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We show that generalized dissipative opto-mechanical coupling enables a direct quantum mea-
surement of speed of a free test mass. An optical detection of a weak classical mechanical force
based on this interaction is proposed. The sensitivity of the force measurement can be better than
the standard quantum limit.

I. INTRODUCTION

Resonant opto-mechanics [1] involves interaction of an
optical cavity and a mechanical oscillator or a free mass.
The simplest interaction of this kind is based on radia-
tion pressure effect in which a coordinate of a 1D me-
chanical system experiences a force proportional to opti-
cal power or number of optical quanta circulating in the
1D optical cavity, so that the size of the optical cavity
increases with increase of number of optical quanta lo-
calized in there. Opto-mechanical interaction of systems
having several degrees of freedom enable more complex
interactions ranging from radiation puling (negative ra-
diation pressure) [2, 3] and opto-mechanical interaction
proportional to the quadrature of electromagnetic field
[4–7] to the interaction depending on the speed and not
the coordinate of the mechanical system [8, 9].

Opto-mechanics plays an important role in precision
measurements proving an efficient quantum transduction
mechanism between the mechanical and optical degrees
of freedom enabling various sensors, like gravitational
wave detectors [10–12], torque sensors [13], and magne-
tometers [14].

The sensitivity of the mechanical coordinate measure-
ment in an opto-mechanical system usually is limited due
to quantum back action by so called standard quantum
limit (SQL) [15, 16]. The SQL was studied in various
configurations ranging from macroscopic kilometre-sized
gravitational wave detectors [7] to microcavities [17, 18].
Sensitivity of other types of measurements being deriva-
tives of the coordinate detection is also limited by SQL.
Detection of a classical force acting on a mechanical de-
gree of freedom of an opto-mechanical system is an ex-
ample of such a measurement. SQL of force measure-
ment is not a fundamentally unavoidable limit. It can be
overcome with several approaches including variational
measurement [4, 7, 19], opto-mechanical velocity mea-
surement [8, 9], and measurements in opto-mechanical
systems with ponderomotive rigidity [20, 21].

In this paper we study a possibility of improvement of
sensitivity of a classical force detector using a particular
type of an opto-mechanical transducer based on dissipa-
tive coupling of optical and mechanical degrees of free-
dom. It was shown recently that the dissipative coupling
allows obtaining a significantly better position resolution
at low power levels in comparison with the conventional
dispersive case, however, the measurement sensitivity is

still limited by SQL [22]. In this paper we show that
usage of dissipative coupling for detection of small signal
force acting on a free mechanical test mass provides a
direct possibility to realize speed meter and to beat the
SQL.

Among the variety of the opto-mechanical processes
dissipative opto-mechanical coupling takes a special
place. The dissipative coupling is characterized by de-
pendence of relaxation of an optic cavity on coordinate
of the mechanical oscillator, whereas dispersive coupling
is characterized by the dependence on eigen frequency
of the optical cavity on the coordinate. Dissipative cou-
pling allows observing quantum effects in an optical res-
onator with ring down time comparable to the frequency
of the mechanical system. The system cannot be consid-
ered lossless any more. The trick is that the dissipation
here does not lead to decoherence or absorption of light.
Instead, it results in lossless coupling between a contin-
uous optical wave and a mode of an optical cavity. The
optical cavity performs as a perfect transducer between
the continuous optical wave and the mechanical degree
of freedom, enabling efficient cooling of the mechanical
oscillator [13, 23–26], exchange of the quantum states
between the optical and mechanical degrees of freedom,
mechanical squeezing [27–30], as well as a combination of
the cooling and squeezing [31, 32]. A combination of con-
ventional, dispersive, and dissipative coupling adds more
complexity to the interaction and leads to new effects
[33, 34].

Dissipative coupling was proposed theoretically [23]
and implemented experimentally [13, 24, 25, 35] nearly
a decade ago. It was studied in a variety of opto-
mechanical systems, including Fabry-Perot interferom-
eter [13, 24, 25, 35], Michelson-Sagnac interferometer
[22, 26, 36], and ring resonators [33, 34].

