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The regions of existence and stability of dark solitons in the Lugiato-Lefever model with normal
chromatic dispersion are described. These localized states are shown to be organized in a bifur-
cation structure known as collapsed snaking implying the presence of a region in parameter space
with a finite multiplicity of dark solitons. For some parameter values dynamical instabilities are
responsible for the appearance of oscillations and temporal chaos. The importance of the results for
understanding frequency comb generation in microresonators is emphasized.
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I. INTRODUCTION

Dark solitons, localized spots of lower intensity em-
bedded in an homogeneous surrounding, are a particular
type of solitons appearing in conservative or dissipative
systems far from thermodynamic equilibrium [1]. In the
latter case they are known as dissipative solitons (DSs)
and related structures can be found in a large variety of
systems, including those found in chemistry [2], gas dis-
charges [3], fluid mechanics [4], vegetation and plant ecol-
ogy [5], as well as optics [6], where they are known as cav-
ity solitons. These structures arise as a result of a balance
between nonlinearity and spatial coupling, and between
driving and dissipation. In this work we focus on the field
of optics, and study DSs in single mode fiber resonators
and microresonators where they are known as temporal
solitons [7]. These systems are commonly described by
the Lugiato-Lefever equation (LLE), a mean field model
originaly introduced in [8] in the context of ring cavi-
ties or a Fabry-Perot interferometer with transverse spa-
tial extent, partially filled with a nonlinear medium. In
temporal systems bright and dark solitons can be found.
Taking into account only second order dispersion (SOD)
two regimes can be identified, characterized by either nor-
mal or anomalous chromatic dispersion. In the latter case
the only type of DSs that exist are bright solitons arising
in both the monostable [9] and bistable regimes [10–12].
In contrast, in the normal SOD case the main type of
DSs that appear are dark solitons [12–15]. In this work
we provide a detailed analysis of the bifurcation structure
and stability of dark DSs appearing in the normal disper-
sion regime, classifying the different dynamical regimes
arising in this system.

The organization of this paper is as follows. In Sec. II,
we introduce the Lugiato-Lefever model in the context
of temporal dynamics in fiber resonators and microres-
onators. We then analyze the spatial stability properties
of spatially uniform states (Sec. III), followed in Sec. IV
by an analysis of the bifurcation structure of dark soli-
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FIG. 1: (Color online) A synchronously pumped fiber
cavity. Here T is the transmission coefficient of the
beam splitter and L is the length of the fiber.

tons. In Sec. V we analyze oscillatory and chaotic dynam-
ics of dark solitons. In Sec. VI we summarize the main
results of the analysis presented in the earlier sections
and conclude in Sec. VII by discussing their implications
for frequency comb generation in nonlinear optics.

II. THE LUGIATO-LEFEVER EQUATION

In this section we provide a brief introduction to the
LLE in the context of fiber resonators and microres-
onators. We then employ the normalization of [10] to
study the continuous wave (CW) or equivalently the ho-
mogeneous steady state (HSS) solutions of this model and
determine their temporal stability properties. Figure 1
shows a fiber cavity of length L with a beam splitter with
transmission coefficient T and a continuous wave source
of amplitude E0. At the beam splitter, the pump is cou-
pled to the electromagnetic wave circulating inside the
fiber. Under these conditions the evolution of the elec-
tric field E ≡ E(t′, τ) within the cavity is described by
the following evolution equation [16],

tR
∂E

∂t′
= −(α+ iδ0)E − i

Lβ2
2

∂2E

∂τ2
+ iγL|E|2E +

√
TE0,

(1)
where α > 0 describes the total cavity losses, β2 is the
second order dispersion coefficient (β2 > 0 in the normal
dispersion case while β2 < 0 in the anomalous case),
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FIG. 2: Spatial eigenvalues of A0 for several values of θ. (a) θ = 1.4 <
√
3; (b)

√
3 < θ = 1.8 < 2; (c) θ = 2; (d)

2 < θ = 4. Solid (dashed) lines indicate stability (instability) in time. SF: Saddle-Focus; S: Saddle; F: Center; SC:
Saddle-Center; RTB: Reversible Takens-Bogdanov; RTBH: Reversible Takens-Bogdanov-Hopf; BD:
Belyakov-Devaney; HH(MI): Hamiltonian-Hopf; QZ: Quadruple-Zero. A list of these transitions in the spatial
eigenspectrum and their codimension is given in Table I.

γ > 0 is a nonlinear coefficient arising from the Kerr
effect in the resonator, and δ0 is the cavity detuning.
Here τ is the fast time describing the temporal structure
of the nonlinear waves while the slow time t′ corresponds
to the evolution time scale over many round-trips. After
normalizing Eq. (1) we arrive to the dimensionless mean-
field LLE [8]:

∂tA = −(1 + iθ)A+ iν∂2xA+ i|A|2A+ ρ, (2)

where A(x, t) ≡ E(t′, τ)
√

γL/α is a complex scalar field,

t ≡ αt′/tR, x ≡ τ
√

2α/(L|β2|), ρ = E0

√

γLT/α3, and
θ = δ0/α. In the following we refer to the variable x
as a spatial coordinate by analogy with other resonantly
driven systems such as the LLE for spatially extended op-
tical cavities [6, 8] or the parametrically forced Ginzburg-
Landau equation [17].
Owing to the periodic nature of fiber cavities and mi-

croresonators, we consider periodic boundary conditions,
i.e., A(0, t) = A(L, t), where L is now the dimensionless
length of the system and choose L = 160 for all numeri-
cal computations. The parameters ρ, θ ∈ R correspond to
the normalized injection and detuning, respectively, and
serve as the control parameters of this system. The pa-
rameter ν represents the SOD coefficient and is also nor-
malized: ν = −1 in the normal dispersion case and ν = 1

in the anomalous dispersion case [9–12]. The present
work is restricted to the case ν = −1.
The steady states of Eq. (2) are solutions of the ordi-

nary differential equation (ODE)

iν
d2A

dx2
− (1 + iθ)A+ i|A|2A+ ρ = 0 (3)

and are either spatially uniform states (HSSs) or spatially
nonuniform states, consisting either of a periodic pattern
(a spatially periodic state PS) or spatially localized states
(DSs). In this section we focus on the HSSs, A ≡ A0,
leaving for subsequent sections the study of the other
states. The A0 states solve the classic cubic equation of
dispersive optical bistability, namely

I30 − 2θI20 + (1 + θ2)I0 = ρ2, (4)

where I0 ≡ |A0|2. For θ <
√
3, Eq. (4) is single-valued

and hence the system is monostable (see Fig. 2(a)). For

θ >
√
3, Eq. (4) is triply-valued as shown in Figs. 2(b)-

(d). The transition between the three different solutions
occurs via the two saddle nodes SNhom,1 and SNhom,2

located at

I± ≡ |A±|2 =
2θ

3
± 1

3

√

θ2 − 3. (5)
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In the following we will denote the bottom solution
branch (from I0 = 0 to I−) by Ab

0, the middle branch
between I− and I+ by Am

0 and the top branch by At
0

(I0 > I+). In terms of the real, U ≡ Re[A], and imagi-
nary, V ≡ Im[A], parts the HSSs A = A0 take the form

[
U0

V0

]

=






ρ

1 + (I0 − θ)2

(I0 − θ)ρ

1 + (I0 − θ)2




 . (6)

We next analyze the linear stability of the HSSs to
perturbations of the form

[
U
V

]

=

[
U0

V0

]

+ ǫ

[
a
b

]

eikx+Ωt + c.c., (7)

where k represents the wave number of the perturbation.
We find that the growth rate Ω(k) is given by

Ω(k) = −1±
√

4I0θ − 3I20 − θ2 + (4I0 − 2θ)νk2 − k4.

