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In this paper, we explore the spatio-temporal dynamics of spontaneous and stimulated forward
Brillouin scattering. This general treatment incorporates the optomechanical coupling produced
by boundary-induced radiation pressures (boundary motion) and material-induced electrostrictive
forces (photo-elastic effects), permitting straightforward application to a range of emerging micro-
and nano-scale optomechanical systems. Through a self-consistent fully coupled nonlinear treat-
ment, developed within a general Hamiltonian framework, we establish the connection between the
power spectral density of spontaneously scattered light in forward Brillouin interactions and the
nonlinear coupling strength. We show that, in sharp contrast to backward Brillouin scattering,
noise-initiated stimulated forward Brillouin scattering is forbidden in the majority of experimen-
tal systems. In fact, the single-pass gain, which characterizes the threshold for energy transfer in
back-scattering processes, is negative for a large class of forward Brillouin devices. Beyond this
frequent experimental case, we explore mechanisms for dispersive symmetry breaking that lead to

amplification and dynamics reminiscent of backward Brillouin scattering.

I. INTRODUCTION

Micro- and nano-scale structural control has been used
to enhance and tailor interactions between photons and
phonons in a range of new systems [1-19], giving rise
to a great diversity of optomechanical interactions [6-
14, 17, 19-25]. These new optomechanical systems pro-
vide a powerful interface between optical and phononic
domains as the basis for both classical [4, 17, 26-30]
and quantum [12, 14, 31, 32] signal processing opera-
tions. Among these optomechanical systems are a new
class of hybrid photonic-phononic waveguides that per-
mit new engineerable forms of traveling-wave photon-
phonon coupling [1-3, 6, 8-10, 16-19]. These traveling-
wave interactions, broadly termed Brillouin interactions,
are the basis for tailorable forms of signal amplification
[3, 6, 8, 9, 15, 16, 18, 19, 33], high performance lasers
[26, 27, 34], and a host of hybrid photonic-phononic
signal processing operations that have no optical ana-
log [4, 17, 28]. Such highly engineerable couplings have
given rise to new types and regimes of Brillouin interac-
tions [6, 24, 35], and more complex optomechanical pro-
cesses that challenge the definition of Brillouin processes
[17, 24, 36, 37]. While Brillouin physics has a rich history
[38-40], with the emergence of these enhanced forms of
photon-phonon coupling, established models of Brillouin
noise and dynamics no longer apply.

These new optomechanical (or Brillouin-active) waveg-
uides, achieve radical enhancement of forward-Brillouin
coupling (scattering) through confinement of guided op-
tical and acoustic modes within microstructured fibers
and nanophotonic waveguides, providing access to rich
new regimes of nonlinear dynamics [1-3, 59, 15-
19].  Forward-Brillouin interactions (not to be con-
fused with more widely studied backward Brillouin pro-
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cesses) are characterized by phonon-mediated coupling
between co-directionally propagating optical waves [6],
whereas backward-Brillouin interactions couple contra-
directionally propagating optical waves [38, 39]. In con-
trast to backwards Brillouin scattering, acoustic wave-
guidance is generally required to achieve phase-matched
forward-Brillouin scattering. Moreover, the frequency,
strength, and type of coupling is far more tailorable ow-
ing to the inherent geometric dependence of forward Bril-
louin interactions [6, 15, 41]. While this new device
physics holds much technological promise, little is known
about the noise and noise initiated threshold conditions
for such interactions.

The noise and dynamics of backward-Brillouin scat-
tering has been extensively studied in the context of
fiber optic technologies [42-45]. However, until recently,
forward-Brillouin couplings have been very weak by com-
parison, making their technological importance less ap-
parent. The first systematic studies of forward Brillouin
interactions focused on spontaneous forward-Brillouin
scattering [46], not to be confused with stimulated for-
ward Brillouin scattering [6]. Through these studies
Shelby et al., identified spontaneous forward-Brillouin
scattering, also termed guided acoustic wave Brillouin
scattering (GAWBS), as a key source of noise in fiber-
based quantum optics measurements [47, 48]. A the-
oretical framework was also developed to describe how
the phase and polarization noise that thermally driven
guided acoustic modes impart to light through photo-
elastic coupling in optical fibers [47, 48]. However, to
capture the noise characteristics of a diversity of new
fiber and waveguide geometries [15, 18, 24, 36, 41, 49],
it is necessary to incorporate both photo-elastic response
and boundary motion in a more general formulation of
Brillouin noise. Beyond spontaneous Brillouin noise, lit-
tle is known about the noise and threshold properties of
these interactions, which are important to the develop-
ment of Brillouin based signal processing technologies.

To address these challenges, we build on the traveling-



wave treatment of Brillouin coupling [50], and prior
quantum-traveling wave treatments of noise and nonlin-
earity [51-56]. This approach captures the distributed
optomechanical coupling, noise, and spatio-temporal
field evolution in Brillouin interactions within a gener-
alizable Hamiltonian framework. Moreoever, this for-
mulation incorporates the optomechanical couplings pro-
duced by boundary-induced radiation pressures (bound-
ary motion) and material-induced electrostrictive forces
(photo-elastic effects), in a manner consistent with Refs.
[16, 41, 57, 58]. Hence, this treatment is directly ap-
plicable to a range of emerging micro- and nano-scale
optomechanical systems [6, 15, 17-19, 35, 59]. Based on
this self-consistent fully coupled nonlinear treatment, we
establish the connection between the power spectral den-
sity of spontaneously scattered light in forward Brillouin
interactions and the nonlinear coupling strength, which
is expressed both in terms of an optomechanical coupling
rate and the more conventional Brillouin gain coefficient.

In sharp contrast to backward Brillouin scattering, we
show that, noise-initiated stimulated forward Brillouin
scattering is forbidden in the majority of experimental
systems since the anti-Stokes and Stokes waves inter-
act through the same phonon mode. In fact, our anal-
ysis shows that the single-pass gain, which convention-
ally characterizes the threshold for energy transfer in
back-scattering processes, is negative for a large class
of forward Brillouin devices. Interestingly, the sponta-
neous noise grows linearly whereas the signal amplifies
quadratically with device length in the weak signal limit.
However, in waveguides with high optical dispersion or
in inter-modal scattering, distinct phonon modes medi-
ate Stokes and anti-Stokes scattering. This dispersive
symmetry breaking leads to exponential optical amplifi-
cation and noise dynamics that are reminiscent of back-
ward Brillouin scattering.

