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Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However,

it is not easy to observe in superconducting quantum circuits (SQCs), because the Rabi frequency of the strong

controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be

achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field

on the qubit. Without such a driving field, the dressed states of the system, describing a superconducting qubit

coupled to a cavity field, are approximately product states of the cavity and qubit states in the large detuning

regime. However, the driving field can strongly mix these dressed states. These doubly-dressed states, called

here polariton states, are formed by the driving field and dressed states, and are a mixture of light and matter.

The weights of the qubit and cavity field in the polariton states can now be tuned by the driving field, and thus

the decay rates of the polariton states can be changed. We choose the three lowest-energy polariton states with

a Λ-type transition in such a driven circuit QED system, and demonstrate how EIT and ATS can be realized in

this compound system. We believe that this study will be helpful for EIT experiments using SQCs.

PACS numbers:

I. INTRODUCTION

Since electromagnetically induced transparency (EIT) was

proposed [1], it has been extensively explored in various con-

texts [2–5] using three-level systems. The main feature of EIT

is that the absorption of of a weak probe field in a medium

is reduced because of the presence of a strong control field.

EIT can be used to control the propagation of the weak field

through the medium. It can also be used to greatly enhance the

nonlinear susceptibility in the induced transparency region,

and thus to generate a strong photon-photon Kerr interaction.

Strong photon-photon Kerr interactions have been studied to

realize quantum logic operations such as controlled phase

gates [6], quantum Fredkin gates [7] and conditional phase

switches [8] for photon-based quantum information process-

ing. Moreover, Kerr interactions can be employed to realize

quantum nondemolition detection of photons [9].

Recent studies show that superconducting quantum cir-

cuits (SQC) are one of the best candidates for quantum in-

formation processing [10–14]. Meanwhile, these artificial

atoms [10, 11, 13, 15, 16] have been employed to study quan-

tum optics and atomic physics in the microwave domain. For

example, several studies [17–21] have explored population

trapping and dark states in three-level SQCs. EIT was also

theoretically studied for probing the decoherence of a su-

perconducting flux qubit [22, 23] via a third auxiliary state.

How to realize EIT using SQCs has also been theoretically

studied using several different setups [24–26]. Experimental-

ists showed Autler-Townes splitting (ATS) [27] using various

three-level SQCs [21, 28–36]. However, to our knowledge,

up to now, there is no experiment on EIT using SQCs. The

main obstacle is that the decay rates of the three-level sys-
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tem and the strength of the Rabi frequency corresponding to

the controlling field cannot satisfy the condition for realizing

EIT [26, 37, 38].

It is well known that EIT [1] is mainly caused by Fano in-

terference [39], while ATS [27] is due to the driving-field-

induced shift of the transition frequency. Although the mech-

anisms of EIT and ATS are very different, they are not easy

to discern from experimental observations, since both of them

exhibit a dip in the absorption spectrum of the weak probe

field. Theoretically, there is a threshold value [26, 37, 38] to

distinguish EIT from ATS. This threshold value is determined

by two decay rates of the three-level system [26, 37, 38].

When the strength of the Rabi frequency of the strong control-

ling field is smaller than this value, EIT occurs, otherwise, it

is ATS. Experimentally, the data should be analyzed by virtue

of the Akaike information criterion [38]. The transition from

EIT to ATS has been experimentally demonstrated in coupled

whispering-gallery-mode optical resonators [40].

Here, instead of three-level superconducting quantum cir-

cuits [22–26], we study EIT and the transition from EIT

to ATS using a driven two-level circuit QED system [12],

where a superconducting qubit is coupled to a single-mode

cavity field and driven by a classical field. The three-level

system used to study EIT is constructed by the three lowest-

energy mixed polariton states, formed by the driving field and

the dressed states of the circuit QED system. The polari-

ton states are hybridizations of microwave photon and qubit

states. Thus, the decays of the polariton states are determined

by the decays of both the cavity field and the superconducting

qubit.

The eigenstates of the circuit QED system are dressed states

of the cavity field and the superconducting qubit. These states

can be approximately reduced to product states of the uncou-

pled cavity field and qubit states when the frequencies of the

cavity field and the superconducting qubit are largely detuned.

In this case, the qubit acquires a small frequency shift due
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to the microwave field and the Purcell [41] enhanced sponta-

neous decay rate [42] is obtained. Therefore, when the detun-

ing between the cavity field and the qubit is changed from zero

to a finite value, the decay rates of the eigenstates of the cir-

cuit QED system can also be changed. However, such tunable

decay is not easy to be realized when the sample is fabricated.

Thus, we introduce a classical driving field to further mix the

dressed states. We call these doubly-dressed states as polari-

ton states. In solid state physics, polaritons are elementary

excitations that are half light and half matter. In our system,

the mixture of the driving field and the dressed states inher-

its both atomic and photonic properties. The weights of the

photon and qubit states in polariton states can be tuned by the

driving field, and thus the decay of the polariton states can be

controlled. Such polariton states were studied in order to im-

plement an impedance-matched Λ system [43–45], where the

two decay rates from the top energy level to the two lowest

energy levels are identical. However, in our study, we need to

engineer different decay rates of the three-level Λ system so

that the condition to realize EIT and ATS can be satisfied. In

contrast to the study [24], an extra driving field on the qubit is

introduced to modify the decay rates of the system studied.

The paper is organized as follows. In Sec. II, we describe a

model Hamiltonian and discuss how the transition frequencies

can be tuned by the driving field. In Sec.III, we study the se-

lection rules and how to control decay rates of polariton states

by changing driving field. In Sec. IV, we study a three-level

polariton system to implement EIT and ATS, and the threshold

value to discern EIT and ATS is given. Numerical simulations

with possible experimental parameters are presented. Finally,

further discussions and a summary are presented in Sec. V.

II. THEORETICAL MODEL AND POLARITON STATES

In this section, we derive polarition states from the model

Hamiltonian and then discuss how decay rates of the polariton

states can be adjusted by an externally-applied classical field.

