similar to that of the LDOS for the XX model given in

Eq. (16).

The x-magnetization of the eigenstates that contribute to

|Ψ(0)〉 = |smx〉 have values close to the magnetization of

the initial state. As a result, the evolution of mx(t) is trapped

around its initial value, as seen in Fig. 15 (a). The special

case is that of |Ψ(0)〉 = |s 0〉, where only the eigenstates with

mx = 0 lead to |C(k)
mx

|2 6= 0.

The trapping ofmx(t) is consistent with experimental stud-

ies of the phenomenon of bifurcation performed in Refs. [42,

43]. There, the initial state was a coherent state with a positive
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FIG. 15: (Color online) Evolution of the total magnetization in the

x-direction (left) and of the survival probability (right); N = 103.

The values of mx(0) are indicated in the panels. Dashed lines on

the right panels correspond to F (t) ∝ 1/t. All panels: ξ = 0.6.

Arbitrary units.

or negative value of mx(0). The behavior of mx(t) depended

on the value of the control parameter. If the system was in the

nonlinear regime, that is ξ > ξc, mx(t) remained trapped, os-

cillating around its initial value. If the system was in the linear

regime, that is ξ < ξc, oscillations between both signs were

verified and the temporal mean was zero. Here, we argue that

distinct behaviors of mx(t) occur also for a fixed value of ξ,

but for initial states prepared at different energies. If |Ψ(0)〉
is a superposition of energy eigenbasis with E′

k > EESQPT,

thenmx(t) = 0, since all contributing energy eigenbasis have

mx = 0. In contrast, for a superposition of energy eigenbasis

with E′
k < EESQPT, the time average of mx(t) will be larger

than zero (smaller than zero) if the majority of the contribu-

tions come from the branch of Fig. 8 (c) where the eigenstates

have mx > 0 (mx < 0).

The right panels of Fig. 15 show the survival probability for

the same initial states considered in Fig. 15 (a). The decay is

slower for mx(0) = 495 [Fig. 15 (b)], because this state is

more localized than the others, but apart from this, the decay

is very similar for the three states. At long times, they show

a powerlaw behavior ∝ t−1, as seen also for the delocalized

state in Fig. 11 (c). This was expected already from Fig. 14,

which suggested that the LDOS for |Ψ(0)〉 = |smx〉 with

|mx| < N/2, especially for those with |mx| very close to

zero, should have a shape well described by Eq. (17).

V. CONCLUDING REMARKS

Focusing on the LMG model, we identified several ways,

other than the local divergence of the density of states, to de-

tect the presence of an ESQPT. They are itemized below.

(i) The level of localization of the eigenstates written in the

U(1)-basis. At the separatrix, the eigenstates are highly local-
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ized in the ground state of the U(1)-part of the LMG Hamil-

tonian.

(ii) The ratio between the spacings of neighboring levels of

the LMG Hamiltonian matrix written in the U(1)-basis and

their interaction strengths. One sees that these spacings are

larger than their coupling strengths for levels with energy very

close to EESQPT. Since the coupling is ineffective, the eigen-

state is localized. The ESQPT critical point can therefore be

predicted even before diagonalization.

(iii) The value of the total magnetization in the z-direction.

The ground state of the U(1)-part of the Hamiltonian has

mz = −N/2 (nt = 0). It is only for the localized eigen-

states very close to the separatrix that the expectation value of

the z-magnetization approaches this minimum value.

(iv) The bifurcation of the total magnetization in the

x-direction. The structures of the eigenstates above the

separatrix are closer to the U(1)-symmetry and their x-

magnetization is zero. Below the separatrix, the eigenstates

are closer to the SO(2)-symmetry. They come in pairs of de-

generate states, each one having a positive or a negative value

of mx. The separatrix marks the point of this bifurcation.