II. THEORETICAL STUDY

We consider interactions between co-linearly propa-
gating optical- and elastic-waves within a general class
of optomechanical waveguides that support guidance
of both photons and phonons; example systems are
shown schematically in Fig. 1(a). Let us assume
that a translationally invariant waveguide in the z di-
rection, has a transverse profile specified by e,(r),
p(ri), and ¢;p(ry), representing the dielectric distri-
bution, mass density distribution, and elastic tensor
profile, respectively. We express the guided modes of
the system in terms of electric and acoustic displace-
ment fields D, (r,t) = D, (ry)e/®==<t) and u,,(r,t) =
u,, (1 )etam==nt) respectively. Here, v and m represent
the collective mode index. These modes are obtained by
solving Maxwell’s equations and the elastic wave equa-
tion, 9jcijmOkum = —Q2 pu;m [60]. Here, Dy(r,) is
the electric displacement profile of an optical mode with
wave vector, k-, and frequency w,. Similarly, u,,(r1) is

the elastic displacement profile of a phonon mode with
wave vector ¢,,, and frequency €2,,. The modes are nor-
malized such that Q2 [drip(r)uf,(ry) - -umn(ry) =1
and = [dr,(1/e,(r1))D}(r ) - D, (ry) =1, where ¢, is
the vacuum permittivity. Note that the set of points
{wy,ky} and {Q,,qm} lie on the optical dispersion
curves, w(k) and Q(g), as seen in Fig. 1(b) and (c),
permitting alternative representations {w(k-),k,} and

{Qgm), gm}-
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FIG. 1. (a) A general schematic of a waveguide that supports
both acoustic and optical modes. Different example waveg-
uide geometries include: Single mode fiber [46], photonic crys-
tal fiber [6], nano-scale ridge waveguides [19] and silicon nano-
wire [18] (b) Dispersion curves for acoustic modes inside a
waveguide. The acoustic modes relevant to forward Brillouin
are optical-phonon-like modes with cut-off frequency, Q. (c)
Phase matching requirements allow each phonon mode to in-
teract with a set of higher order Stokes and anti-Stokes photon
modes. (d) Set of Brillouin interactions that underlie complex
dynamics where both photons and phonons are coherently
created and annihilated.

In what follows, we consider noise initiated scatter-
ing of energy from an incident monochromatic pump
wave (D,(r1),kp,w,) by one or more Brillouin active
phonon modes. A characteristic Brillouin-active phonon
mode is denoted by (2,¢’) on the dispersion curve in
Fig. 1(b). We begin by considering intra-modal scat-
tering, or coupling between optical waves of distinct
frequency that are guided in the same optical band
(Fig. 1(c)). Pump photons can be red-shifted to mode
(Dgy(r1), ks, ws) through a Stokes process, or blue-shifted
to mode (Dgs(ry), kas,was) through anti-Stokes pro-
cesses. Note that phase-matching (Fig. 1(a)) and energy
conservation (Fig. 1(d)) yield distinct requirements for



Stokes and anti-Stokes processes:

Q(QS) = W(kp) - w(k8)7
Q(Qas) = w(kas) - w(kp)a

s = kp - ksa (1)
Gas = kas - kp' (2)

In general, Q, # Q,s and ¢s # qus, meaning that, the
Stokes phonon (2',¢") — (s,¢s) and the anti-Stokes
phonon (€2,¢") — (Qus, gas) are non-degenerate. In the
following sections, we will see that this form of ‘disper-
sive’ symmetry breaking between Stokes and anti-Stokes
processes strongly impacts the system dynamics. How-
ever, in many practical (or finite) systems, dispersive
symmetry breaking becomes a subtle consideration.

The distinct Stokes and anti-Stokes phonon modes (de-
fined above) are not resolved through intra-modal cou-
pling in numerous forward Brillouin systems [6, 15, 17—
19, 59]; hence, the Stokes and anti-Stokes scattering pro-
cesses effectively couple to the same phonon mode. To
understand why, we begin by Taylor expanding w(k) in
Egs. (1) and (2) to find ¢s = Qg/vg(kp) and gus =
Qas/vg(kqs), where vg(k) = (0w/0k), is the optical
group velocity. These expressions reveal that ¢s and
Gas are very small, pushing Qs and ,s very near the
phonon cutoff frequency o, as seen in Fig. 1(b). With
Qus = Qs = Qp, one finds Aq = |qas—qs| = (0%k/0w?)Q3.
Therefore, in the case when the propagation length is
much less than 7/Agq, wave uncertainty reveals that the
Stokes and anti-Stokes phonons are not resolvable; to an
excellent approximation both optical processes couple to
the phonon state (2o, go) where go = Qo/vg(kp). As are-
sult, we will see that the equations of motion that govern
Stokes and anti-Stokes generation are intimately coupled.

By contrast, distinct Stokes (€5, ¢s) and anti-Stokes
(Quas, gas) phonons are well resolved through more widely
studied backwards Brillouin coupling (e.g., see (s, ¢s)
in Fig. 1(b)). This is because the scattered Stokes
and anti-Stokes waves propagate contra-directionally to
the pump wave in the backward case. Solving Egs. 1-
2 in the case of contra-directional coupling, one finds,
qs = kp — ks = 2|ky| and qos = kas — kp = 2|k, | [38, 39].
Since Ag is large (~ 4|kp|), the Stokes and anti-Stokes
phonon modes are very well resolved through backwards
Brillouin interactions, resulting in independent equations
of motion for Stokes and anti-Stokes generation. In this
paper, we show that noise properties and nonlinear dy-
namics of forward Brillouin processes differ sharply from
the more widely studied backward Brillouin processes
[42-45]; this distinct behavior hinges on the absence or
presence of dispersive symmetry breaking.

In what follows, we begin by applying the general
Hamiltonian framework of Section IT A to this frequent
case (i.e., coupling to same phonon mode) in sections
IIB-IID. In section IT E we return to the cases when the
Stokes and anti-Stokes phonon degeneracies are resolv-
able through forms of dispersive symmetry breaking.

A. Hamiltonian of a forward Brillouin system

Building on the quantum traveling-wave treatment
of Brillouin coupling by Sipe et al. [50], and prior
quantum-traveling wave treatments of noise and non-
linearity [51-56], we present a Hamiltonian treatment
that captures the distributed optomechanical coupling,
noise, and spatio-temporal field evolution in Brillouin in-
teractions. This formulation incorporates the optome-
chanical couplings produced by boundary-induced radia-
tion pressures (boundary motion) and material-induced
electrostrictive forces (photo-elastic effects), in a man-
ner consistent with Refs. [16, 41, 57, 58]. Hence, this
treatment is directly applicable to a range of emerging
micro- and nano-scale optomechanical systems [6, 15, 17—
19, 35, 59].

