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Recent advances in rapidly quenched ultracold atomic Fermi gases near a Feshbach resonance
arise a number of interesting problems, in the context of observing the long-sought Stoner ferromag-
netic phase transition. The possibility of experimentally obtaining a “quasirepulsive” regime in the
upper branch of the energy spectrum due to the rapid quench is currently debated and theoretically,
the Stoner transition has mainly been investigated by using perturbation theory or at high polar-
ization, due to the limited theoretical approaches in the strongly repulsive regime. In this work,
we present a nonperturbative theoretical approach to the quasirepulsive upper branch of a Fermi
gas near a broad Feshbach resonance and determine the finite-temperature phase diagram for the
Stoner instability. Our results agree well with the known quantum Monte-Carlo simulations at zero
temperature and recover the known virial expansion prediction at high temperature for arbitrary
interaction strengths. At resonance, we find that the Stoner transition temperature becomes of or-
der of the Fermi temperature, around which the molecule formation rate becomes vanishingly small.
This suggests a feasible way to observe Stoner ferromagnetism in the nondegenerate temperature
regime.

PACS numbers: 03.75.Ss, 05.30.Fk, 64.60.De, 67.85.-d

I. INTRODUCTION

An ultracold atomic Fermi gas with tunable contact
interactions provides a paradigm to simulate strongly
correlated many-body systems, owing to its unprece-
dented controllability [1]. With strong attractions, it
has given access to the crossover from Bardeen-Cooper-
Schrieffer (BCS) superfluidity to Bose-Einstein conden-
sation (BEC) of tightly bound fermionic pairs [2]; while
with strong repulsions, it may lead to the confirmation
of a text-book result of ferromagnetic phase transition
predicted nearly a century ago, the so-called Stoner fer-
romagnetism [3]. However, understanding the nature of
this ferromagnetic transition is still an intriguing and
controversial topic [4]. This is largely due to the fact
that the experimental tunability of the repulsive inter-
action comes with a price of severe atom loss [5]. The
regime of strong effective repulsion can only be reached
by rapidly quenching an attractively interacting atomic
Fermi gas to the meta-stable upper branch of its energy
spectrum near a Feshbach resonance [6]. Initial exper-
imental support of Stoner ferromagnetic transition was
reported in a strongly interacting Fermi gas of 6Li atoms
[7]. But its existence in the same system was ruled out by
more advanced spin-density fluctuation measurement [8].
Recent progress on repulsive polarons suggests that the
Stoner transition may be observable by using a narrow
Feshbach resonance [9] or at low-dimensions [10]. Trig-
gered by these intriguing experimental observations, over
the past few years, there have been considerable theoret-
ical interests on Stoner ferromagnetism [11–29].

Stoner’s original idea of ferromagnetic transition is
based on a simple first-order perturbation theory [3],
which at zero temperature predicts a smooth transi-

tion at kF as = π/2 for a spin-population balanced sys-
tem, where kF is the Fermi wavevector and as is the
s-wave scattering length. The application of the sec-
ond order perturbation theory improves the threshold to
kFas ≃ 1.054 [11], but the value is still too large to val-
idate the perturbation theory. Recent zero-temperature
quantum Monte Carlo simulations (QMC) [15, 21, 22],
a lowest order constraint variational calculation [23] as
well as a non-perturbative ladder approximation calcula-
tion [24], rather suggest a transition at kFas ≃ 0.8− 0.9.
On the other hand, in the limit of large spin imbalance,
where the system may behave like a weakly interacting
gas of repulsive polarons, the ferromagnetic transition
could be accurately determined [29]. Yet, a unified theo-
retical framework, which is valid at all temperatures and
interaction strengths, is still to be developed.