(v) The speed of the evolution of U(1)-basis vectors under

the LMG Hamiltonian. The localization of the eigenstates at

the separatrix implies that the evolution of the U(1)-basis vec-

tor withmz = −N/2 is very slow, as was confirmed by study-

ing mz(t) and the survival probability. This finding estab-

lishes a connection with experiments with ion traps [40, 41],

where the evolution of U(1)-basis vectors is currently stud-

ied. There, however, the range of the interaction is close to,

but not exactly infinite. One of our future goals is to investi-

gate whether the results obtained in this work can be extended

to the scenario where α 6= 0 in Hamiltonian (2).

The slow evolution despite the presence of infinite-range

interactions emphasizes the importance of taking into account

both the Hamiltonian and also the initial state [73] when in-

vestigating nonequilibrium quantum dynamics. Conclusions

based on only one of the two may result incomplete.

(vi) The trapping of the evolution of mx(t) close to its ini-

tial value. If the eigenstates contributing to the evolution of

a chosen initial state have E′
k/N < EESQPT and if they be-

long to a single branch of the two possible branches of values

of mx, the temporal mean of mx(t) will be nonzero. If the

contributing eigenstates have E′
k/N > EESQPT, then the tem-

poral mean of mx is zero. This analysis is similar to that de-

veloped in the experimental investigation of bifurcations with

Bose-Einstein condensates [42] and nuclear magnetic reso-

nance [43]. The difference here is that the bifurcation occurs

by varying the energy of the initial state, instead of by chang-

ing the value of the control parameter.

We also revealed similarities between the LDOS of the

LMG model and the XX model with a single excitation. This

allowed us to use the analytical expression obtained for the

XX model to fit very well the LDOS of the LMG Hamilto-

nian. With it, we obtained an analytical expression for the

long-time decay of the survival probability for both models,

which is ∝ t−1.

It is our hope that the results reported in this work will mo-

tivate further experimental studies of ESQPTs, especially in

the context of quench dynamics.
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Appendix A: XX Model

The Hamiltonian of the XX model is given by

H =
∑

i

J
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

, (A1)

where J is the coupling strength between nearest-neighbor

spins. For periodic boundary conditions and a single exci-

tation, the eigenvalues of this Hamiltonian can be found ana-

lytically as follows. Define the eigenstates as

|ψk〉 =
N
∑

l=1

a
(k)
l |φl〉, (A2)

where |φl〉 is the state with a spin pointing up in the z-

direction (an excitation) on site l, while all other spins point

down. Substituting this equation and

H |φl〉 =
J

2
(|φl−1〉+ |φl+1〉) (A3)

into H |ψk〉 = Ek|ψk〉, gives the equation for the energy

Eka
(k)
l =

J

2
(a

(k)
l−1 + a

(k)
l+1). (A4)

Due to the periodic boundary conditions, a
(k)
l+N = a

(k)
l and it

is appropriate to use the ansatz a
(k)
l = ei2πkl/N , from where

we obtain

Ek = J cos

(

2πk

N

)

, (A5)

with k = −N/2,−N/2+1, . . .−1, 0, 1, . . .N/2−1, and the

eigenstates,

|ψk〉 =
1√
N

N
∑

l=1

ei2πkl/N |φl〉, (A6)

which are Bloch waves.

For an initial state corresponding to one of the basis vectors

|φl〉, the LDOS is derived from ρ|φl〉(E) = N−1
∑

k δ(E −
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Ek). In the thermodynamic limit, using 2πk/N → E , we

have

ρ|φl〉(E) =
1

2π

∫ π

−π

δ(E − J cos E)dE . (A7)

The integral can be solved with the identity δ(f(E)) =
∑

i δ(E − Ei)/|f ′(Ei)|, where Ei = ± arccos(E/J) are the

roots of f(E). We the obtain

ρ|φl〉(E) =
1

π
√
J2 − E2

. (A8)

Notice that for the LDOS of the XX model, the probabilities

|a(k)l |2 = 1, while the components |C(k)
mz

|2 for the LMG model

oscillate, as shown in Fig. 9 (h). Yet, the two resulting LDOS

are comparable.
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