We express the Hamiltonian for forward Brillouin scat-
tering as

H — th + Hopt +Hint. (3)

Here HP" H°P' and H™ characterize the dynamics of
the acoustic field, the dynamics of the optical fields, and
the acousto-optic interaction, respectively. For a transla-
tionally invariant waveguide in the z-direction, HP® can
be expressed as

HPh = / dg 72(q)bbg. (4)

Here, b4 is the annihilation operator for the ¢*" phonon
mode which captures the time evolution of each mode
amplitude, and Eq. (4) sums over a continuum of phonon
modes (see Appendix Eqs. (A1)-(A8)). While the full
acoustic Hamiltonian includes sum over all branches of
the acoustic dispersion, we focus on the dynamics of a
single acoustic field with dispersion Q(q).

The acoustic field involved in a driven system like for-
ward Brillouin system has well defined carrier wave vec-
tor qop. Therefore, we introduce the phonon mode en-
velope operator B(z) = 1/v27 [ dq bye’@ %)% peaked
around the carrier wave vector qg, allowing the acous-
tic field to evolve in space. BT(2)B(z) then represents
phonon number per unit length. Substituting the inverse
Fourier transform, b, = 1/v/27 [ dz B(z)e"47%) into
Eq. (4), the Hamiltonian becomes

HPh / dz BB (2)0. B(2), (5)

where the tailor expansion of £2(¢) about the carrier wave
vector, qo, results in the operator

. > 1970 CON\"
Qz—nz . (—15) . (6)

ol Hon
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A caveat of this definition is that B(z) must be narrowly
peaked for Q. B(z) to be well defined, in the spirit of the
slowly varying envelope approximation [61].




This general acoustic Hamiltonian for a continuous sys-
tem captures the spatio-temporal evolution of the acous-
tic field. For instance, for the case of free evolution with-
out any interaction, the Heisenberg equation using the
commutator relations (See Appendix Eq. (A11)) gives

0B(z,t) 1 phi A
—5 = E[B(z,t),H " = —iQ.B(z,1)
= (Q(qo) — iQ’(qo)(% — Q”(qo)% + ) B(z,1).

(7)

Similarly, the optical Hamiltonian for this system with
multiple spatially varying optical fields is given by

g =Y / dk hw,(k)al ,ayn, (8)
=3 / dz RAT (2)dy . A, (2) )

where A, (z) = 1/v2r [dk ay,e®* %)% is the optical
mode envelope operator and the corresponding spatial

operator
8 n
= 1
. (-ist) (10)

for v = pump, Stokes, and anti-Stokes optical field. As
for the acoustic field, the case of free evolution of the
optical fields using the Heisenberg equation of motion
and the commutator relations (see Appendix Eq. (A12))
is given by

0A,(z,t) 1

T’ - E[A’Y(th)a Hopt] = _iw’Y-,ZA'Y(Z’t)
0 0

=— <w(k.y) - iw/(k.y)a — w”(k.y)@ + ) Ay (z,1).
(11)

This captures all orders of dispersive propagation of op-
tical waves in a lossless optical waveguide.

Finally, the acousto-optic Hamiltonian that captures
the distributed optomechanial coupling in space (or cou-
pling between continuum of modes in k-space) is simply
written in terms of the mode envelope operators as (see
Appendix A)

oo

R 1 0"w
brs =2 igmm

n=0

1 =1 [ de(nA}(2)4,(:) B 0407

+ glAjzs(Z)Ap

(Z)B(z)ei(qo_Ak“)z) +He (12)
where H.c. stands for Hermitian conjugate. In writing
this Hamiltonian, we have taken the rotating wave ap-
proximation, ignoring the fast oscillating terms that con-
tribute to higher order processes. Here, Ak, = k, — k;q
and Akqs = kqs — kp. For the forward Brillouin case that
we consider here, we assume that Aks & Akys = qo. In

other words, we take both the Stokes and the anti-Stokes
processes to be phase matched. While this is an excellent
approximation for most finite systems, this becomes an
exact equality in the case of vanishing group velocity dis-
persion. The distributed coupling strengths go = g/,
with v = p and v/ = s, and g1 = g¢4,4, with v = as
and 7' = p, describe two forward Brillouin processes: the
annihilation of a Stokes photon and a phonon to create
a pump photon (i.e. ALASB), and the annihilation of
a pump photon and a phonon to create an anti-Stokes
photon (i.e. Al A,B). The coupling strength is given by
[50]

9v.y' = Gpe T Grp- (13)

The photoelastic (or electrostrictive) contribution to
the coupling strength is

. - 3 ok
ge=6 [ars (DL e)) D () ) 200

, where £ = %, / WTH/ wg’ % In lieu of the symmetry

of the photoelastic tensor, auggg is equivalent to the
strain profile in Eq. (14).

The radiation-pressure contribution to the coupling,
grp, Mmust be treated with care when dielectric disconti-
nuities are present [62]. By expressing ¢, as

grpzﬁ/drl e%(EL‘Y)* . (EQ,)V(e(rl))_

(02 (o) (1)t 09

we capture couplings produced by deformations of both
discontinuous and graded index structures. Notice that
at a discontinuous boundary the quantity Ve(r ) pro-
duces a J-function, collapsing the area integral into a
line-integral over the set of points that define the bound-
ary. Over this set of points, Ve(r,) has a vector orien-
tation that is parallel to the surface normal of the in-
terface. For points residing on this boundary, D,JY‘ is the
component of the electric displacement field D (r ) that

, (14)

is perpendicular to the boundary. Similarly, EUY is the
component of the electric field E.(r ) that is parallel to
the boundary. When the dielectric profile is a smoothly
varying function, the quantity in square brackets reduces
to — (D (r1))" - (Dy(r1)) V(1/e(ry)). It is important
to note that, the full-vectorial nature of the electric and
elastic displacement fields allows calculation of coupling
strengths for both intra- and inter-modal coupling.
Generalizing the Hamiltonian to account for the multi-
wave parametric interaction that leads to novel dynam-
ics, such as frequency comb generation, is done by in-
cluding all higher order Stokes and anti-Stokes fields in
H°Pt, Similarly, the interaction Hamiltonian, H'™*, must



be expanded to include all possible interactions that lead
to creation or annihilation of phonons as follows

Hint _
/dz (Z hgn Al (2)A,, 1 (2)B(z)el (@0~ Akn)z 4 H.c.),
(16)

where the integer n indexes the pump field at frequency
wo (n = 0) and all higher order Stokes and anti-Stokes
field at frequency w, = wo + n Qy. For the rest of this
paper, we neglect the effect of higher order side-bands
and consider the interaction Hamiltonian in Eq. (12).