(8)
It follows that in the monostable regime the A0 solution
is always stable while for

√
3 < θ < 2 the Ab

0 and At
0

states are stable and Am
0 is unstable. These results are

reflected in the diagrams shown in Figs. 2(a) and (b).
However, when θ > 2 the Ab

0 branch becomes unstable
at a steady state bifurcation with k 6= 0. This Turing or
modulational instability (MI) occurs at I0 = 1 and gen-
erates a stationary periodic wavetrain with wave number
k0 =

√

ν(2 − θ); Am
0 remains unstable while At

0 is always
stable. From a spatial dynamics point of view (Sec. III)
the MI bifurcation corresponds to a Hamiltonian-Hopf
bifurcation in space (HH). No Hopf bifurcations in time
of the HSSs are possible.

III. SPATIAL DYNAMICS

In this section we investigate the conditions that are
necessary for the presence of exponentially localized
states that approach A0 as x → ±∞. To obtain these
conditions we first rewrite Eq. (3) as a dynamical system,

dU
dx = Ũ
dV
dx = Ṽ
dŨ
dx = ν

[
V + θU − UV 2 − U3

]

dṼ
dx = ν

[
−U + θV − V U2 − V 3 + ρ

]
,

(9)

and employ the approach of spatial dynamics, i.e., we
think of the solutions of Eq. (9) as evolving in x, the
rescaled fast time, from x = −∞ to x = ∞ [9, 17–
20]. Thus DSs correspond to homoclinic orbits of Eq. (9).
This term is used to refer to orbits (trajectories) connect-
ing a fixed point (equilibrium) to itself. In the spatial
dynamical context a fixed point corresponds to a homo-
geneous state: dU/dx = dV/dx = dŨ/dx = dṼ /dx = 0.
We shall also be interested in heteroclinic orbits, i.e.,

case 2 case 1

case 3 case 4

FIG. 3: Sketch of the possible organization of spatial
eigenvalues λ satisfying the biquadratic equation (11)
for a spatially reversible system. The acronyms
corresponding to the different labels are as in Fig. 2.

Cod (λ1,2,3,4) Name

Zero (±q0 ± ik0) Saddle-Focus

Zero (±q1,±q2) Saddle

Zero (±ik1,±ik2) Center

Zero (±q0,±ik0) Saddle-Center

One (±q0, 0, 0) Reversible Takens-Bogdanov

One (±ik0, 0, 0) Reversible Takens-Bogdanov-Hopf

One (±q0,±q0) Belyakov-Devaney

One (±ik0,±ik0) Hamiltonian-Hopf

Two (0, 0, 0, 0) Quadruple-Zero

TABLE I: Nomenclature used to refer to different
transitions in the spatial eigenspectrum, labeled in
Fig. 3.

trajectories connecting a fixed point a to a different fixed
point b. Such orbits represent (stationary) fronts con-
necting two different homogeneous states. We employ
the terminology heteroclinic cycle to refer to a pair of
orbits, one connecting a to b and the other b to a. A het-
eroclinic cycle thus corresponds to a pair of back-to-back
fronts.
The fixed points of Eq. (9) are the HSSs A0 of the orig-

inal evolution equation (2). The stability of these fixed
points (in space) is determined by the eigenspectrum of
the Jacobian of the system (9) around A0 ≡ U0 + iV0,
namely

J = ν








0 0 ν 0

0 0 0 ν

θ − V 2 − 3U2 1− 2UV 0 0

−(1 + 2UV ) θ − U2 − 3V 2 0 0








(U0,V0)

.

(10)
The four eigenvalues of J satisfy the biquadratic equa-
tion

λ4 + (4I0 − 2θ)νλ2 + θ2 + 3I20 − 4θI0 + 1 = 0. (11)

The form of this equation is a consequence of spatial
reversibility [21–23], i.e., the invariance of Eq. (2) un-
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der the transformation (x,A) 7→ (−x,A), or equivalently
the invariance of the system (9) under (x, U, V, Ũ , Ṽ ) 7→
(−x, U, V,−Ũ ,−Ṽ ). This invariance implies that if λ is
a spatial eigenvalue, so are −λ and ±λ∗, where ∗ indi-
cates complex conjugation. Consequently there are four
possibilities:

1. the eigenvalues are real: λ1,2,3,4 = (±q1,±q2)

2. there is a quartet of complex eigenvalues: λ1,2,3,4 =
(±q0 ± ik0)

3. the eigenvalues are imaginary: λ1,2,3,4 =
(±ik1,±ik2)

4. two eigenvalues are real and two imaginary:
λ1,2,3,4 = (±q0,±ik0).

A sketch of these possible eigenvalue configurations is
shown in Fig. 3, and their names and codimension are
provided in Table I. The transition from case 1 to case 2
is through a Belyakov-Devaney (BD) [18, 19] point with
eigenvalues (±q0,±q0), while the transition from case 2
to case 3 is via a Hamiltonian-Hopf (HH) bifurcation
[18, 24], with λ1,2,3,4 = (±ik0,±ik0). The transition
from case 1 to case 4 is via a reversible Takens-Bogdanov
(RTB) bifurcation with eigenvalues λ1,2,3,4 = (±q0, 0, 0)
[18, 19] while the transition from case 3 to case 4 is via
a reversible Takens-Bogdanov-Hopf (RTBH) bifurcation
with eigenvalues λ1,2,3,4 = (±ik0, 0, 0) [18, 19]. The un-
folding of all these scenarios is related to the quadruple
zero (QZ) codimension-2 point [18, 19]. As shown in
the next section the transitions between these different
regimes organize the parameter space for DSs.
The eigenvalues satisfying Eq. (11) are

λ = ±
√

(θ − 2I0)ν ±
√

I20 − 1. (12)

Figure 2 summarizes the possible eigenvalue configura-
tions for normal dispersion (ν = −1). The transition at
I0 = 1, i.e., along the green curve

ρ =
√

1 + (1− θ)2 (13)

in Fig. 4, corresponds to a BD transition when θ < 2
and an HH transition when θ > 2. Figures 2(a)-(b) cor-
respond to the case θ < 2; we see that the saddle-node
bifurcation at SNhom,1 corresponds to a RTB bifurca-
tion. In contrast, for θ > 2 SNhom,1 has become a RTBH
bifurcation (Fig. 2(d)). For θ = 2 (Fig. 2(c)) the BD,
HH, RTB and RTBH lines meet at the QZ point. In the
parameter space of Fig. 4 the QZ point corresponds to
(θ, ρ) = (2,

√
2). The other relevant bifurcation lines in

this scenario correspond to SNhom,2. This point corre-
sponds to a RTB bifurcation in space regardless of the
value of θ.
In terms of spatial dynamics, DSs correspond to inter-

sections of the stable and unstable manifolds of the HSS
[23]. In cases 1 and 2 the HSS has a 2-dimensional stable

FIG. 4: (Color online) The (θ, ρ) parameter space for
normal dispersion in the region of existence of dark
solitons. The green line corresponds to the HH
bifurcation, the black lines to SN bifurcations of the
HSS, and the red lines to SN bifurcations of the dark
DSs. The bifurcation lines and the regions I–IV are
discussed in more detail in the text.

and a 2-dimensional unstable manifold. These manifolds
are transverse to the 2-dimensional fixed point subspace
of the symmetry (x,A) 7→ (−x,A) and hence intersect
in a structurally stable way. Therefore we expect DSs
in cases 1 and 2 only. In case 4, the stable and un-
stable manifolds of the HSS are 1-dimensional and DSs,
although possible, are exceptional [25]. In Fig. 2(b) DSs
bifurcate from both SNhom,1 and SNhom,2. When HH
is present (Fig. 2(d)) DSs bifurcate from HH and from
SNhom,2.