A. Hamiltonian

As schematically shown in Fig. 1, we study a supercon-

ducting two-level system (a qubit system) which is coupled to

a quantized single-mode microwave field and also driven by a
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FIG. 1: (color online). A driven qubit coupled to a resonator mode.

Here, {|g〉,|e〉} are the ground and excited states of the qubit, g is the

coupling strength between the qubit and the cavity field, γq (γc) is

the decay rate of the qubit (cavity field).

classical microwave field. For concreteness, we assume that

such qubit system is a three-Josephson-junction flux qubit cir-

cuit. The interaction between the qubit and the single-mode

cavity field is described by the well-known Jaynes-Cummings

model [46, 47]. Thus, the model Hamiltonian of the driven

circuit QED system can be written as

HS =
~

2
ωqσz + ~ωr

(

a†a+
1

2

)

+ ~g
(

a†σ− + aσ+

)

(1)

+ ~ [Ωσ− exp (iωdt) + Ω∗σ+ exp (−iωdt)] .

The first line of Eq. (1) is the Jaynes-Cummings Hamiltonian,

which describes the interaction between the qubit system and

the single-mode cavity field with coupling strength g. Here ωq

and ωr denote the frequencies of the qubit and single-mode

cavity field, respectively. Also, a is the annihilation operator

of the cavity field and σ− is the ladder operator of the qubit.

The second line of Eq. (1) describes the interaction between

the qubit and the classical driving field. The parameter Ω rep-

resents the interaction strength or Rabi frequency between the

qubit and the classical field with frequency ωd. Without loss

of generality, hereafter we assume that Ω is a real number.

To remove the time-dependent factors, we transform the

FIG. 2: (color online). A schematic energy diagram for the Jaynes-

Cummings model versus the detuning between the qubit and cavity

field in the rotating frame. The eigenstates are denoted by |±, n〉.
In the large-detuning regime, the coupled states |±, n〉 are approach-

ing the bare qubit and photon states. Here, ∆ = ω̃r − ω̃q . The

nesting regime, defined by ω|g,0〉 ≤ ω|e,0〉 < ω|e,1〉 ≤ ω|g,1〉, as

in Refs. [43–45], is between the two points linked by a line with

two arrows. The frequency of the driving field ωd sets the bound-

ary of the nesting regime. The lower limit is at ω|e,1〉 = ω|g,1〉,

where ωd = ωq − 3χ. The upper limit is at ω|g,0〉 = ω|e,0〉, where

ωd = ωq − χ. Here χ = g2/∆, with g the coupling strength be-

tween the qubit and cavity field. We note that when the zero-point

fluctuation of the cavity field is taken into account, then the energy

of the ground state |g〉|0〉 is ∆/2.
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Hamiltonian HS , given in Eq. (1), into a rotating reference

frame by the unitary transformation

U = exp[−iωd

(

σz/2 + a†a
)

t] (2)

so that we can obtain the following effective Hamiltonian

H̃S =
~

2
ω̃qσz + ~ω̃r

(

a†a+
1

2

)

+ ~g
(

a†σ− + aσ+

)

+ ~[Ωσ− +Ωσ+] (3)

with the detunings ω̃q = ωq − ωd, ω̃r = ωr − ωd, and ∆ =
ω̃r − ω̃q.

B. Eigenvalues and eigenstates for Ω = 0

For completeness, we first briefly discuss the eigenstates

and eigenvaules when the classical driving field is not applied

to the qubit. In this case, Ω = 0, the eigenstates of Eq. (3),

for the Jaynes-Cummings Hamiltonian of the qubit and the

single-mode cavity field, are

|+, n〉 = cos
θn
2
|e, n〉+ sin

θn
2
|g, n+ 1〉, (4)

|−, n〉 = − sin
θn
2
|e, n〉+ cos

θn
2
|g, n+ 1〉, (5)

which mix the qubit states with the states of a single-mode

cavity field. Here, tan θn = −2g
√
n+ 1/∆. We note that

|e, n〉 ≡ |e〉|n〉 (|g, n〉 ≡ |g〉|n〉) denote that the qubit is in the

excited |e〉 (ground |g〉) state and the single-mode cavity field

is in the state |n〉. The states expressed in Eqs. (4) and (5) are

usually called dressed states. Note that we do not distinguish

the dressed states in the rotating reference frame from those

in original laboratory frame. The eigenvalues corresponding

to Eqs. (4) and (5) are

E±,n = ~ω̃r

(

n+
1

2

)

± ~

2

√

∆2 + 4g2 (n+ 1) (6)

From Eqs. (4) and (5), it is clear that the eigenenergies of

the Jaynes-Cummings model change with the detuning ∆ be-

tween the qubit and the single-mode cavity field. When the

detuning is very large, the dressed states are approaching ei-

ther bare qubit states or the states of the single-mode cavity

field. That is, they are almost decoupled from each other. The

eigenenergies in Eq. (6) are shown as a function of the detun-

ing ∆ in Fig. 2, which clearly shows that the qubit and the

cavity field are decoupled from each other when ∆ becomes

very large. Figure 2 also shows that there are some degener-

acy points when ∆ takes a particular value, e.g., Eg,0 = E−,0

and E+,0 = E−,1, which will be further discussed in the fol-

lowing in the large-detuning case.