B. Equations of motion

Next we consider the dynamics in the case of forward
intra-modal Brillouin scattering when both the Stokes
and the anti-Stokes processes are phase matched (i.e.,
Aks =2 Akys = qo). Using the full Hamiltonian of Eq.
(3) that includes the four-field interaction Hamiltonian
of Eq. (12), the Heisenberg equations of motion along
with the commutator relations (see Appendix A) result
in the following spatio-temporal evolution of the envelope
fields

O B(z,t)=—iQ.B—i (g5 AT A, +g; AT Ayy) (17)
OrAp (2, t) =—iwp s Ap—1i (gOASB—i-gTBTAaS) (18)
O As(2,t)=—ids . As—igi BT A, (19)
8,5Aa5(z,t):—idjasyzAas—igoApB. (20)
In order to capture the salient features of forward Bril-
louin scattering we truncate the spatial operators to €2, ~
Qo —iv0, and @, » ~ w, — 10,0,, where vo = 9Q/dq|q,
is the acoustic group velocity and vy, = Ow/0k|x, is the
optical group velocity. This is an excellent approxima-
tion for forward Brillouin systems with negligible group
velocity dispersion.

After factoring out the fast oscillating component
of the envelope field operators by letting B(z,t) =
B(z,t)e™, where Q = w, — w, is the detuning be-
tween the pump and the Stokes light, and A, (z,t) =
A, (z,t)e™t, Egs. (17 - 20) give the following spatio-
temporal evolution

0B 0B

+vo—=i(2=Q0) B—i (95 AT Ap+g7 AT Aus) (21)

ot
0A 0A .
S gt = —i(00AB+gi B Aq) (22)
0A 0A L
a4 5 o BT

Y + v o igoB'A, (23)
A, DA, -

r + UQSW = —ig1A,B. (24)

These equations of motion are similar to the ones derived
classically using nonlinear polarization and density varia-
tion induced by electrostrictive forces [6, 35]. In addition,

the coupling term here accounts for both electrostrictive
and radiation pressure forces, extending its validity to
nano-scale systems.

To capture the physics of spontaneous scattering of
light due to both thermal and zero-point fluctuations of
the phonon mode, we introduce a dissipation rate, I'o/2,
for the phonon and the corresponding Langevin force,
1(z,t). For the forward Brillouin processes of our inter-
est the dissipation rate is large (i.e. in the MHz range)
and the group velocity is vanishingly small (~ 1 m/s)
[6]. Therefore, we ignore the dB/0z term representing
the spatial evolution of envelope field in equation (21).
In this case, the phonon mode amplitude satisfies the
following equation of motion

0B 5 T0p . (wditz . it
T2 (- Q0)B— 703—2' (95 AT A, +g7 AT Auy) +n.

ot
(25)

For the rest of the paper, we treat the optical fields clas-
sically and ignore the fluctuations in the optical fields.
Following a semi-classical treatment, we show in section
(IID) that fluctuations, both thermal and zero-point, of
the phonon mode lead to spontaneous scattering of light.
However, before exploring the spontaneous forward Bril-
louin scattering (forward spontaneous noise), we study
the stimulated regime.

In the next section we derive the gain coeflicient, Gp
(W=lm~1), for stimulated forward Brillouin scattering
in terms of the coupling strength of the Hamiltonian.
Eventually, we relate this Brillouin gain coefficient to
the spontaneous forward scattering efficiency. This per-
mits straightforward prediction of spontaneous scattering
rates based on widely studied stimulated Brillouin gain
coefficients.

C. Stimulated forward Brillouin scattering

In the presence of three driven optical fields, the steady
state phonon envelope field in equation (25) reduces to

_ SATA + gr AT Ay
B(Z,t) _ (90 Chl gl I;l? ) (26)
(Q—Qo+it2)
where we've assumed wqys — wp = wp — ws = (), and

where a negligible contribution from the Langevin force
has been dropped. Substituting Eq. (26) into Eq. (23)
we get the following steady state spatial evolution for the
Stokes field

04,

0z Vg

_L 95 (QOALAS + glALsAP)AP (27)
@-f-i%)

This solution takes into account the back-action of the
phonon-field. Before solving for the Stokes field ampli-
tude, we consider the weak signal limit to define Bril-
louin gain coefficient. In the undepleted pump regime
(|Ap] > |As| and |Ap| > |Ags|) we define Brillouin gain



coefficient as: dPs/dz = GgP,Ps, where Gp is the Bril-
louin gain coefficient, Ps and P, are the powers in the
Stokes and the pump field respectively. The acoustic and
optical power flow in the waveguide is related to mode
amplitude operators as follows [50]:

PPY = hQovo BT (2,t)B(z,1) (28)
POPt = MV’UVATY(Z, t) Ay (2, 1). (29)

Assuming A,s — 0, the first term on the right hand side
of equation (27) and using the expression for power in
the optical fields given by equation (29), G5 in terms of
the coupling strength is given by

2
vstpLofiwy (@ — Qo) + (73)2

2

The equations of motion, accounting for the coupled
dynamics of both the Stokes and anti-Stokes fields in the
undepleted pump regime, give the following steady state
Stokes amplitude at position z = L

A 12002127\ 2
(A.(0R) ~ 4o (14+ 2B gy
USFO

where the single pass gain is assumed small (to be dis-
cussed in the next section Eq. (45)). Above, A4(0)
and A, are the input Stokes and pump field, and we
have assumed that the input anti-Stokes field is zero, i.e.
Aus(0) = 0. Therefore, for small single pass gain, the
Stokes power for stimulated forward Brillouin grows al-
gebraically with length. In contrast, we will see in the
following section that the spontaneously scattered power
as a function of length is different for the case of sponta-
neous forward Brillouin scattering.

D. Spontaneous forward Brillouin scattering

In this section, we derive spontaneous scattering of
pump light into co-linearly propagating Stokes and anti-
Stokes fields that result from thermally driven guided
acoustic modes. Before solving the coupled equations
(22-25), we explore the statistical properties of the
Langevin force, n(z,t), by using the distributed, fluc-
tuating source model first presented by Boyd et al. to
describe spontaneous backward Brillouin scattering [42].