In Sec. IV A we show that it is possible to compute
DSs analytically near the bifurcation points that produce
them, and use the resulting expressions to initialize nu-
merical continuation [26] of these states.

IV. BIFURCATIONS AND EXISTENCE OF

DISSIPATIVE SOLITONS

A. Weakly nonlinear analysis

In this section we compute weakly nonlinear DSs using
multiple scale perturbation theory near the RTB bifur-
cation corresponding to SNhom,2. The procedure applies
equally around the other RTB point at SNhom,1. Fol-
lowing [17], we fix the value of θ and suppose that the
DSs at ρ ≈ ρt, where ρ = ρt corresponds to the SNhom,2

bifurcation, are captured by the ansatz U = U∗ + u,
V = V ∗+v, where U∗ and V ∗ represent the HSS At

0 and
u and v capture the spatial dependence. We next intro-
duce appropriate asymptotic expansions for each variable
in terms of a small parameter ǫ defined through the re-
lation ρ = ρt + ǫ2δ, where δ is defined in the Appendix.
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Each variable is written in the form

[

U∗

V ∗

]

=

[

Ut

Vt

]

+ ǫ

[

U1

V1

]

+ ... (14)

and

[

u

v

]

= ǫ

[

u1
v1

]

+ ǫ2

[

u2
v2

]

+ ... (15)

and these expressions inserted into Eq. (3). Solving order
by order in ǫ we find that the leading order asymptotic
solution close to the RTB point is given by

[

U

V

]

=

[

Ut

Vt

]

+ ǫ

[

U1 + u1
V1 + v1

]

, (16)

where Ut and Vt correspond to the HSS at ρ = ρt, and

[

u1
v1

]

=

[

U1

V1

]

ψ(x), (17)

with

[

U1

V1

]

= µ

[

1

η

]

(18)

and

ψ(x) = −3sech2

[

1

2

√

−α2

α1

(
ρ− ρt
δ

)1/4

x

]

. (19)

Here η, µ, α1 and α2 are parameters defined in the
Appendix, where the details of the calculation can be
found. The localized structure defined by the asymptotic
solution is shown in Fig. 22 of the Appendix; the negative
sign in Eq. (19) implies that the solution is a hole in the
background At

0 state, i.e., a dark soliton. Of course, on
a large domain we expect to find states with 2 or more
dark solitons as well. When these are well separated these
states behave like 1-soliton states and so should bifurcate
from the vicinity of SNhom,2 just like the 1-soliton states.

We now discuss the bifurcation structure of dark soli-
tons in two regimes: the bistable region before the QZ
point, namely for

√
3 < θ < 2, and the bistable region

after QZ, i.e., for θ > 2, and use this bifurcation struc-
ture to explain how the Maxwell point (defined below)
mediates between dark solitons and states we refer to as
bright solitons. The dark solitons represent states with
intensity below the background intensity |At

0|2 while the
bright solitons represent states with intensity that ex-
ceeds the lower background intensity |Ab

0|2 (Fig. 2). The
latter could therefore also be referred to as anti-dark soli-
tons [27].

SNA

SN1
SN2 (i)

(vi)

(iii)

(iv)

(v)

(vii)

(viii)

(ii)

SNhom,2

SNhom,1

A0
t

Ao
m

Ao
b

A0
t

Ao
m

(ix)

(x)

(xi)

(xii)

FIG. 5: (a) Bifurcation diagram at θ = 1.95. (b) Zoom
of panel (a) around SNhom,2. The homogeneous steady
states HSS are shown in black, 1-soliton states in red
and 2-soliton states in green. A branch of nonidentical
2-soliton states bifurcates from the the branch of
identical 2-soliton states near SNA and is shown in blue.
All undergo collapsed snaking in the vicinity of
ρM ≈ 1.3506074. Temporally stable (unstable) DSs are
indicated using solid (dashed) lines. Profiles
corresponding to the labeled locations are shown in
Fig. 6 and in more detail in Fig. 7.

B. Dark solitons for
√
3 < θ < 2

In the following we use the L2 norm, ||A||2 ≡
1
L

∫ L

0
|A|2 dx, to represent the DSs in a bifurcation di-

agram. Figure 5, computed for θ = 1.95, reveals the
presence of a branch of single dark solitons in the domain
(hereafter the 1-soliton state, red curve). This branch bi-
furcates from HSS very close to SNhom,2 as anticipated
in the preceding section and undergoes collapsed snaking
[28, 29], i.e., it undergoes a series of exponentially de-
caying oscillations in the vicinity of a critical value of ρ,
hereafter ρ = ρM ≈ 1.3506074. During this process the
hole corresponding to the dark soliton deepens, forming
a pair of fronts connecting At

0 and Ab
0 and then broad-

ens as the Ab
0 state expels At

0 (Fig. 6, profiles (i)–(iii)),
becoming in an infinite system a heteroclinic cycle be-
tween At

0 and Ab
0 at ρM . In gradient systems this point

corresponds to the so-called Maxwell point, where both
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

(xi) (xii)

U(x)

V(x)

FIG. 6: (Color online) Spatial profiles of DSs (dark and
bright 1-soliton and 2-soliton states) corresponding to
the locations indicated in Fig. 5(a,b), with U(x) in
black and V (x) in blue. Near SNhom,2 the states
resemble holes (dark solitons) while near SNhom,1 they
resemble localized pulses (bright solitons).

homogeneous solutions have equal energy. In nongra-
dient systems, such as LLE, such a cycle may still be
present, even though an energy cannot be defined, and
we retain this terminology to refer to its location, i.e.,
the parameter value corresponding to the presence a pair
of stationary, infinitely separated fronts connecting At

0 to
Ab

0 and back again. The successive saddle nodes seen in
Fig. 5 correspond to the appearance of additional oscil-
lations in the tails of the fronts as the local maximum
(minimum) at the symmetry point x = 0 turns into a lo-
cal minimum (maximum) and back again, and hence to a
gradual increase in the width of the hole. Figure 7 shows
a detail of this process. The associated hole states are
temporally stable between SN1 and SN2, and on all the
subsequent branch segments with positive slope [28, 29],
shown using solid lines. A profile of a stable localized
hole on the SN1–SN2 segment is shown in Fig. 6(i). For
the value of θ used in Fig. 5 the collapse of the saddle
nodes to ρM is very abrupt because the spatial oscilla-
tions in the tail of the front decay very fast. Figure 8
shows a clearer example of the behavior in this region,
albeit for a larger value of θ.

In finite systems the hole or 1-soliton branch departs
from ρ ≈ ρM when the maximum amplitude starts to
decrease below At

0 and the solution turns into a bright

soliton sitting on top of Ab
0 (Fig. 6, profile (iv)). The

branch then terminates at SNhom,1, where the amplitude
of this soliton falls to zero. On an infinite domain the DS
branches bifurcating from SNhom,2 and SNhom,1 remain
distinct and do not connect up.
Figure 5 also shows the 2-soliton branch (green curve).