In the large-detuning case, i.e., g ≪ |∆|, Eqs. (4) and (5)

can be approximately written as

|+, n〉 ≈ |g, n+ 1〉 − g

∆

√
n+ 1|e, n〉, (7)

|−, n〉 ≈ |e, n〉+ g

∆

√
n+ 1|g, n+ 1〉, (8)

where we assume ∆ > 0 for convenience in the following

discussions. We now focus on the five lowest eigenstates of

the Jaynes-Cummings model, i.e., the ground state |g, 0〉, and

the four dressed states |±, 0〉 and |±, 1〉. To simplify the anal-

ysis, we first omit the first order of g/∆. In this case, the four

dressed states can be approximately written as |−, 0〉 ≈ |e, 0〉,
|+, 0〉 ≈ |g, 1〉, |−, 1〉 ≈ |e, 1〉, |+, 1〉 ≈ |g, 2〉, which corre-

spond to the eigenfrequencies E±,n/~ given by

ω|g,n〉 ≈ n (ω̃r + χ) +
∆

2
, (9)

ω|e,n〉 ≈ ω̃q − χ+ n (ω̃r − χ) +
∆

2
, (10)

where χ = g2/∆ is the dispersive frequency shift. From

Eqs. (9) and (10), we can approximately obtainω|e,0〉 = ω|g,0〉

at ω̃q = χ, and ω|e,1〉 = ω|g,1〉 at ω̃q = 3χ. Thus, to operate in

the so-called nesting regime [43–45], where ω|g,0〉 < ω|e,0〉 <
ω|e,1〉 < ω|g,1〉, that is, Eg,0 < E−,0 < E−,1 < E+,0, the

frequency ωd of the driving field must satisfy the condition

ωq − 3χ < ωd < ωq − χ.

FIG. 3: (color online). (a) The dressed states of the Jaynes-

Cummings mode for large detuning is mixed further by a driving

field applied to the qubit, which only connects |g, n〉 and |e, n〉. In

the un-nesting regime, without the driving field, the lowest four levels

are approximately |g, 0〉, |e, 0〉, |g, 1〉, |e, 1〉, which are mixed when

the driving field is applied to the qubit. (b) Four polariton states, i.e.,

energy levels |i〉 with (i = 1, 2, 3, 4) expressed in Eqs. (11-12), and

Eqs.(14 15), in which we choose the three lowest energy levels to

study EIT and ATS in Sec. IV.
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C. Eigenvalues and eigenstates for Ω 6= 0

When a classical driving field is applied to the qubit, i.e.,

Ω 6= 0, then it will induce transitions between different states

of |±, n〉. Thus, the classical driving field lifts the degen-

eracies and strongly mixes the states |±, n〉 with the states

|±, n+ 1〉 . That is, the dressed states in Eqs. (4) and (5) are

mixed again by the classical field. We call these new states

as polariton states, because they inherit both atomic and pho-

tonic properties. Below, we will mainly focus on the large-

detuning regime.

As schematically shown in Fig. 3 for the large detuning

case, where the first-order term in the parameter g/(ωr − ωq)
for the dressed states are omitted, the four lowest states dis-

cussed above Eq. (9) are mixed by the classical field, i.e., the

qubit is doubly dressed by a single-mode cavity field and a

classical driving field. In the nesting regime, as shown in

Refs. [43–45], a weak driving field, applied to the qubit, can

drastically change the ratio of the contributions from |g, n〉
and |e, n〉 to the final polariton states. This is in contrast with

the un-nesting case, where the external qubit drive has no ap-

preciable effect on the system as the following analysis shows.

The classical qubit field only induces transitions between

the states |g, n〉 and |e, n〉. Thus, it can only mix the state

|g, 0〉 with |±, 0〉, or mix states |±, n〉 with states |±, n+ 1〉.
In the large-detuning case, the states |g, 0〉 and |−, 0〉 ≈ |e, 0〉
are separated by the energy level spacing ωq − χ, when the

driving field is not applied. Thus, in the lower boundary of

the nesting regime, when the frequency of the driving field

satisfies the condition ωd = ωq − χ, the driving field induce

transitions between the states |−, 0〉 ≈ |e, 0〉 and |g, 0〉 and

strongly mix these two states. These mixed states form new

doubly-dressed eigenstates, the so-called polariton states,

|1〉 = − sin
θl
2
|e, 0〉+ cos

θl
2
|g, 0〉, (11)

|2〉 = cos
θl
2
|e, 0〉+ sin

θl
2
|g, 0〉. (12)

Here tan θl = 2Ω/ (ω̃q − χ). The transition frequency be-

tween the state |1〉 and the state |2〉 is given by

ω21 =

√

(ω̃q − χ)2 + 4Ω2, (13)

with ωij = ωi − ωj . Likewise, the states |+, 0〉 ≈ |g, 1〉 and

|−, 1〉 ≈ |e, 1〉, with original level spacing ωq − 3χ, can be

mixed by the qubit driving field at the upper boundary of the

nesting regime when ωd = ωq − 3χ. Thus, these polariton

states (i.e. eigenstates) can be given by

|3〉 = − sin
θu
2
|g, 1〉+ cos

θu
2
|e, 1〉, (14)

|4〉 = cos
θu
2
|g, 1〉+ sin

θu
2
|e, 1〉, (15)

with tan θu = 2Ω/(−ω̃q + 3χ). The energy splitting between

|4〉 and |3〉 becomes

ω43 =

√

(ω̃q − 3χ)
2
+ 4Ω2. (16)

As schematically shown in Fig. 2(b), below, we will choose

{|1〉, |2〉, |3〉} to form a three-level system. The transition fre-

quency ω31 between the state |3〉 and the state |1〉 is given by

ω31 = ω̃r −
1

2
(ω43 + ω21) . (17)

ωd/2π (GHz)

Ω
/2
π
 (
M

H
z)
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G

H
z
)
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G
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FIG. 4: (color online). Transition frequencies ωij versus both the

frequency ωd and the strength Ω of the driving field in the rotat-

ing reference frame. Here ωij = ωi − ωj . The paremeters used

here areωq/2π=5 GHz, ωr/2π=10 GHz, g/2π=500 MHz, χ/2π=50

MHz. (a) Two V- shaped surfaces with the minimum values at

ωd/2π = 4.95 GHz and ωd/2π = 4.85 GHz represent ω21 and

ω43, respectively. (b) The upper surface represents ω31, the lower

one represents ω32.