1. Properties of the Langevin force

For conceptual development we divide the waveguide
into small subregions of length Az such that B is effec-
tively constant in the subregion. Let B; and 7; denote
the acoustic envelope field and the Langevin force av-
eraged over the i*" subregion. Then, B;f B; represents
the phonon density operator for the i*® subregion. We

assume that 7; is a Gaussian random variable with the
following properties

(i) = 0, and (nf (On;(#)) = Qoiyo(t —¥).  (32)

Here, Q characterizes the strength of the fluctuations in
n; and (...) symbolizes ensemble average. To find @ we
relate fluctuations in B; to the fluctuation of 1;, and de-
mand that Bg B; is given by the thermal number density
of a phonon mode of frequency €2y in equilibrium. With-
out driving due to optical forces B; obeys the following
equation

dB; Ty -
— 9B+ 33
o 5 Bitn (33)

With the solution B;(t) = [*_ dt'e™Tot=t)/2p,(¢') we
get the following equal time correlation

<Bj(t)Bj (t)> = sij% (34)

We now find Q by requiring that average phonon density
for the thermally driven mode is given by

L Tien
(BlwBin) =32, (35)
where g, = 1/(e™2/#8T — 1) is the average number of

thermal phonons of angular frequency €2 at temperature
T. Using equation (34) and (35) we have

ngnlo
Az

Q= (36)

Finally, taking the continuum limit of equation (32) we
find

(n(z,1)) =0, (37)
<77T(Zv t)n(zla t/)> = Q5(Z - Z/)(S(t - t/)v (38)

where the strength of fluctuation, @, is given by
Q = QAz = ny L. (39)
It is important to mention that because of the commu-
tation relation for the phonon mode amplitude operator

(ie. [B(z,t), BI(+/,8)] = (= — '),

(1(z DT (2, #)) = (An + 1)Tod(2 — 2)o(t — /). (40)
This expression is a restatement of the quantum
fluctuation-dissipation relation. In the high temperature

limit (i.e. classical limit), 7y, ~ kgT'/hif2 > 1, meaning
(") = (o).



2. Spontaneous forward scattering efficiency

To compute spontaneous forward Brillouin scattering,
we assume an undepleted pump and no input Stokes or

anti-Stokes field in the waveguide. We solve the coupled
mode equations (23-25), assuming that the group veloc-
ity for Stokes and anti-Stokes light are the same. This
calculation gives the following solution for the Stokes and
the anti-Stokes envelope fields [42, 63]

B . * T z v 4 B 1/2
Ag(z,7) = —zg—0|Ap|/ dT’/ dz’ nT(z’,T’)e’T(T 1, ([; (|go|2 — |g1|2) |4, 12 (1 — ') (2 — z’)] ), (41)
0 0

v

v

T z 1/2
A - A _Lo(r_pr 4 n
Aus(z,7) = —zﬂ|Ap|/ dT’/ dz' n(2',7)e = T, <{; (lg01* = |g1?) |Ap > (r = 7") (2 — z’)] ) (42)
0 0

Here, I,,(x) is the modified Bessel of the first kind and
we have switched the co-ordinate system from (z,t) to
the retarded frame (z,7 =t — z/v). From these expres-
sions and using the statistical properties of the Langevin
force derived in (38) and (40), we get the following spon-
taneously scattered Stokes and anti-Stokes signal in the
long time limit 7 — oo at position z = L

‘2

<|AS(L)|2> _ lgo

2

| A, P L(7n + 1) (I(G/2) — 11(G/2)),
(43)

|4, 2Lagmes (10(G/2) - 11(G/2)),
(44)

(|Aas(L)?) = 122

V2

where

LA,

G == (ol ~loaf*) = (45)

|~

is the single-pass gain, a dimensionless quantity charac-
terizing the amplification of Stokes or anti-Stokes light,
for forward Brillouin scattering. Assuming that the mode
profiles are the same for the Stokes and anti-Stokes fields,
we can express the single-pass gain in terms of Gp and
P, as

20

Ws

G=-""GpP,L. (46)

The ratio Qg/ws is typically of the order of 1075 for a
phonon mode in the GHz range and a photon mode in
the 200 THz range. In contrast to backward spontaneous
Brillouin scattering [42], where the single-pass gain is just
GpP,L, the single-pass gain for forward Brillouin scat-
tering in Eq. (46) is negative and close to zero. This
result is consistent with the fact that for most forward
Brillouin interactions there is no symmetry breaking be-
tween the Stokes and the anti-Stokes processes; phonons
created in Stokes scattering are annihilated in anti-Stokes
processes. Since G ~ 0, the forward Brillouin scattering
efficiency, Er, which is defined as the ratio of total power
generated in the Stokes or anti-Stokes fields at position

L along the waveguide to the input pump light power, is
given by

(AL g0l

Er - = n L (47

F, heyv| A, |2 2w, (Tign + 1) (47)
hwasv <|Aa5(L)|2> |91|2 Was

Eras = — = — L. 48

r Tuopv| Ap|? 2wy it (48)

Therefore, unlike backward stimulated Brillouin scat-
tering [42], noise does not grow exponentially for for-
ward Brillouin scattering. In particular, when the single
pass gain is negative, the spatial and temporal correla-
tion of the scattered Stokes light is limited by the phonon
lifetime (See Appendix B: Eq. (B9)). This behavior
shows that noise initiated stimulated emission cannot oc-
cur when G < 0; in contrast, when the single pass gain
is positive, the gain can exceed optical loss causing the
the coherence length of the emitted Stokes light to be-
come large. In the high temperature limit, the scattering
efficiency can be written in terms of the peak Brillouin
gain coefficient (Gp(Qp)) derived in equation (30) and is
given by

prB kB TLFQ

100 (49)

EF,as = EF,S =

This expression above relates the Brillouin gain coef-
ficient, G, which can be measured from stimulated
forward light scattering measurements, to the sponta-
neously scattered light in the forward direction by ther-
mally excited guided acoustic modes.

3. Power spectrum of scattered Stokes

For spontaneous noise measurements the
power spectrum of the mnoise at position L
along the waveguide is defined as Ss;(w) =
(hwsv) (& dt'e™ ™t (A (Lt +¢')AL(L,t)), where w

is measured relative to ws [63]. For t — oo, assuming
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FIG. 2. Spontaneous forward scattering efficiency calculation
for a tapered fiber geometry. (a) A tapered fiber of diameter
1 pwm that is routinely used in quantum optics measurements.
b) Acoustic dispersion curves generated numerically using fi-
nite element simulation to predict frequency range of acoustic
modes that are responsible for spontaneous forward Brillouin
scattering in this waveguide. ¢) Forward Brillouin gain coef-
ficient, Gp, for acoustic modes calculated numerically using
the overlap integrals and assuming a constant quality factor
of 1000 for the acoustic modes. The same plot shows total
spontaneous forward scattering per unit length for the Stokes
light using the equation (49). d) Schematic representation of
the power spectrum of the noise, which is a lorenztian with
full width at half maximum of I'g. The area under the noise
spectrum is integrated to get the total spontaneously scat-
tered light.