We found another important feature of dissipative cou-
pling in an opto-mechanical system. The optical wave
reflected from an optical cavity interacting with a me-
chanical oscillator via dissipative coupling contains in-
formation about speed of the mechanical degree of free-
dom, giving a direct possibility to realize opto-mechanical
speed meter. This type of interaction is optimal for de-
tection of a classical force because the speed meter is
not impacted by the initial coordinate of the mechani-
cal system and allows better than SQL force detection
when operating in both a narrow-band and a wide-band
regimes [8, 9].
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In what follows we solve the problem of detection of
a classical force acting on a free test mass, position of
which determines attenuation of an optical interferome-
ter. Any mechanical oscillator can be considered as a free
mass at the time scale much smaller than the oscillation
period. Motion of a free mass is completely characterized
by energy and momentum conservation. Both energy and
momentum can be measured using the quantum nonde-
molition (QND) technique, which does not disturb the
variables, but increases uncertainty of their quantum con-
jugated ones (phase and coordinate, respectively) [16].

The idea of speed meter enabling the force detection
is that output optical field contains information about
difference ∼

[
x(t)−x(t− τ)

]
' τ ẋ(t) (where x is the me-

chanical coordinate, τ is a delay time). In frequency do-
main it corresponds to ∼ x(Ω)

(
1− eiΩτ

)
' −iΩτ x(Ω).

In proposed earlier speed meters such subtraction is re-
alized by interaction of a mechanical degree of freedom
with two coupled optical modes. Presence of several op-
tical modes in the system increases complexity of experi-
mental realization [8, 9] if compared with a conventional
position meter. We here show that the dissipative cou-
pling without the dispersive one [22] provides this kind
of subtraction automatically, enabling a simple way of
measurement of speed of a free test mass, which is a
quantum nondemolition (QND) variable, suitable for a
sensitive detection of a classical force.

II. MODEL

To describe the force detection we consider a 1D opto-
mechanical configuration (Fig. 1) involving an optical
mode characterized with eigen frequency ω0 pumped with
resonant light (the pump frequency coincides with the
mode frequency, ωp = ω0). The optical mode is dissi-
patively coupled with the mechanical system represented
by a free mass m. Relaxation rate κ of the optical mode
depends on test mass displacement x. The force of inter-
est, Fs, acts on the free mass and changes its position.

We use the Hamiltonian approach to describe the dis-
sipative coupling [37]:

H = ~ω0â
†
câc +

p̂2

2m
+HT +Hκ − Fsx̂, (2.1a)

HT =

∫
~ω b̂†(ω)b̂(ω) dω, (2.1b)

Hκ = −i~√κ
[
â†câin − â†inâc

]
, (2.1c)

κ = κ0(1 + ηx̂),
√
κ ' √κ0

(
1 +

η

2
x̂
)
, (2.1d)

where p̂ is the momentum of the test mass, HT describes
electromagnetic continuum, Hκ stands for attenuation of
the pump photons and associated quantum noise, and η
is a constant of dissipative coupling.

From this point we present the annihilation operators
of the input and intracavity optical field throught slow

κ0

Ω
ω0T = T0(1 + ηx)

a b

FIG. 1: a) Schematic of the speed meter. A mode of an op-
tical Fabry-Perot cavity is dissipatively coupled with a me-
chanical degree of freedom represented by a free mass m
a force of interest, Fs, acts upon. The coupling changes
the power transmission coefficient of the cavity front mirror
T (x). In linear approximation this change can be presented
as T (x) = T0(1 + ηx), where x is the displacement of free
mass, η is a coupling coefficient, T0 is the unperturbed power
transmission coefficient related to full width at the half max-
imum of the mode as κ0 = T0τ , where τ is the round trip
time of light in the cavity. b) The optical mode is resonantly
pumped by coherent light (ωp = ω0). The light reflected from
the cavity carries information about the force Fs.

amplitudes as

âc ⇒ âce
−iω0t, âin ⇒ âine

−iωpt, ω0 = ωp. (2.2)