In Fig. 4, transition frequencies are plotted as functions of

the qubit driving frequency ωd and strength Ω in the rotating

reference frame. Here we use the exact solution of Eq. (3)

in the numerical calculation. In other words, without large-

dispersive approximation, each new eigenstate |i〉 is the su-

perposition of five states: |g, 0〉, |e, 0〉, |g, 1〉, |e, 1〉, and |g, 2〉.
Figure 4(a) shows the trend of ω21 and ω43, and they are con-

sistent with Eqs. (13) and (16). First we discuss the Ω = 0
case, in which the driving field is not applied. The lowest two

energy levels |1〉 and |2〉 are composed of |g, 0〉 and |e, 0〉. The
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degeneracy point, where ω21 = 0, is set by ω|e,0〉 = ω|g,0〉,

i.e. ωd = ωq − χ, which is the upper boundary of the nest-

ing regime. Likewise, the states |4〉 and |3〉 are superposi-

tions of the states |g, 1〉 and |e, 1〉. The degeneracy point is

set by ω|e,1〉 = ω|g,1〉, i.e. ωd = ωq − 3χ, which is the lower

boundary of nesting regime. We note that ω43 = ω21 in the

middle of nesting regime when ω̃q = 2χ. It is clear that the

frequency ωd of the driving field determines the onset of the

nesting regime. When the driving field is applied to the qubit,

i.e., Ω 6= 0, these degeneracies are lifted. The larger strength

Ω is, the larger ω21 and ω43 are.

We also show how the frequency and the strength of the

driving field affect the transition frequencies ω31 and ω32 in

Fig. 4(b). It clearly shows that the upper surface for the transi-

tion frequency ω31 approaches that of ω32 when the states |2〉
and |1〉 are degenerate. When the driving strength is small,

ω31 and ω21 are mainly determined by ω̃r and χ. However,

χ, which is determined by g and ∆ in the large-dispersive

regime, can be enhanced by the presence of the higher excited

states [42–45].

III. TRANSITION RULES AND TUNABLE DECAY RATES

A. Transition rules between polariton states

Since the polariton states, formed by the cavity field, driv-

ing field, and the qubit, are mixed photon and qubit states,

we can induce transitions between two of these new states by

applying additional classical fields to either the qubit or the

cavity field. Hereafter we call these classical fields as the ex-

ternal fields, to avoid confusion with the classical driving field

applied to the qubit with coupling strength Ω. The transition

selection rule between these polariton states depends on the

manner on how the external field is applied. For example, the

transitions between the state |e, n〉 and |g, n〉 can be induced

when the external field is applied to the qubit. However, those

transitions are forbidden when the external field is applied to

the cavity field. In contrast, the transitions between the state

|l, n〉 and |l, n − 1〉, with l = e or l = g, can be induced by

the external field applied to the cavity field. However, these

transitions are forbidden if the external field is applied to the

qubit. Therefore, the transition matrix elements between two

polariton states can be tuned by varying the applied external

field.

When the external field is applied to the qubit, the transition

matrix elements are denoted by

Qij = |〈i|σ−|j〉|. (18)

Similarly, when the external field is applied to the cavity field,

the transition matrix elements are defined as

Cij = |〈i|a|j〉|. (19)

Here, |i〉 and |j〉 denote the new polariton states, e.g., the

states in Eqs. (11–12) and Eqs. (14–15) in the large-detuning

case. The transition elements between two of the states in

Eqs. (11–12) and (14), can be written as

C32 =

∣

∣

∣

∣

cos

(

θu + θl
2

)∣

∣

∣

∣

, (20)

C31 =

∣

∣

∣

∣

sin

(

θu + θl
2

)∣

∣

∣

∣

, (21)

Q21 = cos2
(

θl
2

)

, (22)

Q31 = Q32 = C21 = 0. (23)

Equations. (20–23) clearly show that transitions between

the states |3〉 and |2〉 or between the states |3〉 and |1〉, are

controlled by the driving field applied to the cavity field. How-

ever, the transition between the states |2〉 and |1〉 is dominated

by the driving field applied to the qubit. Figure 5 numerically

shows how the matrix elements change with the frequency ωd

and the strength Ω of the driving field. The nonzero values

for Q32, Q31, and C21, as shown in Fig. 4(b, d, f), are lim-

ited by the first order of g/∆ which we omitted in Eqs. (7,8).

Moreover, the behavior of Q32, Q31, and C21 are identical to

C32, C31, Q21. So in the following analysis, we focus on the

dominant matrix elements in the different parameter range.

(i) Outside the nesting regime, where ωd < ωq−3χ. In this

case, the driving field applied to the qubit has no appreciable

affects, and we have |1〉 ≈ |g, 0〉, |2〉 ≈ |e, 0〉, |3〉 ≈ |g, 1〉,
and |4〉 ≈ |e, 1〉. As shown in Figs. 4(a, c, e), C32 ≈ 0,

C31 ≈ Q21 ≈ 1. The lowest three energy levels can be formed

into a three-level system with V -type transitions. That is, one

external field is applied to the cavity field to induce the tran-

sition between the states |3〉 and |1〉, while the other one is

applied to the qubit to induce the transition between the states

|2〉 and |1〉.
(ii) In the nesting regime, where ωq − 3χ < ωd < ωq − χ,

the driving field applied to the qubit drastically changes the

properties of the polariton states. We take C32, shown in

Fig. 5 (a), as an example. The saddle shape of C32 is con-

sistent with the boundary of the nesting regime. We first dis-

cuss the weak-driving case, i.e., Ω ≈ 0. In this case, we have

|1〉 ≈ |g, 0〉, |2〉 ≈ |e, 0〉, |3〉 ≈ |g, 1〉, |4〉 ≈ |e, 1〉, and this

is the same with (i). The first sharp transition of C32 occurs at

ω|e,1〉 = ω|g,0〉, when ωd = ωq − 3χ, and then the state |3〉 is

changed to |e, 1〉 with the change of the driving frequency ωd

through entering the nesting regime, the transition C32, due to

the driving field applied to the cavity, has a sudden jump from

0 to the finite value. Then, when changing the frequency ωd

of the driving field, when ωd = ωq − χ, the state |2〉 changes

from |e, 0〉 to |g, 0〉, while the state |3〉 can be approximated

to |3〉 ≈ |e, 1〉, hence the transition matrix element C32 drops

sharply. This is the same for the reverse trend of the transition

matrix element C31. It is understandable for the transition be-

tween the states |2〉 and |1〉, the sharp turning point is at the

upper boundary, where ω|e,0〉 = ω|g,0〉. In this condition, we

have C32 ≈ 1, Q21 ≈ 1, and C31 ≈ 0 when the driving field is

rather weak, i.e., Ω ≈ 0, and the system behaves like a Ξ-type

transitions where the state |2〉 and the state |1〉 is linked by the

external field applied to the qubit, while the states |3〉 and |2〉
are linked by the external field applied to the cavity field.
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(iii) In the nesting regime, when Ω 6= 0, with the increasing