G =~ 0, Ss(w), using equation (41), evaluates to:

(To/2)?
w? 4+ (Tg/2)%

4|go>Pp(fugn + 1)L

Se(w) =~ T

(50)

As an example calculation of spontaneous forward Bril-
louin noise we look at a tapered optical fiber that is used
in quantum optics experiments (see Fig. 2(a)) at room
temperature. Calculation of acoustic dispersion curves
for this cylindrical geometry with 1 um diameter using
numerical methods gives us the range of frequencies for
slow-group velocity modes in this system (i.e. greater
than 2 GHz) (see Fig. 2(b)). However, only the acoustic
modes with large acousto-optical coupling scatter pump
light to forward propagating Stokes and anti-Stokes (see
Fig. 2(c)). For instance, an acoustic mode with angular
frequency Qp = 27 x 2.81 GHz, a Brillouin gain coefli-
cient of Gg = 25.9 W 'm™1, a Q—factor of 1000, which
interacts with pump light at w, = 27 x 194 THz, re-
sults in the forward Stokes scattering efficiency per unit
length of Er/L = 3.2 x 10~8m~!. Therefore, the total
spontaneously scattered Stokes power in a narrow band

around w; (see Fig. 2(d)) in a meter long tapered fiber
with 100 mW pump power is P; = 1/(27) [dw Ss(w) =
P, x Er = 3.2 nW. For another example, see the dis-
cussion of forward spontaneous noise in hollow-core fiber
[64].
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FIG. 3. A schematic comparing different limits of forward
Brillouin scattering. a) In the case of low optical dispersion,
the optical group velocity is approximately constant, mean-
ing both the Stokes and anti-Stokes wave vectors are equal
(within wave vector uncertainty because of the finite length
of the waveguide) (i.e. ¢a = gas = ¢o). b) For inter-modal
scattering, light is scattered between modes with different
dispersion curves. Therefore, even for the case when those
two curves have low dispersion, the phonon wave vector for
Stokes and anti-Stokes are not equal (i.e. ¢s # ¢as). c) For
waveguides with strong optical dispersion, group velocity is
no longer the same for Stokes and anti-Stokes field. However,
phonon frequency for the Stokes and anti-Stokes process are
equal to Qo to an excellent approximation because the acous-
tic dispersion curve is nearly flat. Therefore, acoustic wave
vector for Stokes scattering is not equal to that for anti-Stokes
scattering (i.e. ¢s # qas)-

E. Symmetry breaking in forward Brillouin
scattering

In the previous section, we examined the noise prop-
erties for forward Brillouin scattering and contrasted the
dyanmics to the case of backward Brillouin scattering.
Disctinct behavior occurs in forward Brillouin scatter-
ing because the optical dispersion is weak and the same



phonon mode couples to both the Stokes and the anti-
Stokes fields (see Fig.3(a)). However, there are forward
Brillouin systems where this degeneracy is broken. This
is possible with high optical dispersion or inter-modal
scattering. In such systems, spontaneous forward Bril-
louin is similar to backward Brillouin scattering. We dis-
cuss such scenarios in the next two sections.

1. Inter-modal scattering

In contrast to intra-modal scattering, inter-modal scat-
tering involves scattering of light between two distinct
optical bands (see Fig. 3(b)). From the figure it is clear
that even for modes with little optical dispersion, the
acoustic wave vector of the Stokes and the anti-Stokes
phonon modes can be different in inter-modal scatter-
ing. In fact, the Stokes phonon wave vector (gs) the
anti-Stokes phonon wave vector (g,.s) often propagate in
opposite directions. Such a difference in acoustic wave
vector results in symmetry breaking between the Stokes
and the anti-Stokes process. This can be seen by consid-
ering the general interaction Hamiltonian

HM = h/dz(goAL(z)AS(z)BS(z)ei(qrAkS)z)

+ g1 Al (2)A (z)BS(z)ei(qszk“)z) +H.e. (51)

P

In writing this interaction Hamiltonian we have chosen
the pump and Stokes fields to drive the Stokes phonon
mode, meaning (go, 20) — (¢s,2s) and B(z) — Bg(z). In
this case, Aks = kp—ks = ¢s and wp—wy = Q. However,
the phase mismatched anti-Stokes process in Eq. (51)
averages to zero because the fields are varying slowly in
space but e#(4s—Aka2)? ig rapidly oscillating. This results
in the following interaction Hamiltonian for the case of
inter-modal Brillouin scattering.

[ / a=(90A(2)4,(2)Bu(2) + He)) (52)

Using this interaction Hamiltonian and following the pro-
cedure outlined in Section IIB we can derive the following
equations of motion for the pump, Stokes and the phonon
fields that is independent of the anti-Stokes field:

oB. | o8,

W + Vo D2 = ’L(Q - QS)BS - ’LQSAZAP (53)
0A 0A S
Tt Ty, = Ti90ABs (54)
0A 0A L
s s _ . oxpt
Y + v 2 igoBlA,. (55)

A similar but independent set of equations of motion for
the pump, anti-Stokes and phonon field can be derived
if we choose the pump and anti-Stokes field to drive the
anti-Stokes phonon mode.

This set of equations (53-55) where the Stokes pro-
cess is uncoupled to the anti-Stokes process is similar to
the case of backward Brillouin scattering [42]. Following
an approach similar to that outlined in Sections IIB-IID
and ignoring the dynamics of the anti-Stokes field we get
the following spontaneously scattered Stokes signal in the
long time limit 7 — oo at position z = L:

(JA(L)2) =1l (5 1)eS (1 (G/2)— 1 (G/2)),
(56)

where
G= W = GpP,L. (57)

In contrast to the results of Section IID, G is positive,
indicating that noise is exponentially amplified in inter-
modal scattering. The dynamics and resulting noise
properties in this system are similar to that in back-
ward Brillouin scattering. This is due to the symme-
try breaking between the Stokes and the anti-Stokes pro-
cesses and the assumption that the acoustic propagation
effects can be neglected when the acoustic dissipation is
large. Finally, since the single-pass gain G = GpPplL
can be large, we expect the exponential growth of spon-
taneously scattered light to initiate stimulated forward
Brillouin scattering in this system.