The set of corresponding equations describing time
evolution of the opto-mechanical system is

˙̂ac = −κ
2
âc +

√
κâin, (2.3)

¨̂x = i~
√
κ0η

2m

[
â†câin − â†inâc

]
+ Fs. (2.4)

These equations have to be supplied with an expression
for the output field, which can be presented in the case
of T0 � 1 as

d̂out ' −âin +
√
κâc. (2.5)

Below we present amplitudes as large mean values plus
small addition:

âc = A+ â, âin = A0 + âfl, d̂out = Aout + âout (2.6a)

âfl = −
∫
b̂(ω)e−i(ω−ωp)t dω

2π
, (2.6b)[

b̂(ω), b̂†(ω′)
]

= 2πδ(ω − ω′), (2.6c)[
âfl(t), â

†
fl(t
′)
]

= δ(t− t′), (2.6d)

We assume that the expectation values exceed the fluc-
tuation parts of the operators and use the method of
successive approximations to derive a set of equations
describing the system. We select A0 = A∗0 and find in
steady state (zero order of approximation)

A =
2√
κ0
A0, Aout = A0, (2.7)

where Aout is the expectation value of the output field.
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The fluctuation part of the field and the deviation of
the test mass are described by equations (first order os
approximation)

˙̂a+
κ0

2
a = −ηκ0

4
Ax̂+

√
κ0âfl, (2.8)

âout = −âfl +
√
κ0â+

η
√
κ0

2
Ax̂, (2.9)

¨̂x = i~A
η
√
κ0

2m

[
(âfl − â†fl)−

√
κ0

2
(â− â†)

]
+
Fs
m
.

that can be solved in frequency domain as

x̂Ω = − ~ηA√κ0

mΩ(κ0 − 2iΩ)
(b̂+ − b̂†−)− FΩ

mΩ2
, (2.10)

aout+ =
κ0 + 2iΩ

κ0 − 2iΩ
b̂+ + ηA

√
κ0
−iΩxΩ

κ0 − 2iΩ
, (2.11)

where x̂Ω, aout+, FΩ, and b̂± ≡ b̂(ω0 ± Ω) are Fourier
amplitudes of corresponding operators.

From last equation (2.11) we see that the output field
provides information on speed of the probe mass −iΩx
if κ0 � Ω, but not the displacement. This is one of
the major results of the paper. We have shown that
the opto-mechanical sensor becomes a speed meter if the
coordinate of the probe mass modifies transparency of
the front mirror of the optical interferometer, or, in other
words, changes the dissipative coupling with the probe
light.

III. DETECTION OF THE CLASSICAL FORCE

Let us find sensitivity of detection of the classical force
acting on the test mass. We assume that the output of
the interferometer (Eq. 2.11) is optimally processed for
this purpose. The processing is achieved using a homo-
dyne detector that is able to measure arbitrary quadra-
ture amplitudes of the output light, which can be pre-
sented as a linear combination of the amplitude and
phase quadratures

qa =
aout+ + a†out−√

2
, qp =

aout+ − a†out−
i
√

2
. (3.1)

These quadrature amplitudes can be expressed through
the quadratures of input light

da =
b̂+ + b̂†−√

2
, dp =

b̂+ − b̂†−
i
√

2
, (3.2)

in the following way

qp =
κ0 + 2iΩ

κ0 − 2iΩ
dp (3.3a)

qa =
κ0 + 2iΩ

κ0 − 2iΩ

{
da −Q · dp +

√
2Q · fs

}
, (3.3b)
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FIG. 2: Normalized spectral density of the noise f for the
optimal procedure of the force measurement using the speed
meter technique evaluated for the optimal homodyne angle
(3.6) at frequencies 2Ω0/κ0 = 0.5 (a) and for 2Ω0/κ0 = 1 (b)
for different power parameters P (3.4): curve (1) on (a) and
(b) corresponds to P = 27, (2) — P = 9 and (3) — P = 3.
The horizontal line describes SQL.

where

Q ≡ Pκ2
0

κ2
0 + 4Ω2

, P ≡ 2}|A|2η2

mκ0
, (3.4a)

fs ≡ eiβ
Fs(Ω)

FSQL
, FSQL ≡

√
2}mΩ2. (3.4b)

Here fs is the signal force normalized by Standard Quan-
tum Limit (SQL). We see that the amplitude quadrature
of the output field qa contains shot noise term (∼ da),
back action term (∼ Qdp) and signal term (∼

√
2Qfs).