of the strength Ω of the driving field applied to the qubit, the

state |3〉 becomes a mixing of the states |g, 1〉 and |e, 1〉, the

state |2〉 becomes a mix of the states |g, 0〉 and |e, 0〉. Thus,

the matrix element C32 decreases gradually when increasing

the driving strength Ω. Likewise, the matrix element C31 in-

creases when increasing the driving strength Ω. If two exter-

nal driving field are applied to the cavity field, then two tran-

sitions between the states |3〉 and |2〉, and between the states

|3〉 and |1〉 are induced, in this case we can construct a three-

level system with the Λ-type transition, which will be used to

study EIT and ATS in the following section. If another exter-

nal field is applied to the qubit, then the transition between the

states |2〉 and |1〉 can be induced, the three-level system now
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FIG. 5: (color online). Moduli of the transition matrix elements be-

tween the state |i〉 and the state |j〉 versus both the strength Ω and

the frequency ωd of the driving field. Qij denotes transition matrix

elements between the states |i〉 and |j〉, induced by an external field

applied to the qubit, while Cij is the one induced by an external field

applied to the cavity field. The sharp change in Qij and Cij occur at

the boundary of the nesting regime; when Ω = 0 this is occurs when

ωq − 3χ < ωd < ωq −χ. Note that the nonzero coupling in (b), (d),

(e) is limited by the first order of g/∆, which we omit in the theo-

retical analysis. The paremeters are the same as in Fig. 4. Here, the

states |i〉 for numerical calculations of the transition matrix elements

are given by the exact eigenstates of Eq. (3).

possesses cyclic transitions, or a ∆-type [48, 49] transition.

For natural atoms, ∆-type transitions do not exist, because

the dipole operator possesses odd parity, it can only connect

states with different parities.

EIT only occurs in three-level systems with Λ-type transi-

tion or three-level systems with the upper driven Ξ-type tran-

sition [37, 50]. In the next section, we will focus on a three-

level system with Λ-type transition and study how EIT and

ATS can be tuned by changing the driving field applied to the

qubit.

B. Tunable decay rates of mixed polarition states

To study EIT, we first study how the classical driving field

can be used to adjust the decay rates of the mixed polariton

states by varying its amplitude and the frequency. The main

idea is to change the ratio of how the cavity field or qubit con-

tributes to the final mixture. If the cavity field and the qubit

have different decay rates, then the decay rates of the polari-

ton states vary with the weights of the cavity field branch and

the qubit branch in the polariton states. To discuss the decay

rates of the polariton states, let us assume that the environment

interacting with the system can be described by bosonic oper-

ators. Then the Hamiltonian of the whole system, including

the environment, can be written as

H ′ = HS +HE +HI , (24)

where the Hamiltonian HS is given in Eq. (1). The free

Hamiltonian HE in Eq. (24) of the environment is given by

HE = ~

ˆ

dωωb†(ω)b(ω) + ~

ˆ

dω′ω′c†(ω′)c(ω′).(25)

The interaction Hamiltonian HI in Eq. (24) between the sys-

tem and the environment is given by

HI = ~

[
ˆ

dωK (ω) b† (ω) a+ H.c.

]

+

[
ˆ

dω′η (ω′) c†(ω′)σ− + H.c.

]

. (26)

We have assumed that the environment of the cavity field is

independent of that of the qubit. Here b†(ω) and c†(ω′) denote

the creation operators of the environmental bosonic modes of

the cavity field and the qubit, respectively. For simplicity, we

further assume that the spectrum of the environment is flat,

that is, both K(ω) and η(ω′) are independent of frequency. In

this case, we can introduce the first Markov approximation

K (ω) =
√

γc/2π, (27)

η (ω′) =
√

γq/2π. (28)

In the polariton basis, the operators a and σ− of the cavity

field and the qubit can be expressed as

a =
∑

ij

〈i|a|j〉σij , (29)

σ− =
∑

lm

〈l|σ−|m〉σlm, (30)
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where |i〉, |j〉, |l〉, and |m〉 denote mixed polariton states,

which can be expressed by either the mixture of Eqs. (4-5),

for the general case, or the mixture of Eqs. (7-8), for the large-

detuning case. Here σij = |i〉〈j|. In the basis of the mixed

polariton states, the interaction Hamiltonian HI can be rewrit-

ten as

HI = ~

ˆ

dω
∑

ij

[√

γc
ij/2πb

†(ω)σij + H.c.
]

+ ~

ˆ

dω′





∑

ij

√

γq
ij/2πc

†(ω′)σij + H.c.



 , (31)

with γc
ij = γc|〈i|a†|j〉|2 and γq

ij = γq|〈i|σ+|j〉|2. Thus, the

total decay rate γij from one mixed polariton state |i〉 to an-

other one |j〉 transition is given by

γij = γc
ij + γq

ij = γc
∣

∣〈i|a†|j〉
∣

∣

2
+ γq |〈i|σ+|j〉|2. (32)

In the large-detuning regime, where the cavity field and the

qubit have very different frequencies, the decay rates, from

one upper state to another lower state, expressed from Eq. (11)

to Eq. (14), can be approximately given by

γ31 = γc sin
2

(

θu + θl
2

)

, (33)

γ32 = γc cos
2

(

θu + θl
2

)

, (34)

γ21 = γq cos
4

(

θl
2

)

. (35)

In the large-detuning regime, we also find γ31 ≈ γ42, γ32 ≈
γ41, γc

ii = γc|〈i|a†|i〉|2 ≈ 0, and γc
21 = γq

43 ≈ 0.