2. High optical dispersion limit

In highly dispersive waveguides, such as slow-light pho-
tonic crystal and Bragg waveguides [33, 65-68], enhanced
group velocity dispersion for the optical modes (see Fig.
3(b)) can produce an appreciable difference in the Stokes
and anti-Stokes acoustic wave vector. This can be seen
from g5 = Qo/vg(wp) and s ~ Qo/vg(wes). Such a dif-
ference in wave vectors can only be resolved in waveg-
uides whose length permits appreciable dispersive walk-
off between the Stokes and anti-Stokes frequencies. This
can be seen by considering the general interaction Hamil-
tonian in Eq. (12):

1 = i [ ds(g0Al(2)4,(2)Bu(2)e 0 40%)

+ Al (2)A (z)Bs(z)e“qrﬁkasﬂ) +He (58

P

As before we have chosen pump and Stokes fields
to drive the Stokes phonon mode, meaning (qo, ) —
(gs, Qs), and B(z) — Bs(z). In this case, Aks = ky—ks =
gs and w, — w,s = Q. For a sufficiently long waveguide
such that |Akqs —qs| > 7/ L, the rapidly oscillating phase
mismatched term for the anti-Stokes process in Eq. (58)
averages to zero if the fields are slowly varying in space.
This results in the following interaction Hamiltonian for
the case of high optical dispersion:



gt o~ g / dz(goA;(z)As(z)Bs(z) + H.c.) (59)

This interaction Hamiltonian produces a similar dynam-
ics similar to the case of inter-modal case (i.e, Stokes and
anti-Stokes processes are effectively uncoupled), permit-
ting us to use Egs. (53-55) to describe the nonlinear
dynamics. The resulting dynamics and noise properties
for highly dispersive optical waveguide system are again
similar to the inter-modal case discussed above.

III. DISCUSSION AND CONCLUSION

In summary, we presented a generalizable Hamilto-
nian treatment of forward Brillouin scattering that in-
cludes spatially distributed nature of coupling for modes
involved in forward Brillouin scattering. The Heisenberg
equations of motion were used to calculate the stimulated
amplification of Stokes light through forward Brillouin
scattering. Spontaneous scattering, resulting from ther-
mal fluctuations of guided acoustic phonons, was calcu-
lated by adding dissipation and a Langevin driving force
to the equation of motion for the phonon field.

The coupling strength, which takes into account both
electrostriction and radiation pressure, can be calculated
for arbitrary waveguide geometry. This allowed us to
derive analytical expressions for forward scattering effi-
ciency for any waveguide, which could be useful in pre-
dicting and understanding noise in many quantum optics
experiments. In addition, we showed that spontaneously
scattered Stokes can be calculated knowing the Brillouin
gain coefficient obtained from stimulated measurements,
unifying the treatment of spontaneous (formerly studied
as GAWBS) with the stimulated forward Brillouin scat-
tering.

We also showed that for intra-modal scattering in the
non-dispersive waveguide spontaneously scattered light
grows linearly with device length. This behavior is
markedly different than that for backward Brillouin scat-
tering where noise grows exponentially, allowing noise to
initiate stimulated Brillouin scattering. This difference
arises from the fact that, in forward Brillouin scatter-
ing, phonons can simultaneously phase match to both the
Stokes and the anti-Stokes fields. However, this degener-
acy is broken for the case of highly dispersive systems or
inter-modal scattering, leading to noise properties similar
to backward Brillouin scattering.

For the intra-modal scattering, we demonstrated that
in the undepleted pump regime the stimulated Stokes
signal grows quadratically with both length and pump
power whereas the spontaneously scattered Stokes signal
(i.e. spontaneous noise) grows linearly with length and
pump power. These distinct behaviors suggest that for-
ward Brillouin amplification may have surprising benefits
as further signal processing applications are developed
based on such interactions.
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Beyond the studies presented here, as different limits of
optical and acoustic dissipation are explored in forward
Brillouin systems, it might be important to consider laser
noise and the fluctuations of optical fields in addition to
the fluctuations of the phonon field.
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Appendix A: Acousto-Optic Hamiltonian

In this appendix we follow the approach outlined by
Sipe et al. [50] and express the acousto-optic Hamilto-
nian in terms of envelope operators. Let us consider a
waveguide segment of length L that is axially invariant
in z direction and supports both acoustic and optical
modes. The complete opto-acoustic Hamiltonian that
takes into account all possible interactions between light
and sound for this system is given by [50]

_ [ TETE) L i 4 ) 6H ()
1= [T g [ 59w )5 (war
1
2/t

/Bi(r)Bi(r)dr—i— %%/Di(r)ﬁij(r)Di(r)dr.
(A1)

Here, m(r) is the conjugate momenta of the acoustic dis-
placement field operator u(r), p(r) is the density, c*/*(r)
is the elastic constant tensor, S¥(r) = 1/2(du’(r)/0r’ +
ou’ (r)/Or?) is the strain operator, D(r) is the electric
displacement field operator, B(r) is the magnetic field
operator and €% (r) = 1/3%(r) is the relative dielectric
constant tensor.

For a long waveguide segment (i.e. L — o), the acous-
tic displacement operator u(r) and the electric displace-
ment operator D(r) can be written using the normal
mode expansion as follows

dg  [h,
u(r) :Z/E Tqbaquaq(rL)eq +H.c. (A2)

S Ak [Ty .
pe- v /E Tvakavk(M)ek + H.c.
(A3)

Here, boq and a1 above represent the acoustic mode am-
plitude operator and the optical amplitude operator for a



mode with transverse profile and longitudinal wavenum-
ber given by (uaq(ri),q) and (Dyx(r1), k) respectively.
Qnq and w,y, are the acoustic and optical frequencies re-

spectively. The transverse modes are normalized such
that
Qiq drj_p(rj_)uzq(rj_) “Ugq(ry) =1, (A4)
1 .
p er_B(rJ_)D,Yk(rJ_) 'D,Y]g(rj_) = 1, (A5)

and the mode operators satisfy the following commuta-
tion relations:

[baq7 bO/lJ’] =

[k, aypr] =

 [bags b, ] = Sacedla = )

0
0; [ayk, ai’k’] = 04y 0(k — k).