Inferring the force from the measurement of the am-
plitude quadrature qa results in the maximum measure-
ment sensitivity limited by SQL. This is not the opti-
mal detection strategy. It is possible to achieve better
measurement sensitivity by observing quadrature q =
da cos θ + dp sin θ, where θ is an angle that can be op-
timized. In order to be registered Fourier component
of normalized signal force fs(Ω) should be larger than
Fourier component of recalculated noise f(Ω) (c.f. [7])

f ≡ e−iβ√
2

{
da√
Q +

(
−
√
Q+

tan θ√
Q

)
dp

}
. (3.5)

Single-sided spectral density Sf (Ω) of noise f may be
expressed through spectral densities Sa and Sp of corre-
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FIG. 3: Michelson-Sagnac Interferometer as a input general-
ized mirror (GM) of a Fabry-Perot cavity. Perfectly reflecting
mirror M represents a free test mass. Distance L between the
generalized mirror and the end mirror (EM) is much larger
than the size of interferometer.

sponding quadratures da and dp. Below we assume that
the input light is prepared in coherent state, correspond-
ing to Sa = Sd = 1 and no correlation between da and
dp [7].

Homodyne angle θopt determined by equation

tan θopt =
Pκ2

0

κ2
0 + 4Ω2

0

(3.6)

has to be selected in order to minimize Sf at frequency
Ω0. The noise limiting the measurement sensitivity ex-
pressed in terms of spectral density Sf is presented in
Fig. 2 .

These dependencies show that the sensitivity of the
force detection better than SQL can be achieved in a rel-
atively large frequency band. This is another important
result of this paper. It worth noting, though, that this
is also a known feature of any speed meter used for a
classical force detection [8, 9].

IV. EXAMPLE OF REALIZATION OF
DISSIPATIVE COUPLING

Realization of the dissipative coupling without dis-
persive one is not straightforward. To the best of our
knowledge, the only proven example of pure dissipative
coupling is suggested in [22]. The system is based on
a Michelson-Sagnac interferometer, simplified version of
which is shown in Fig. 3. The interferometer contains the
generalized mirror, being an interferometer itself, that
provides the dissipative coupling for the Fabry-Perot in-
terferometer. We assume that the size of the generalized
mirror is much smaller than distance L between the beam
splitter and the end mirror, so both transmittance T and
reflectivity R of the generalized mirror are the constants
and has no dependence on spectral frequency.

Taking advantage of [22] we find

T = i sin 2kxm, R = cos 2kxm, (4.1)

B1 = TA+ RA1, B = TA1 + RA , (4.2)

where k = ωp/c is the wave vector of the input light
wave. We assume that the light travelling between the
beam splitter and mirror M through east arm accumu-
lates phase φe and the light travelling between the beam
splitter and the north arm accumulates phase φn. In the
case of zero mechanical deviation (xm = 0) we select the
phases to be

e2iφe = −1, e2iφn = 1, ei(φe+φn) = i. (4.3)

The cavity has high finesse, |T| � 1, so the magnitude of
the mechanical deviation has to be small enough to allow
the interferometer operate near the resonance kxm � T.

Small displacements x of mirror M from the mean po-
sition xm provides modulation of the relaxation rate of
the Fabry-Perot interferometer:

κ = κ0(1 + ηx), (4.4a)

κ0 =
|T|2
2τ

=
sin2 2kxm

2τ
, τ =

L

c
(4.4b)

η = 4k cot 2kxm '
4k

|T| =
4k√
2κ0τ

(4.4c)

We see that the considered generalized mirror demon-
strates pure dissipative coupling because the spatial shift
of mirror M changes only the relaxation rate of Fabry-
Perot cavity, not its eigen frequency.