Figure. 6 shows how the decay rates γij change with the fre-

quency and strength of the driving field, plotted for the mixed

polariton states. The decay rates are proportional to the square

of the transition matrix elements. Therefore they have simi-

lar features for the dependence on the frequency and strength

of the driving field. This can be seen by comparing Fig. 5

with Fig. 6. We define the total decay rate of the state |3〉 as

Γ31 = γ31 + γ32. We find that Γ31 is hardly influenced by

the driving field in the large-detuning case, except that there

is a slight jump at the lower bound of the nesting regime. This

is consistent with Eqs. (33-34), i.e. Γ31 ≈ γc. In the nesting

regime, the decay rates γ31 and γ32 change significantly when

varying Ω; the decay rate γ21 is slightly decreased when Ω
is increased. We find γ31 = γ32 when Ω is taken as a par-

ticular value. This is an impedance-matching condition [43],

in which the two decay rates from the top energy level |3〉 to

the two lowest energy levels |1〉 and |2〉 are the same, and mi-

crowave photons are down-converted efficiently through Ra-

man transitions due to impedance matching [45]. Instead of

using impedance-matching condition, below, we mainly study

how EIT can occur in a chosen three-level system by using

proper decay rates through adjusting the driving field.

40
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FIG. 6: (color online). Decay rates γij versus both the frequency and

strength of the driving field. Here, we set Γ31 = γ31 + γ32 ≈ γc.

We have chosen γq/2π=1 MHz, γc/2π=20 MHz.

IV. ELECTROMAGNETICALLY INDUCED

TRANSPARENCY AND AUTLER-TOWNES SPLITTING

A. Linear response of a Λ system

We now study the EIT effect in a Λ configuration atom in-

teracting with two classical fields, as shown in Fig. 3(b). The

transition between the states |3〉 and |2〉 is linked by a strong

external field with frequency ωc, hereafter called the control

field. A probe field with frequency ωp is applied to induce the

transition between the states |3〉 and |1〉. The presence of a

strong driving field dramatically modifies the response of the
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system to the weak probe field. As shown, for example, in

Ref. [5], the response of the probe field is analyzed using a

semi-classical approach through the master equation.

The master equation for the reduced density matrix operator

ρ of the three-level system can be given by [5]

ρ̇ = − i

~
[Hint, ρ] +

γ31
2

[2σ̂13ρσ̂31 − σ̂31σ̂13ρ− ρσ̂31σ̂13]

+
γ32
2

[2σ̂23ρσ̂32 − σ̂32σ̂23ρ− ρσ̂32σ̂23]

+
γ21
2

[2σ̂12ρσ̂21 − σ̂21σ̂12ρ− ρσ̂21σ̂12]. (36)

Here, we have neglected the energy-conserving dephasing

processes of the three-level system. Also, γij is the spon-

taneous decay rate from |i〉 to |j〉, which coincides with

Eq. (32). Note that, compared to Ref. [5], we have taken into

account the spontaneous decay from |2〉 to |1〉. For natural

atoms, |2〉 → |1〉 transition is forbidden, thus the dephasing

rate of |2〉 dominates. However, in our compound system, we

assume radiative decays of qubit and cavity are larger than

dephasing processes [43–45]. Hint describes the interaction of

the three-level system with the control and probe fields in the

interaction picture. In this system, Hint can be given as

Hint = −~

2

(

Ωp|3〉〈1|e−i∆1t +Ωc|3〉〈2|e−i∆2t + H.c.
)

,

(37)

where Ωc and Ωp are the Rabi frequencies of the control and

probe fields. We define the detunings as ∆1 = ω31 − ωp

and ∆2 = ω32 − ωc. The master equation of the three-level

system in Eq. (36) can be solved using perturbation theory for

the different orders of the strength of the probe field. We use

the steady-state solution of the three-level system and assume

that the three-level system is almost in the ground state, i.e.

ρ11 ≈ 1. Then, we find the linear susceptibility of the probe

field χ(1)(−ωp, ωp) ∝ ρ31. Omitting a multiplication factor,

χ(1)(−ωp, ωp) can be given as [37, 38]

χ(1) (−ωp, ωp) =
δ − iγ21

2
(

δ − iΓ31

2

) (

δ +∆2 − iγ21

2

)

− Ω2
c

4

. (38)

Here δ = ∆1 − ∆2 is the two-photon detuning. The total

decay rate Γ31 of the state |3〉 is defined as

Γ31 = γ31 + γ32. (39)

Equation (38) is the starting point for the discussions on the

difference between EIT and ATS as in Refs. [26, 37, 38, 40].

Note that in Eq. 38, if we take into account the dephasing

processes of states |3〉 and |2〉 with rates γ3deph and γ2deph, and

neglect the spontaneous decay from |2〉 to |1〉 in the master

equation, then the coherence decay rates are Γ31 = γ31 +
γ32 + γ3deph, Γ32 = γ31 + γ32 + γ3deph + γ2deph, γ21 = γ2deph.

These are the definitions used in Refs. [5, 22, 38].

B. Difference between EIT and ATS

To shed light on the difference between EIT and ATS,

we follow the spectral decomposition method as used in

Refs. [5, 38, 40, 51, 52]. For simplicity, we assume that ωc

is resonant with ω32, i.e., ∆2 = 0. The imaginary part of the

linear susceptibility χ characterizes the absorption, which can

be decomposed into two resonances,

Im (χ) = Im

(

χ+

δ − δ+
+

χ−

δ − δ−

)

(40)

where χ± = ±(δ± − iγ21/2)/(δ+ − δ−). The poles of the

denominator are given by

δ± = i
Γ31 + γ21

4
± 1

2

√

Ω2
c −

1

4
(Γ31 − γ21)

2
. (41)

Equation (41) gives the threshold value for EIT:

|Ωc| =
1

2
|Γ31 − γ21|. (42)

(i) When |Ωc| ≫ |Γ31 − γ21|/2, i.e., the strong-controlling

field case, ATS occurs. The final spectrum of Im(χ) is de-

composed of two positive Lorentzians with equal linewidths.