This branch consists of a pair of equidistant dark solitons
within the periodic domain (Fig. 6, profiles (v)–(viii)).
The states on this branch can be viewed as 1-pulse states
on the half-domain and it is no surprise therefore that
they follow the behavior of the 1-pulse states shown in
red. In fact, this is so for all n-soliton branches (n ≥
3, not shown), provided the solitons remain sufficiently
well separated; finite size effects push the bifurcation to
these states farther from the saddle-node at SNhom,2 as
n increases, with similar behavior near SNhom,1.
Of particular interest is the third soliton branch

(Fig. 5(b), blue curve). This branch bifurcates from the
vicinity of the first left fold on the 2-soliton branch, la-
beled SNA. This branch also undergoes collapsed snaking
in the vicinity of ρM . The states on this branch start out
as a 2-soliton state consisting of a pair of (nearly) identi-
cal solitons (Fig. 6, profile (ix)) but only one of the two
solitons broadens near ρM (Fig. 6, profiles (x)–(xi)). The
result is the profile (xii) shown in Fig. 6 after translation
by L/4. This state is seen to correspond to a single bright
soliton, with a dip in the middle; numerical continuation
shows that these states terminate on HSS near SNhom,1

at the same location as the 1-soliton branch (red curve).
This new branch plays a particularly important role for
θ > 2, as discussed next.

C. Dark solitons for θ > 2

For θ > 2 the saddle node SNhom,1 becomes a RTBH
point with spatial eigenvalues λ1,2,3,4 = (0, 0,±ik0) and
homoclinic orbits are exceptional [17, 25]. However, in
this case this point is preceded by a HH bifurcation on
Ab

0, which gives rise to a branch of PSs. The PSs bifur-
cate subcritically (Fig. 8) but remain unstable through-
out their existence range, despite the presence of a saddle
node. This is the case for all values of the detuning θ we
explored (2.3 < θ < 10). Thus no bistability between
PSs and Ab

0 results and no snaking of bright DSs takes
place [9, 19]. Instead the bright solitons bifurcating from
HH connect to the dark solitons originating at ρ = ρt, as
we now describe.
Figure 8(a) shows the bifurcation diagram of the 1-

soliton states (red branch) for θ = 4 obtained by nu-
merically continuing the analytical prediction obtained
in Eq. (19) away from SNhom,2. Figure 9(a) shows a de-
tail of this branch. These states are initially unstable
but as ρ increases these unstable 1-soliton states grow
in amplitude and acquire stability at saddle node SN1.
The DS profile on this segment of the branch is shown in
Fig. 10(i). This solution loses stability at SN2 but starts
to develop a spatial oscillation (SO) in the center; solu-
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(i)

(ii)

(iv)

(v)
(vi)

(viii)
(vii)

(iii)

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

U(x)
V(x)

FIG. 7: (Color online) Spatial profiles of dark solitons near the upper end of the θ = 1.95 1-soliton branch at
locations indicated in the middle panel, showing that the splitting of the central peak (dip) in (U(x), V (x)), shown
in black and red, respectively, occurs at different locations along the branch.

HH

(b) (c)HH SC

SNhom,2

SNhom,1PS

(a)

SC
(vi)

FIG. 8: (Color online) (a) Bifurcation diagram for θ = 4
showing collapsed defect-mediated snaking of 1-soliton
(red line) and 2-soliton (green line) branches, showing
their reconnection with the PS branch (orange line) that
bifurcates from HH on Ab

0. Temporally stable (unstable)
structures are indicated using solid (dashed) lines.
Black lines correspond to HSS. Enlargements of panel
(a) can be found in Figs. 9 and 12. (b) The spatial
eigenvalues λ of A0 at locations HH and SC in (a).

tions of this type become stable at SN3. An example of
the resulting stable solution can be found in Fig. 10(ii).
This process repeats in such a way that between succes-
sive saddle nodes on the left or right a new spatial oscil-
lation is inserted in the center of the dark soliton profile

and the soliton broadens, decreasing its L2 norm. As a
result, as one proceeds down the snaking branch the cen-
tral peak (dip) repeatedly splits. Details of this process
are shown in Fig. 11. The resulting behavior resembles in
all aspects the phenomenon of defect-mediated snaking
described in [29] except for the exponential shrinking of
the region of existence of these states as the hole broad-
ens. Consequently we refer to this behavior as collapsed
defect-mediated snaking. Numerically the collapse oc-
curs at ρ = ρM ≈ 2.1753479. The DSs at this location
correspond to broad hole-like states of the type shown in
Fig. 10(v). As in Sec. IVB further decrease in the norm
signals that the two fronts connecting states At

0 and Ab
0

at ρM are starting to separate (Fig. 10(vi)); this process
continues, resulting in the bright soliton state shown in
Fig. 12(iv); this state is shifted by L/2 relative to panels
(i)-(vi) of Fig. 10. Thereafter the amplitude of the peak
at x = 0 starts to decrease and the 1-soliton branch de-
parts from ρM , ultimately connecting to the branch of
small amplitude PSs (Fig. 12(i)) that bifurcates subcrit-
ically from HH (see inset in Fig. 12, top panel).

Figure 8(a) also shows the 2-soliton state (green line)
that bifurcates from the vicinity of SNhom,2 for θ = 4 just
as in the case θ = 1.95. For θ > 2 this second DS family
plays a key role since it is responsible for providing the
second of the two branches of localized states that are
known to be associated with HH. Figures 9(b), 12 and
13 show how this happens. The green branch in Fig. 9(b)
consists of states with identical equidistant solitons; like
the 1-soliton states, the 2-soliton states proceed to de-
velop internal oscillations (Figs. 10(vii)-(viii)). These un-
dergo a symmetry-breaking pitchfork bifurcation at SNA

giving rise to a branch of nonidentical solitons (in blue).
One of these gradually acquires complex internal struc-
ture while the other remains unchanged. Figures 10(ix)-
(x) show this state at the locations shown in Fig. 9(b),
while Fig. 13(xii) shows a translate of such a 2-soliton
state by L/4. Figures 13(xii)-(ix) and 12(xiv)-(xi) show
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(i)

(ii)

(iii)

(iv)

(v)

(ix)

SN1

SN2 SN3

SN4
SN5

SN6
SN7

SN8

(vii)

(viii)SNhom,2

SNhom,2

(a)

(b)

(x)SNA

FIG. 9: (Color online) Detail of the 1-soliton (panel (a),
red line) and 2-soliton (panel (b), green line) branches
in the vicinity of SNhom,2 for θ = 4. Black lines show
the homogeneous states HSS. Panel (b) also shows a
family of nonidentical 2-soliton states (blue line) that
bifurcate from the saddle node SNA on the 2-soliton
branch and also undergo collapsed defect-mediated
snaking. Temporally stable (unstable) structures are
indicated using solid (dashed) lines. Profiles
corresponding to the labeled locations are shown in
Fig. 10, with details of this process shown in Fig. 11.

the subsequent evolution of this 2-soliton state into a
single wave packet with a minimum at its center x = 0.
It is this state that connects to PSs at the same loca-
tion as the corresponding wave packet (red) with a max-
imum at x = 0 that originates in the 1-soliton state near
SNhom,2. In contrast, the 2-soliton state that also appears
near SNhom,2 (green) terminates in a distinct bifurcation
on the PS branch, as also shown in Fig. 12. All three
branches undergo collapsed defect-mediated snaking in-
between. Evidently there are similar branches that bifur-
cate from other folds on the 2-soliton branch (not shown).