H =Y, [dg hQugbl bag+Y, [ dk hkaaikavk—i—zaﬁﬁ

The coupling term, g(vk;~'k’; q), for the process in-

g(vE; vk aq)

\/hw,yk \/hw ,k,\/maq fdll

Here, g(vk;'k’; aq) represents the distributed optome-
chanical coupling between any set of optical or acoustic
modes supported by the system. The transverse optical
and acoustic mode profiles are Dy (r ), Dy (r1) and
Uqq(r1 ) respectively; here, v,+" and « are the optical
and phonon mode indices with wave vectors k, k' and ¢
respectively. Notice that through our coupled-wave form-
lation in Section II, the optomechanical coupling (Egs.
13-15) is approximated by a single value of g(vk; v'k’; aq)
where k, k' and ¢ are taken to be carrier wave-vectors
of the participating wave-packets. By comparison, the
above expressions give the exact coupling between all op-
tical and acoustic modes of the system. The first term on
the right hand side of this expression for g(vk;~'k’; aq)
represents the coupling strength of the photo-elastic in-
teraction (i.e., generalization of Eq. 14). The second
term represents the the displacement induced change in
relative dielectric profile, represents the coupling strength
due to radiation pressure (i.e., generalization of Eq. 15).
Note that when the dielectric distribution is discontinu-
ous, this second term must be expressed in the form of
Eq. 15.

At this point we introduce the envelope field oper-
ators to represent acoustic (optical) excitation with a
given transverse mode () that is centered around some
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The quantized version of this Hamiltonian in terms of
the mode amplitude operators, neglecting the vacuum
fluctuations and writing the dominant interaction terms
between the photons and the phonons, is

H=H*+H™M vy

J dkdk)iiq ( aika’y’k’baq Jdz g(vk; vk ag)e! TR0z 4 HC)

volving annihilation of a photon to give a photon and a
phonon is given by

] ijlm 6“; )
1)) Dy (r ) (P” (r1) 55 -

5 (%) U_flq(rj_)).

wavenumber ¢; (k;

d
Byj(z,t) /\/q_baq

Ayj(z,t) =

ei(a—aj)z

(A9)

(e ®> (A10)

Ay
Noa
The equal time commutation relation for envelope field
operators can be derived from the commutation relations
for the mode operators and are given as follows:

[Baj(2,), BL . (2 )] = aa0j50(z — '), (All)
[A(2,), Al (2, 8)] = 8y0085508(2 — &), (A12)

Assuming the optical or acoustic excitations are narrow-
band so that the excitation frequencies and the trans-
verse mode profiles remain constant around the carrier
wavenumbers the elastic displacement and the electric
displacement can be expressed in terms of the envelope
operators as

u(r,t) ~ Z ( hgaj Uag, (T1)Baj(z, t)e' %% + H.c.)
aj
(A13)
D(r,t) ~ Z ( 2'“ Dok, (r1)Ayj(z,t)e™* + H.c.) .
vJ
(A14)



Here, the sum over j represents the sum over all the
acoustic and optical excitation in the waveguide segment.

To write the Hamiltonian in terms of envelope field
operators we first Taylor expand the phonon frequency
2oq and the photon frequency w,; around the carrier j:

o0,
Qag = Qaj + (¢ — q5) 8qq (A15)
q=q;
o
Wy = wy; + (k — kj) g;’“ T (A16)
k=k;

, where v = 0Qaq/0q|q=q, is the acoustic group velocity
and vy; = Owyk/Ok|k=r, is the optical group velocity.

Substituting (A15) and (A16) into the expression for
H in (A8) and using the relations (A9) and (A10) we
can write the Hamiltonian in terms of the envelope field
operators

HY =" (maj /dz Bl (2,)Baj(z,t)—

aj

ihva /dz Blj(z,t)%(z,t) +.. .),
y4
HEM = Y (s [ s AL )0~
Vi
ih%/dz Aij(z,t)%(z,t)—i—...)
z

V= Z Z (g('ij;'Ylkj’QOCQl)(S(kj/ —kj +q)x

o,y 5t
/dz Al (2, 0)Ay 50 (2,8) Bar(2, 1) + Hc>

In deriving the interaction term in the Hamiltonian, V,
we have taken the coupling strength g(vk;;~'k;; aqr)
out of the spatial integral assuming that the coupling
strength is constant over narrow bands around carrier
wavenumbers.

Finally, the time evolution of the envelope fields are
then given by Heisenberg equation of motion

0By (z,1) 1 } A
— = E[Baj (z,t), H] (A17)
0Ay;(2,t) 1 . A
ot E[Aw (2:1), H]. (A18)

The equal time commutator relations in (A11) and (A12)
can then be used to find the coupled mode equations for
the envelope fields. If we ignore the terms corresponding
to the higher order dispersion in the Hamiltonian, then
it amounts to making slowly varying envelope approxi-
mation for the envelope fields.

Appendix B: Stokes field correlation

In this appendix, we derive the Stokes field correlation.
In the limit of large acoustic damping a simple form for
the temporal and spatial dependent correlations of the
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Stokes field can be derived. In this limit the phonon
envelope is determined by its instantaneous steady-state
value given by

= = Z (QSALA;)"‘QTALA@S)
B(z,t) ~ Byn(z,t) — B1
() ~ Bun(=,1) e B1)
where A = Qp — Q and
_ t iA+ Do
Bin(z,t) :/ dr e~ (A+) )00 o (B2)

This solution for B(z,t) can now be directly substituted
into the equations of motion for the Stokes and anti-
Stokes envelopes to give

. . o _ -
iy ] L) = ] e
where
X = [—iA+To/2] 7" (B3)
Ly = 00 + va0: = xlgol| A, (B4)
Las = 0 + vas0=+x|g1*| 4, . (B5)
We assumed an undepleted pump and vy ~ v, = v.

These coupled equations can be manipulated to give the
equation of motion for the Stokes field, including the back
reaction from anti-Stokes processes,

Tovs ] - o
[at + 0,0, -2 4°L” G] A (z,t)=—igi A, B, (2,1). (B6)

The solution for the Stokes field is given by

t
/_ls(z,t) = —igf)‘/
0

xTovs

dre” 2t =D A, Bl (2 — vy(t —7),7)

X 0(z —vs(t — 7))
(B7)

where A,(0,t) = 0. By using the correlation properties
of the thermal phonon envelope

(Bun(2.4) Bl (2/ ) = (en+1)e 0= 2= 55 )

(B8)
the simplified form of the correlation function below can
be obtained

_ 2|90l AL

AT l "N A AN
(Al(z + 2"t + 1) As (2, 1)) TorZRe(\)C

(Ren + 1)

N e ol

—al r
Am(OTOG

Re(x)To G
X e iL e 4L |2l

_ R,c(ﬁroc(z_i_%/) '

(B9)

This expression describes the temporal and spatial corre-
lations in spontaneously scattered Stokes light. This ex-
pression can be used to compute the power spectrum in
a variety of experimental scenarios. This equation shows
that the spatial and temporal correlation of the scattered
Stokes light is limited by the phonon lifetime T'y.

)
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