They are separated by a distance proportional to Ωc [37, 38].

(ii) When |Ωc| < |Γ31 − γ21|/2, EIT occurs. The major

characteristics of EIT is that the absorption spectrum is com-

posed of one broad positive Lorentzian and one narrow nega-

tive Lorentzian. Both are centered at δ = 0. They cancel each

other and result in the reduction of absorption to the probe

field [37, 38].

For the ideal three-level system with Λ-type transitions, the

transition between |2〉 and |1〉 is forbidden, thus γ21 = 0,

which is easy to find in natural atomic systems. However,

γ21 is usually nonzero in artificial atomic systems. Thus, to

observe an absorption dip with a nonzero value of γ21, we

must require γ21 ≪ Γ31, otherwise the dip in the absorption

spectrum is absent [5].

C. EIT and ATS in polariton system

We now turn to study how the EIT and ATS can be real-

ized in polariton systems by adjusting the driving field when

the states |1〉, |2〉, and |3〉 in Eq. (37) are replaced by po-

lariton states. As shown above, in the nesting regime, when

Ω 6= 0, the polariton system can be used to construct an effec-

tive three-level system with Λ-type transitions by three polari-

ton states |1〉, |2〉 and |3〉 , expressed in Eqs. (11), (12), and

(14). Below, we show how Λ-type transition can be formed by

these three polariton states. Let us assume that both a strong

control field A′
c cos(ωct) and a weak probe field A′

p cos(ωpt)
are applied to the polariton system through the cavity mode

with the frequency ωc (ωp) and the amplitude A′
c (A′

p) of the

control (probe) field. Under the rotating wave approximation,

the Hamiltonian between the cavity mode and the two external

fields can be written as

Hdrive = −~

2

(

Apa
†e−iωpt + Aca

†e−iωct + H.c.
)

. (43)

Here, the coupling strength Ac (Ap) between the controlling

(probing) field and the cavity field is proportional to the am-

plitude A′
c (A′

p) of the control (probe) field.



9

Similar to the three-level systems for demonstrating EIT

and ATS, we now assume that the control field is used to in-

duce the transition between the states |3〉 and |2〉 with the Rabi

frequency Ωc, while the probe field is used to induce the tran-

sition between the states |3〉 and |1〉 with the Rabi frequency

Ωp, then in the mixed polariton state basis, using Eqs. (20–

21), the relation between Ωc (Ωp) shown in Eq. (37), and Ac

(Ap) shown in Eq. (43), is

|Ωc| ≈ AcC32, (44)

|Ωp| ≈ ApC31. (45)

Figure 5 shows that the transition matrix element C32 de-

creases while C31 increases in the nesting regime, when the

strength Ω of the driving field is increased. Both of them are

in the range of 0 to 1.

Now we turn to study the threshold of EIT set by Eq (42)

in the polariton system. With the help of Eqs. (33-35), we

obtain,

Γ31 = γ31 + γ32 = γc, (46)

γ21 = γq cos
4

(

θl
2

)

. (47)

It is clear that the driving field can hardly affect Γ31, as shown

in Fig 6 (c). For EIT in a Λ system [5], γ21 should be negligi-

ble, and this requires γc ≫ γq. Therefore, in order to achieve

EIT in our polariton system, the Rabi frequency of the con-

trolling field should satisfy the condition

|Ωc| <
γc
2
. (48)

To investigate EIT and ATS in our polariton system, we

now choose ωd/2π = 4.9 GHz, γc/2π = 20 MHz, γq/2π =
1 MHz in the following. In Table I, we show explicitly

how the transition matrix elements and energy level spacing

change with Ω in the nesting regime.

Ω C31 C32 Q21 Q31 Q32 C21 ω21 ω32 Type

0 0 1 1 0 0.1 0.1 54 5050 Ξ

10 0.37 0.93 0.96 0 0.1 0.1 59 5047 Λ,∆

20 0.62 0.77 0.89 0 0.1 0.09 66 5037 Λ,∆

30 0.77 0.64 0.82 0 0.1 0.08 78 5023 Λ,∆

40 0.85 0.53 0.76 0 0.1 0.08 89 5007 Λ,∆

TABLE I: Numerical calculations for the matrix elements and tran-

sition frequencies. Here we choose ωd/2π = 4.9 GHz in the middle

of the nesting regime. The units of Ω, ω21, and ω32 are in 2π MHz.

Other parameters are the same as in Fig. 4.

In Fig. 7 and Fig. 8, we set the frequency ωc/2π = 5.037
GHz of the controlling field, which is resonant with ω32 when

Ω/2π = 20 MHz, as shown in Table I. From Eqs. (44) and

(48) and Table I, we can find that the polariton system satisfies

the ATS condition (EIT condition) when Ac/2π = 30 MHz

(Ac/2π = 5 MHz) for γc/2π = 20 MHz, γq/2π = 1 MHz,

with the value of Ω/2π in the range 10 MHz to 40 MHz. How-

ever, we find that ATS and EIT also depend on the strength

Ω of the driving field. We plot Ω/2π = 10, 20, 30, 40 MHz

cases separately in Fig. 7 and 8, in which the parameters are

consistent with Table I.
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FIG. 7: (color online). (a) The imaginary part of the susceptibility,

Im(χ), versus the strength of the driving field Ω and the two-photon

detuning δ, when the ATS condition is satisfied. Here, we have cho-

sen ωd/2π = 4.9 GHz, γc/2π = 20 MHz, γq/2π = 1 MHz, and

Ac/2π = 30 MHz, while the rest of the parameters are identical to

the ones in Fig 4. The control field frequency is ωc/2π = 5.037
GHz, which is resonant with ω32 for the Ω/2π = 20 MHz case.

(b) shows the spectral decomposition of Im(χ) at resonance, i.e.

∆2 = 0. Here, the blue solid curve corresponds to the absorption

spectrum. The red-dotted and the black-dashed curves correspond to

two Lorentzian profiles. (c) shows the real part of χ characterizing

the refractive properties at resonance.