We mention that as the domain length increases the
termination point of the 1-soliton (red line) and the non-
identical 2-soliton branch (blue line) migrates towards
HH and in the limit of an infinite domain the bright
solitons bifurcate from Ab

0 simultaneously with the PSs,
exactly as predicted by the normal form for the spatial
Hopf bifurcation with 1:1 resonance [24]. We also men-
tion that, in principle, the Maxwell point ρM may collide

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

U(x)

V(x)

FIG. 10: (Color online) Spatial profiles of the solutions
represented in Fig. 8(a) for θ = 4, showing U(x) in
black and V (x) in blue. Panels (i)-(vi) correspond to
1-soliton states (red branches in Figs. 8(a) and 9(a)),
panels (vii)-(viii) to 2-soliton states (green branches in
Figs. 8(a) and 9(b)) and panels (ix)-(x) to the branch of
nonidentical 2-soliton states (blue branch in Fig. 9(b)).

with the saddle node of the PS branch (see [31] for de-
tails). However, we have determined that such a collision
does not occur in the LLE and that the PS branch re-
mains well-separated from the collapsed snaking branches
of dark solitons around ρM (at least in the parameter
range 2.3 < θ < 10).
We turn, finally, to the structure of the spatial eigen-

values shown in Fig. 8(b,c). Panel (b) confirms that HH
corresponds to a Hamiltonian-Hopf bifurcation in space.
Panel (c) shows that at the termination point of the PS
branch the HSS state Am

0 has 2 purely real and 2 purely
imaginary spatial eigenvalues, indicating that SC corre-
sponds to a global bifurcation in space and not a local
bifurcation. Both HH and SC are formed in the process
of unfolding the spatially reversible QZ bifurcation that
takes place at SNhom,1 when θ = 2.

D. Soliton location in the (θ, ρ) plane

Tracking each bifurcation point in the bifurcation di-
agram as a function of θ we obtain the (θ, ρ) parameter
plane shown in Fig. 4. The green solid line represents a
BD transition for θ < 2 that turns into a HH bifurcation
for θ > 2. The saddle-node bifurcations determine the
regions of existence of the different dark solitons shown
previously. With increasing θ the region of existence of
these states becomes broader (Fig. 14(a,b)). In contrast,
when θ decreases the branches of solutions with several
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(i)

(ii)

(iii)
(iv)

(vi)

(v)
(vii)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(i)

(viii)

U(x)

V(x)

FIG. 11: (Color online) Spatial profiles of the dark solitons near the upper end of the θ = 4 1-soliton branch at
locations indicated in the middle panel, showing that the splitting of the central peak (dip) in (U(x), V (x)), shown
in black and red, respectively, occurs at different locations along the branch.

SO progressively shrink, disappearing in a series of cusp
bifurcations C1,...,C4, as shown in Fig. 4.

We distinguish four main dynamical regions, labeled I
to IV in the phase diagram in Fig. 4, on the basis of the
existence of HSS and dark DSs:

• Region I: The bottom HSS Ab
0 is stable. No dark

DSs or top HSS At
0 exist. This region spans the

parameter space ρ < ρBD for θ <
√
3 and ρ < ρt

for θ >
√
3.

• Region II: The bottom HSS Ab
0 and top HSS At

0

coexist and both are stable. No dark DSs are found.
This region spans the parameter space ρSN1

< ρ <

ρb for θ >
√
3.

• Region III: The top HSS At
0 is stable. No dark DSs

or bottom HSS Ab
0 exist. This region spans the

parameter space ρ > ρBD for θ <
√
3 and ρ > ρb

for θ >
√
3.

• Region IV: The bottom HSS Ab
0 and top HSS At

0

are stable and coexist with (possibly unstable) dark
DSs. This region spans the parameter space ρt <
ρ < ρSN1

for θ >
√
3.

Here ρt ≡ ρSNhom,2
and ρb ≡ ρSNhom,1

as before.

Region IV is the main region of interest in this work.
It can be further subdivided to reflect the locations of
different types of DSs. In the next Section, we refer to
the region between SN1 and SN2, i.e., the region of exis-
tence of 1-SO dark solitons, as subregion IV1. Similarly,
subregion IV2 corresponds to 2-SO dark solitons between
SN3 and SN4 and so on. While both HSS are stable in
region IV, the stability of dark DSs in the various subre-
gions depends on the parameter values (θ,ρ) as discussed
next.

V. OSCILLATORY AND CHAOTIC DYNAMICS

We have seen that the range of values of the parameter
ρ within which one finds dark solitons increases rapidly
with increasing detuning θ although the interval with sta-
ble stationary dark solitons is reduced by the presence of
oscillatory instabilities that set in as θ increases (Fig. 14).
These intervals of instability open up on the stable por-
tions of the collapsed snaking branches, between pairs
of supercritical Hopf bifurcations on either side. Con-
sequently these instabilities lead to stable temporal os-
cillations resembling breathing of the individual solitons.
To characterize the resulting dynamics we combine here
linear stability analysis in time with direct integration
of the LLE. We also compute secondary bifurcations of
time-periodic states and point out that in appropriate
regimes the LLE exhibits dynamics that are very similar
to those exhibited by excitable systems.

Figures 14(a) and (b) show that for both θ = 5 and
θ = 10 the single dark soliton becomes unstable in a
supercritical Hopf bifurcation (H−

1 ) leading to an oscil-
latory state. Figure 15(i) shows the resulting state at
location (i) in Fig. 14(a). The temporal oscillations dis-
appear upon further decrease in ρ and do so in a reverse
supercritical Hopf at H−

2 , thereby restoring the stabil-
ity of the single dark soliton. For larger values of θ this
behavior not only persists but the soliton with 2 spa-
tial oscillations (SO) also exhibits temporal oscillations
between two back-to-back Hopf bifurcations (Fig. 14(b)).
An example of such oscillatory 2-SO dark soliton is shown
in Fig. 16(i).

Figure 15(ii) shows the corresponding oscillation of the
2-soliton state for θ = 5 at location (ii) in Fig. 14(a). The
solitons oscillate in phase but in a nonsinusoidal manner.
Figures 15(iii)-(iv) show oscillations of a bound state of
two nonidentical dark solitons at locations (iii) and (iv)
in Fig. 14(a). In these states the simple dark soliton on
the left oscillates in a periodic fashion while the struc-
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(ii)

(iii)

(i)

(iv)

(v) (vi)

(vii) (viii)

(ix) (x)

(xi) (xii)

(xiii) (xiv)

(i)
(ii)

(iii)
(vii)

(xi)

(iv)

(viii)

(xii)

(xiii)

(vi)

(x)
(xiv)

(ix)

(v)

HH

HH

U(x)

V(x)

FIG. 12: (Color online) Bifurcation diagram for θ = 4
(top panel) showing the bifurcation of the three families
of localized states (bright solitons) from the subcritical
PS branch, together with sample solution profiles
corresponding to the locations indicated in the top
panel. States with maxima at x = 0 (red line) connect
with the corresponding branch of dark solitons shown in
Figs. 8(a) and 9(a) while states with minima at x = 0
(blue line) connect with the corresponding branch in
Fig. 9(b). The states shown in green consist of two
equidistant bright solitons and these connect to the
corresponding branch in Fig. 9(b).

tured dark soliton on the right remains essentially time-
independent. Figure 16(ii) shows a periodic oscillation
of a 2-soliton state for θ = 10 corresponding to location
(ii) in Fig. 14(b). The individual solitons are structured

and oscillate as in panel (i). Once again, both oscillate
in phase.

We can complete the parameter space shown in Fig. 4
by adding the curves corresponding to the oscillatory in-
stabilities at H−

1 and H−

2 . Figure 17 shows the parameter
space with the curves corresponding to the temporal in-
stabilities of the 1-SO and 2-SO dark solitons included;
the saddle nodes of the remaining dark solitons are omit-
ted in order to give a clearer understanding of this be-
havior. Bifurcation lines separating different dynamical
regimes are labeled according to Fig. 14. With increas-
ing θ the Hopf bifurcation H−

1 of the single dark DS ap-
proaches SN1 and we see that both lines are almost tan-
gent although, for the parameter values presented, they
do not meet. The same scenario repeats for the Hopf
bifurcation H−

3 of the 2-SO state.