V. DISCUSSION

To understand the advantage of the speed meter if
compared with the standard interferometric technique
of detection of a classical force based on pure disper-
sive opto-mechanical coupling let us consider a system
described by Hamiltonian

H = }ω0 (1 + ξx̂) â†câc +
p̂2

2m
+HT +Hκ − Fsx̂, (5.1)

where ξ is a constant of dispersive coupling. The other
terms are the same as in (2.1). The relaxation rate is
constant in the case of the dispersive coupling, κ = κ0,
while the information about mechanical displacement is
carried by the frequency of the optical cavity.

It is straightforward to obtain for the amplitude and
phase quadrature amplitudes of the output light (c.f. [7])

qdisp
a = e−2iα da , (5.2a)

qdisp
p = e−2iα

{
dp −K da +

√
2K fdisp

s

}
, (5.2b)

K ≡ 8}κ0ω
2
0ξ

2A2

mΩ2 (κ2
0 + 4Ω2)

, e−2iα ≡ κ0 + 2iΩ

κ0 − 2iΩ
. (5.2c)
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FIG. 4: Illustration of the difference between types of pon-
deromotive squeezing achieved in the cases of dispersive and
dissipative coupling. The blue circles on the both diagrams
represent distribution of quantum fluctuations of the input
wave prepared in the coherent state, red ellipses describe
quantum squeezing of the fluctuations of the output waves.

Comparing output quadratures (3.3) for dissipative
coupling with (5.2) for dispersive one we see that for-
mulas are similar with exception of four features.

Firstly, amplitude quadrature qa in (3.3) is replaced
with phase quadrature amplitude qdisp

p in (5.2) as well

as qp ⇒ qdisp
a . Ponderomotive squeezing takes place for

the both cases of coupling at large enough pump power
(|Q|, |K| � 1). However, squeezed quadratures are dif-
ferent (Fig. 4).

Secondly, power parameters Q in (3.4) and K in (V)
have different spectral dependence. In particular, K in-
finitely increases at the limit of Ω→ 0, whereas Q stays
limited. The steep frequency dependence of K compli-
cates the detection procedure.

Thirdly, the ponderomotive squeezing for dissipative
coupling practically does not depend on spectral fre-
quency at low frequency offsets, Ω � κ0. In contrast,
the same squeezing for dispersive coupling is strongly fre-
quency dependent [5].

It is interesting to compare the magnitude of the power
parameters for the dispersive and dissipative coupling:

Q
K =

(
Ωη

2ω0ξ

)2

=
4Ω2τ

κ0
= (5.3)

= 0.04 ·
[

Ω

1000 s−1

]2 [ τ

10−5 s

] [1000 s−1

κ0

]
.

In (5.3) we used (4.4) and ξ = 1/L. The parameters are
comparable at large enough spectral frequencies. This
is an important conclusion since it seems to be obvious
that the dispersive coupling may be stronger as compared
with the dissipative coupling. Really, the dispersive opto-
mechanical coupling corresponds to the change of the
optical frequency, while the dissipative coupling corre-
sponds to change of the optical bandwidth. The optical
frequency is larger than the bandwidth since the system
has a large quality factor. Fortunately, the coupling co-
efficient η is much larger than the coefficient ξ = 1/L.
It means that the sensor of a classical force based on a
dissipative opto-mechanical system has sensitivity com-
parable with the sensitivity of the force measurement by
means of a dispersive opto-mechanical system but has
much broader measurement bandwidth.

Conclusion

We have shown that the generally defined purely dissi-
pative opto-mechanical coupling naturally provides a re-
alization of a quantum speed meter. Such a device can be
used for measurements of a classical force with sensitiv-
ity better than the standard quantum limit. The force
should act on the mechanical degree of freedom of the
opto-mechanical system that modifies the coupling of an
optical cavity with the external world. Such a sensor has
a broad measurement bandwidth needed for detection of
mechanical forces characterized with complex wave forms
and broad spectrum. The device can be used in various
metrology applications ranging from magnetometry to
gravity wave detection.
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