When the ATS condition is satisfied for Ac/2π = 30
MHz, Figure 7(a) shows how the absorption spectra through

Im(χ) varies with the strength Ω of the driving field. Fig-
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ure 7(b) shows the variations of spectral decomposition of

Im(χ) with two photon detuning δ at resonance with two pos-

itive Lorentzian shape spectra. Figure 7(c) shows the varia-

tions of the real part, Re(χ), of the susceptibility χ with δ.

Clearly, when varying Ω, the absorption spectra can have two

symmetric or asymmetric peaks. The asymmetries are mainly

caused by the non-zero detuning between ωc and ω32, i.e.,

∆2 6= 0 in Eq. (38). Because we have assumed that the fre-

quency ωc/2π = 5.037 GHz of the controlling field, which is

resonant with ω32 only when Ω/2π = 20 MHz. In other val-

ues of Ω, the controlling field is nonresonant with ω32, which

decreases when Ω is increased, as shown in Fig. 4(b) and Ta-

ble I. Therefore, the windows of two peaks disappear for a

given ωc when Ω becomes very large. We emphasize that the

windows with two peaks can always be found for a given Ω
by varying the frequency ωc.

Figure 8 shows how the imaginary and real parts of the sus-

ceptibility χ vary with the strength Ω and the two photon de-

tuning δ when the EIT condition is satisfied for Ac/2π = 5
MHz. The two asymmetric peaks in the spectrum in Fig. 8(a)

are also due to the non-zero detuning between ωc and ω32.

Figure 8(a) also shows that the transparency windows not only

depend on the strength Ac of the control field but also depend

on the strength Ω of the driving field. When the strength Ω of

the driving field becomes very strong, the transparency win-

dows disappear even the EIT condition Ωc < γc/2 is satis-

fied for a given ωc. Same as ATS, we can always find trans-

parency windows by changing ωc for a given Ω when the EIT

condition is satisfied. Figure 8(b) clearly shows that the re-

duction of absorption is caused by the cancellation of posi-

tive and negative Lorentzian profiles. Compared with ATS in

Fig. 7(b), the transmission window is sharper and the width

is less than Γ31, this is due to interference effects [5]. The

real part, Re(χ), characterizing refractive properties shown in

Fig. 8 (c), varies much more rapidly in the transparency win-

dow in contrast with that in Fig. 7(c).

Note that Ref. [38] analyzes the threshold for EIT and ATS

only for the case for ∆2 = 0. If ∆2 becomes large, the Ra-

man model has to be taken into account. In Raman model the

spectral decomposition becomes one broad Lorentzian at the

center δ = 0 with another narrow Lorentzian at δ = ∆2 [53].

This is different from both EIT and ATS.

V. DISCUSSIONS AND CONCLUSIONS

We studied how to achieve EIT and ATS in a driven su-

perconducting circuit QED system. Without the driving field,

the system is reduced to the Jaynes-Cummings model. EIT

based on the dressed states of the Jaynes-Cummings model

was studied in Ref. [24]. In contrast to Ref. [24], where the

decay rates cannot be changed once the sample is fabricated,

we introduce an additional driving field to form a three-level

system to study EIT and ATS. That is, the three-level system

for EIT and ATS is formed by polaritons, which is the doubly-

dressed qubit states through a cavity field and a classical driv-

ing field. It is known that the polaritons are hybridization of

the states of both the qubit and the cavity field, thus their de-
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FIG. 8: (color online). (a) The imaginary part of the susceptibility,

Im(χ), versus the strength of the driving field Ω and the two-photon

detuning δ, when the EIT condition is satisfied. Here, we have cho-

sen ωd/2π = 4.9 GHz, γc/2π = 20 MHz,γq/2π = 1 MHz, and

Ac/2π = 5 MHz, while the rest of the parameters are identical to the

ones in Fig 4. The control field frequency is ωc/2π = 5.037 GHz,

which is resonant with ω32 for Ω/2π = 20 MHz case. (b) shows the

spectral decomposition of Im(χ) at resonance, i.e., ∆2 = 0. Here,

the blue solid curve corresponds to the absorption spectrum. The

red-dotted and the black-dashed curves correspond to two Lorentzian

profiles. (c) shows the real part of χ at resonance, which character-

izes the refractive properties.

cay rates include both contributions of the cavity field and the

qubit. The qubit and the single-mode cavity field have inde-

pendent decay rates, and also the weights of the cavity field

state and the qubit state in the polaritons can be adjusted by

the driving field. Thus, the decay rates of the chosen three-

level system can be adjusted by the driving field. Therefore,

it is easy to find a parameter regime to realize EIT, and also

demonstrate the transition from EIT to ATS.

In particular, we have provided a detailed study of how
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EIT and ATS can be demonstrated in a so-called nesting

regime [43] by varying the driving field, when the qubit and

the cavity field are in the large detuning regime. We find that

the driving field can also be used to control windows between

the two peaks of EIT or ATS. Sometimes, we can only find a

peak and cannot find a windows even when then EIT and ATS

conditions are satisfied for a given frequency of the control

field. This is because the driving energy structure of the cho-

sen three-level system are changed by the driving field, when

the frequency of the control field is largely out of resonance

with the two addressed energy levels, the two peaks become

one peak and then the transparency window disappears. To

observe a dip in the absorption spectrum for both EIT and

ATS, it is also required that the qubit decay rate is negligibly

small compared with the cavity decay rate.

Finally, we would like to mention that our proposed three-

level system can also possess ∆-type, Ξ-type, and V -type

transitions by using different configurations of the external

fields applying to the driven circuit QED system. Thus, this

system provides a very good platform to demonstrate various

atomic and quantum optical phenomena. For a single artifi-

cial atom, the decay rates are intrinsic properties and are very

hard to control. However, our compound system can be man-

ufactured by tailoring the qubit and cavity decay. This can be

helpful in guiding future experimental observation of EIT in

driven circuit QED systems. The parameters for the numerical

calculations are taken from accessible experimental data; thus

our proposal should be experimentally realizable with current

superconducting quantum circuits.

Note added: after this work was completed, an experiment

observed EIT in a SQC system [54].
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