This scenario can be better understood by looking at
Fig. 18 where several slices of Fig. 17 at different values of
θ are shown. For stationary states we choose to plot the
minimum |A|inf := minx(|A(x)|) of the amplitude A(x)
instead of the L2 norm to improve the clarity of the bi-
furcation diagram. For oscillatory solutions we plot the
maxima and minima of this quantity, denoted by crosses.
The diagram in Fig. 18(a) corresponds to a cut of Fig. 17
at θ = 4.6. At this θ value the oscillatory state bifurcates
from H−

1 , grows in amplitude as ρ decreases, before re-
connecting to the stationary DS at H−

2 in a reverse Hopf
bifurcation. For larger θ, the amplitude of the attract-
ing periodic orbit between H−

1 and H−

2 increases, and at
some point the orbit undergoes a period-doubling (PD)
bifurcation, starting a route to a chaotic attractor. This
happens already at θ = 5 as can be seen in Fig. 18(b).
At θ = 5.2 (Fig. 18(c)) the chaotic attractor touches the
saddle branch S corresponding to unstable dark solitons
and disappears through a boundary crisis (BC) [32].

Let us discuss this process in detail for the attracting
periodic orbit emerging from H−

2 (the case of H−

1 is anal-
ogous). In Fig. 19 we show a zoom of the diagram in
Fig. 18(c) close to BC2 and in Fig. 20 a series of pan-
els characterizing the attracting periodic orbit at differ-
ent values of ρ is shown. From left to right we show a
series of time traces showing the oscillation in the min-
imum amplitude |A|inf of the soliton, the Fourier trans-
form of these time traces, a two-dimensional phase space
projection onto (U(x0, t), V (x0, t)), x0 being the position
of the center of the structure, and a zoom of the phase
space. Panel (a) in Fig. 20 corresponds to the situation
at ρ = 2.70248 in Fig. 19 labeled with (a). As we can
see from the time trace and the frequency spectrum, the
periodic orbit has a single period. In the phase space
shown in Fig. 20 we observe a fixed point corresponding
to At

0, a saddle point corresponding to the unstable dark
soliton denoted by S and a periodic orbit corresponding
to a periodic oscillation in time, localized in space. For
this value of ρ the saddle S is far from the periodic or-
bit. For ρ = 2.70358 (panel (b) corresponding to label
(b) in Fig. 19) the time trace and the spectrum reveal
that the periodic orbit has period two as can also be dis-
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(i)
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(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)
(xii)

(i) (ii)

(iii) (iv)

(v) (vi)
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(xi) (xii)
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FIG. 13: Details of the profile transformation at θ = 4 that changes two nonidentical dark solitons (blue branch in
Fig. 9(b)) into a bright soliton with a minimum at its center x = 0, allowing it to connect to the PS at the same
location as the 1-soliton state (red branch in Fig. 9(a)) which evolves into a bright soliton with a maximum at its
center x = 0. The 2-soliton state consisting of two identical equidistant solitons (green branch in Fig. 9(b)) also
terminates on the PS branch, but at a distinct location.

cerned from the phase space projection. In Fig. 20(c),
for ρ = 2.71528, the periodic orbit has just suffered an-
other period-doubling resulting in a periodic orbit with
period four. Finally, Fig. 20(d) shows the situation for
ρ = 2.72178, where the orbit has become a chaotic at-
tractor. At this parameter value the system is very close
to the boundary crisis BC2 as can appreciated from the
near tangency between S and the chaotic attractor. Once
S touches the attractor, the latter disappears and only
At

0 and Ab
0 remain as attractors of the system. The same

occurs to the periodic orbits appearing at H−

1 . Using
time simulations we were able to estimate the position
of the boundary crises BC1 and BC2 in parameter space,
labeled in Fig. 17(a). From Fig. 18(c) to Fig. 18(d) we
can see that at the same time as BC1 moves toward H−

1 ,
H−

1 itself approaches SN1 and therefore that the region
of existence of oscillatory DSs shrinks. This behavior can
also be seen in Fig. 17(a).
At this point we can differentiate five main dynami-

cal subregions related to region IV1, i.e., the 1-SO dark
soliton, namely:

• IVa
1 : The 1-SO dark soliton is stable

• IVb
1: The soliton oscillates with a single period

• IVc
1: The soliton oscillates with period two

• IVd
1: The soliton oscillates with period four

• IVe
1: Region of temporal chaos bounded by a

boundary crisis (BC2).

The region IV2 of 2-SO dark solitons has the same se-
quence of subregions IVa

2 ,...,IV
e
2, etc.

Close to BC2 (respectively, BC1) the system can ex-
hibit behavior reminiscent of excitability [33]. Here the
stable manifold of the saddle soliton S acts as a sepa-
ratrix or threshold in the sense that perturbations of At

0

across that threshold do not relax immediately to At
0 but

lead first to a large excursion in phase space before re-
laxing to At

0. In this case the excursion corresponds to
what is known as a chaotic transient, where the system
exhibits transient behavior reminiscent of the chaotic at-
tractor at lower values of ρ [10, 34]. In Figs. 21(a) and (b)
we show two examples of this kind of transient dynamics.
We choose a value of ρ close to BC2, namely ρ = 2.7235,
and modify the parameter ρ for a brief instant using a
Gaussian profile of width σ and height h using the instan-
taneous transformation ρ 7→ ρ+h(t) exp[−(x−L/2)2/σ2],
where ρ = 2.7235 and σ = 0.781250 with h(t) = −2.55
for 10 ≤ t ≤ 15 and h = 0 elsewhere [35]. As shown in
Fig. 21(a) such a perturbation of At

0 allows the system to
explore the chaotic attractor before returning to the rest
state. In contrast, in Fig. 21(b) the system explores just
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SNhom,2

(a)

SNhom,2

SNA

(b)
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H1
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H4

H2
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(i)

(ii)

(iii)

(iv)

(i)

(ii)

H2
_

H1

H2

H1

FIG. 14: (Color online) Bifurcation diagram for (a)
θ = 5 and (b) θ = 10 showing that the DSs are now
unstable within intervals between back-to-back Hopf
bifurcations. The Hopf bifurcations on the left (H−

2 ,
panel (a)) for the 2-soliton states (green and blue lines)
coincide with that of the 1-soliton states (red line).

one loop of the orbit before returning to the rest state.

VI. DISCUSSION

In this work we have presented a comprehensive
overview of the dynamics of the LLE in the normal dis-
persion regime. The bifurcation structure of dark dissi-
pative solitons (DSs), their stability and the regions of
their existence were determined. Three families of dark
solitons, the 1-soliton and two different types of 2-soliton
states, located on three intertwined branches undergo-
ing collapsed snaking in the vicinity of the same Maxwell
point, were identified. The 1-soliton states bifurcate from
the top left fold of an S-shaped branch of spatially homo-
geneous states and terminate either on the lower homoge-
neous steady state (HSS) branch in a Hamiltonian-Hopf
(HH) (equivalently, modulational instability) or at the
bottom right fold, depending on the detuning parameter
θ. On a periodic domain of finite spatial period, these
bifurcations are slightly displaced from the folds, and in
the case of the HH bifurcation to finite amplitude on the

(ii)

(iii)

(iv)

(i)

FIG. 15: (Color online) (i) Oscillatory 1-soliton state,
(ii) oscillatory 2-soliton state, (iii) a bound state of an
oscillating and a stationary dark soliton, all computed
for θ = 5, ρ = 2.6. (iv) A similar state to panel (iii) but
for θ = 5, ρ = 2.56. The solutions are represented in a
space-time plot of U(x, t) with time increasing upwards.
The profile at the final instant, t = 20, is shown above
each space-time plot.
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(i)

(ii)

FIG. 16: (Color online) (i) Oscillatory 1-soliton state,
and (ii) oscillatory 2-soliton state, when θ = 10, ρ = 4.5.
The solutions are represented in a space-time plot of
U(x, t) with time increasing upwards. The profile at the
final instant, t = 20, is shown above each space-time
plot.

branch of periodic states created in this bifurcation. The
2-soliton states consisting of a pair of identical equidis-
tant solitons in the domain follow a similar branch but
branch off the HSS farther from the folds. This is a finite
size effect: these states behave like the 1-soliton states
on a periodic domain with half the domain length. The
third branch consists of a pair of nonidentical solitons and
plays a key role: this branch bifurcates from the branch
of identical 2-soliton states in a pitchfork bifurcation; as
one follows this branch to lower L2 norm these states un-
dergo a remarkable metamorphosis into a bright soliton
with a minimum at its center that allows it to terminate
on the periodic states created in the HH bifurcation at
the same location as the 1-soliton states, as demanded
by theory. The details of this transition are captured in
Figs. 12 and 13. Related behavior likely occurs in the
Swift-Hohenberg equation as well (see Fig. 19 of [36]).

At yet higher values of the detuning parameter θ we
found that the localized states undergo oscillatory insta-
bilities, and at a certain point a period-doubling bifurca-
tion initiates a period-doubling cascade into chaos. We
have used this observation to determine the regions in pa-
rameter space where different stationary and dynamical
states coexist.

We have shown that the bifurcations that organize the
spatial dynamics undergo an important transition at a

FIG. 17: (Color online) The (θ, ρ) parameter space for
normal dispersion (ν = −1) showing the region of
existence of (a) 1-SO dark solitons and (b) 2-SO dark
solitons. The different bifurcations are labeled, with
H−

j indicating a supercritical Hopf bifurcation at

location Hj . The red (gray) region corresponds to
stable stationary (oscillatory) dark DSs.

Quadruple-Zero (QZ) point, which occurs at (θ, ρ) =

(2,
√
2). Here, in the normal dispersion regime, the

Belyakov-Devaney (BD) transition turns into an HH bi-
furcation as the detuning θ increases through θ = 2. For
θ > 2 a spatially periodic pattern bifurcates subcritically
from the bottom homogeneous state at this HH bifurca-
tion. These periodic solutions were found to be unstable,
and hence no stable bright DSs were found. However, the
saddle-node bifurcation of the top homogeneous solution
remains a reversible Takens-Bogdanov (RTB) bifurcation

for all θ >
√
3. This observation explains the existence

of multiple families of dark DSs in this regime, and their
organization in the so-called collapsed snaking structure
[17, 29]. As mentioned, these dark DSs undergo various
dynamical instabilities for larger values of the detuning
θ.

The bifurcation scenario is largely reversed in the case
of anomalous dispersion, where the same QZ point plays
an equally important role, but now the HH bifurcation
turns into a BD bifurcation when θ > 2 [11, 12]. More-
over, the top homogeneous solution is now always un-
stable and the upper fold never corresponds to a RTB
bifurcation. This reverse character of the bifurcation
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FIG. 18: Bifurcation diagrams corresponding to
different slices of the parameter space in Fig. 17 plotted
using |A|inf as a measure of the amplitude. Solid
(dashed) lines correspond to stable (unstable)
structures, and red (black) colors correspond to 1-SO
dark DSs (HSS). The red crosses represent maxima and
minima of the amplitude of the oscillatory dark DSs.
The gray labeled bars above each panel show the extent
of the regions I, II, and IV. (a) θ = 4.6, (b) θ = 5, (c)
θ = 5.2, (d) θ = 5.5.

points has important consequences. First, dark DSs no
longer exist, although the inclusion of additional, higher

in
f

FIG. 19: Detail of the bifurcation diagram of Fig. 18(c)
for θ = 5.2 close to the BC1 point. Vertical lines
separate period 1 oscillations (region IVb

1), period 2
oscillations (region IVc

1), period 4 oscillations (region
IVd

1) and temporal chaos in region IVe
1. Lines and

markers in red (black) correspond to dark DSs (HSS).
Labels from (a) to (d) correspond to the dynamics
shown in Fig. 20.

order dispersion can stabilize the top homogeneous so-
lution and hence lead to stable dark DSs [37]. Second,
for 41/30 < θ < 2, a stable periodic solution coexists
with the stable bottom homogeneous solution giving rise
to bright DSs that are organized in a homoclinic snaking
structure [9, 19]. For θ > 2, however, the snaking struc-
ture of such bright DSs breaks down, as will be reported
elsewhere. Finally, despite these differences in the re-
gions of existence of dark and bright DSs in the normal
vs. anomalous dispersion regime, the temporal dynamics
of the existing solutions are very similar at higher val-
ues of the detuning θ. Here, for normal dispersion, we
reported the existence of oscillatory and chaotic dynam-
ics of dark DSs as the detuning is increased. The same
dynamical instabilities have been observed in the case of
anomalous dispersion at high values of θ, but this time
for bright DSs [10, 11]. This suggests that the unfold-
ing of the dynamics can be related to the same type of
bifurcation point in both cases.

VII. CONCLUDING REMARKS

The analysis of this paper provides a detailed map of
the regions of existence and stability of dark DSs, which
could serve as a guide for experimentalists to target par-
ticular DS solutions. We showed that dark DSs exist only
in a well-defined zone within the wider region of bistabil-
ity between two stable homogeneous solutions. Within
this zone, dark DSs are organized in a bifurcation struc-
ture called a collapsed snaking structure. The word ”col-
lapsed” refers to the fact that the region of existence of
dark DSs shrinks exponentially with increasing number
of spatial oscillations (SOs) in the soliton profile (Fig. 8).
The collapse of the snaking structure implies that DSs
with many SOs can only be found at the Maxwell point



15

(a)

(b)

(c)

(��

Ao
t

S

S

S

S

S S

S
S

Ao

t

Ao

t

Ao

t

in
f

in
f

in
f

in
f

lo
gF

    [ 
  

  
 ]

in
f

lo
gF

    [ 
  

  
 ]

in
f

lo
gF

    [ 
  

  
 ]

in
f

lo
gF

    [ 
  

  
 ]

in
f

FIG. 20: Route to temporal chaos for θ = 5.2. Panels (a)–(d) represent the transition from (a) period 1 oscillations
to (d) temporal chaos, corresponding to the labels in Fig. 19. From left to right: temporal trace of |A|inf , its
frequency spectrum that allows us to differentiate between the different types of temporal periodicity, a portion of
the phase-space containing At

0, S and the periodic attractors, and a zoom of the latter where we can appreciate the
proximity of the solution trajectory to S. (a) ρ = 2.70248 (period 1), (b) ρ = 2.70358 (period 2), (c) ρ = 2.71528
(period 4), (d) ρ = 2.72178 (temporal chaos).

in
f

in
f

FIG. 21: (Color online) Chaotic transient dynamics for θ = 5.2: (a) A chaotic transient is generated when At
0 is

temporally perturbed with a Gaussian perturbation of height h = −2.55 (see gray area in time traces); (b) a similar
excursion for h = −3.4431. In both (a) and (b) the top left panels represent space-time plots of the temporal
evolution of the field U(x, t), the top right panels show the time series of the norm |A|inf and the bottom panels a
projection of the phase space trajectory.

ρM , a fact that favors the observation of DSs with a single SO over that of broader DS with many SOs.
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Although such a collapsed snaking structure persists
for higher values of the detuning θ, we also showed that
narrow dark DSs with a low number of SOs destabilize
first as θ increases (Fig. 14) and start to oscillate in time.
Therefore, at higher values of θ stable dark DSs found ex-
perimentally will most likely have an intermediate num-
ber of SOs. Our general analysis of the multistability
of dark DSs may also explain the numerical observations
in Ref. [12], where it was shown that the pulse profile
of dark DSs becomes more distorted as the detuning in-
creases. This may be due to the fact that stable dark
DSs with a larger number of SOs are more likely to be
found for higher values of the detuning.
The LLE has recently attracted renewed interest ow-

ing to the strong correspondence between Kerr temporal
solitons and frequency combs (FCs) [38]. FCs consist of
a set of equidistant spectral lines that can be used to
measure light frequencies and hence time intervals more
easily and precisely than ever before [39]. For this reason
FCs open up a large variety of new applications ranging
from optical clocks to astrophysics [39]. We explore the
consequences of the present analysis for FC technology
in a companion paper [15].
As shown in Fig. 4, in the normal dispersion regime

rather large values of the detuning θ and pump power ρ
are required to obtain a sufficiently wide region of dark
DSs (region IV) to observe such states experimentally.
However, in recent years, the FC community has become
increasingly successful at reaching the required values of
pump power and detuning. As a result, dark DSs with
different numbers of spatial oscillations (SOs) in their
center (see, e.g., Fig. 10) have been observed in experi-
ments [13]. In Ref. [13] dark DSs were found using a nor-
malized pump power ρ ≈ 2.5 and normalized detuning
θ ≈ 5. Figures 17 and 18 show that around these param-
eter values one can indeed find dark DSs with different
numbers of SOs that can undergo oscillatory instabilities.
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APPENDIX

In this appendix we present details of the weakly non-
linear analysis near the RTB bifurcation at SNhom,2 used
to obtain analytically the spatially localized state in

Eq. (19). These states are solutions of the ODE system
defined by

{ −ν d
2V

dx2
− U + θV − V (U2 + V 2) + ρ = 0

ν
d2U

dx2
− V − θU + U(U2 + V 2) = 0.

(20)

The bifurcation SNhom,2 takes place at

It =
1

3
(2θ +

√

θ2 − 3) (21)

and we consider a Taylor series expansion of ρ around It:

ρ(I0) = ρ(It)
︸ ︷︷ ︸

ρt

+

(
dρ

dI0

)

It
︸ ︷︷ ︸

=0

(I0−It)+
1

2

(
d2ρ

dI20

)

It
︸ ︷︷ ︸

δ

(I0 − It)
2

︸ ︷︷ ︸

ǫ2

+ · · ·

(22)
with

ρt =
√

I3t − 2θI2t + (1 + θ2)It. (23)

Because ρt has a minimum at It, we have

(
dρ

dI0

)

It

= 0

δ =
1

2

(
d2ρ

dI20

)

It

=

√
θ2 − 3

2ρt
> 0.

We define a small parameter ǫ in terms of ρ,

ǫ =

√

ρ− ρt
δ

, (24)

and use ǫ as an expansion parameter.
The localized states of interest can be written in the

form

[

U

V

]

=

[

U

V

]∗

+

[

u

v

]

, (25)

with the spatially uniform states HSS given by

[

U

V

]∗

=

[

Ut

Vt

]

+ ǫ

[

U1

V1

]

+ ǫ2

[

U2

V2

]

+ ... (26)

and the space-dependent terms by

[

u

v

]

= ǫ

[

u1
v1

]

+ ǫ2

[

u2
v2

]

+ ... (27)

We allow the fields u1, v1, u2 and v2 to depend on the
slow variable X ≡ √

ǫx. We first calculate the HSS terms
and then do the same for the space-dependent terms.
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Asymptotics for the uniform states

Inserting the ansatz (26) in Eq. (20), we obtain the
correction to the HSS A0 at any order in ǫ.
At order O(ǫ0) we obtain expressions for Ut and Vt as

a function of θ. At order O(ǫ1) we have

L

[

U1

V1

]

=

[

0

0

]

, (28)

where

L =

[

0 0

−(θ − It − 2U2
t ) −2

]

(29)

is a singular linear operator. Equation (28) has an infinite
number of solutions that can be written in the form

[

U1

V1

]

= µ

[

1

η

]

, (30)

where

η = −1

2
(θ − It − 2U2

t ) (31)

and µ is obtained by solving the O(ǫ2) system. At this
order we obtain the equation

L

[

U2

V2

]

=

[

2U1V1Ut + (2V 2
1 + I1)Vt − δ

−(2U2
1 + I1)Ut − 2V1U1Vt

]

, (32)

where I1 ≡ U2
1 +V

2
1 . Because L is singular, the previous

equation has no solution unless a solvability condition is
satisfied. This condition is given by

µ =

√

δ

3η2Vt + 2ηUt + Vt
. (33)

Asymptotics for the space-dependent states

To calculate the space-dependent component of the
weakly nonlinear state, we proceed in the same fashion.
We insert the full ansatz for the asymptotic state, namely
Eq. (25), into the system (20) and obtain, at order O(ǫ1),

L

[

U1

V1

]

︸ ︷︷ ︸

=0

+L

[

u1
v1

]

=

[

0

0

]

, (34)

where the first term on the LHS vanishes. The general
solution of this equation is

[

u1
v1

]

=

[

U1

V1

]

ψ(X), (35)

FIG. 22: (Color online) Asymptotic and exact hole
solutions A(x) ≡ U(x) + iV (x) close to SNhom,2 for
θ = 4 and ρ = 1.98388. The black solid line shows the
asymptotic solution for comparison with the numerically
exact solution obtained by numerical continuation (red
dashed line). The two lines are indistinguishable.

with ψ(X) a function to be determined at the next order.
At order O(ǫ2)

L

[

u2
v2

]

= −P1

[

u1
v1

]

− P2

[

Ut

Vt

]

, (36)

with the linear operators

P1 =

[

−(2UtV1 + 2U1Vt) −(ν∂2X + 6VtV1 + 2UtU1)

ν∂2X + 6UtU1 + 2VtV1 2VtU1 + 2UtV1

]

(37)
and

P2 =

[

−2v1u1 −(3v21 + u21)

3u21 + v21 2v1u1

]

. (38)

Because L is singular, Eq. (36) has no solution unless
another solvability condition is satisfied. In the present
case, this condition reads

[

1 0
]

P1

[

u1
v1

]

+
[

1 0
]

P2

[

Ut

Vt

]

= 0. (39)

After some algebra, Eq. (39) reduces to an ordinary
differential equation for ψ(X),

α1ψ
′′(X) + α2ψ(X) + α3ψ

2(X) = 0, (40)

where

α1 = −νV1, α2 = −2δ, α3 = −δ. (41)

This equation has solutions homoclinic to ψ = 0 given
by

ψ(X) = −3sech2
(
1

2

√

−α2

α1
(X −X0)

)

, (42)
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representing a hole in the spatially uniform state located
at X = X0, hereafter at X = 0. Since X ≡ √

ǫx and ǫ ≡
√
ρ− ρt
δ

the corresponding first order spatial correction

is given by

[

u1
v1

]

= −3µ

[

1

η

]

sech2

[

1

2

√

−α2

α1

(
ρ− ρt
δ

)1/4

x

]

.

(43)

The resulting asymptotic solution for θ = 4 and ρ =
1.98388 is shown in Fig. 22 (black solid lines). The corre-
sponding numerically exact solution, obtained using nu-
merical continuation, is shown in red dashed lines. The
agreement is excellent.
For

√
3 < θ < 2 the saddle node SNhom,1 is also a

RTB bifurcation and the same asymptotic calculation can
therefore be used to compute the DSs present near this
bifurcation. A related calculation can be used to compute
the DS profiles near the point HH [17].
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