The purpose of this work is to present a nonpertur-
bative theory of Stoner ferromagnetism at finite temper-
ature, by performing controlled calculations both in a
large-N expansion [30–32] and in a dimensional ǫ expan-
sion [33–35]. Previously, the nonperturbative approach
with a large-N expansion has been applied to study the
strongly interacting Bose gas [36], which is viewed as
the upper branch of a Bose gas across a Feshbach res-
onance. Our prediction of the Tan’s contact density
agrees with the latest results from first-principle quan-
tum Monte Carlo calculations [37, 38], as shown in Fig.
1. In particular, the nonmonotonic temperature depen-
dence of the two-body contact, predicted by our theory, is
unambiguously confirmed. Therefore, we expect that the
application of this nonperturbative theory to fermions
will lead to a reliable description of the Stoner ferromag-
netism at finite temperatures. A rigorous verification of
our predictions can be obtained by confronting them with
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FIG. 1: (Color online). The temperature dependence of the
two-body contact c2 of a unitary Bose gas. c2 is in units of
ρ4/3, where ρ is the density of the unitary Bose gas. Tc0 is the
transition temperature of an ideal Bose gas with the density ρ.
The black solid line shows the prediction of our upper branch
theory within the large-N expansion approximation [36]. It
agrees reasonably well with the latest Monte Carlo simulation
at both zero temperature (stars, from Ref. [37]) and finite
temperatures (solid circles and crosses at two different three-
body parameters, from Ref. [38]). The green dashed line is
the second-order virial expansion result that is valid at high
temperatures [36].

more advanced Monte Carlo simulations and experimen-
tal investigations of ferromagnetism at finite tempera-
tures.

In this work, we find that the Stoner transition does
occur at finite temperature in a strongly interacting but
near degenerate Fermi gas. The relatively high transition
temperature makes the molecule formation rate vanish-
ingly small and thus the observation of Stoner transition
will no longer suffer from severe atom loss. Our predic-
tion thereby paves a new way towards the experimen-
tal confirmation of the long-sought Stoner ferromagnetic
phase transition. Our results may also be used to better
understand the occurrence of ferromagnetism in many
strongly correlated solid-state systems, including super-
conductors, metals, and insulators.

One crucial component of our finite-temperature the-
ory is an appropriate definition of a many-body phase
shift for the quasirepulsive upper branch. In an earlier
study, it was realized that a description of quasirepul-
sive interaction may be achieved by excluding the in-
medium bound-state contribution from the density equa-
tion within a Nozieres-Schmitt-Rink (NSR) approach
[39]. However, this treatment predicts an equilibrium
switch between the upper and the lower branches near
the resonance at high temperature and results in a wide
forbidden area in the low-temperature phase diagram.
Alternative spectral representation of the approach that
takes into account an additional frequency-independent
two-body term still suffers from a sudden drop in the spin

susceptibility near the Feshbach resonance [40]. Here, we
show that the clarification of the quasirepulsive upper
branch, together with the controllable large-N expansion
and ǫ expansion, provides a reliable phase diagram at ar-
bitrary temperatures and coupling strengths.

Our paper is organized as follows. In the next sec-
tion (Sec. II), we review the theoretical framework of
the large-N expansion and the dimensional ǫ-expansion
and examine the usefulness of these two approaches for a
strongly interacting Fermi gas in the attractive branch.
We explain the definition of the upper branch, Eq. (9),
and provide a detailed proof of this definition from the
viewpoint of the virial expansion. The technical proof
may be skipped for the first reading. In Sec. III, we
present the main results of our work, the Stoner transi-
tion at both zero temperature and finite temperature. A
finite temperature phase diagram is shown and the sta-
bility of the upper branch is briefly discussed. Finally,
Sec. IV is devoted to conclusions and outlooks.

II. THEORY

We first adopt the large-N approach following the pi-
oneering works by Nikolić et al. [30] and Veillette et

al. [31] for an attractive Fermi gas at the BEC-BCS
crossover. An artificial small parameter, 1/N , is intro-
duced to organize the different diagrammatic contribu-
tions or scattering processes around the mean-field so-
lution. The original theory is recovered in the limit of
N = 1. The motivation of the large-N expansion is that
there are no phase transitions with deceasing N and the
large-N (i.e., mean-field) solution has the same symme-
try as the original ground state at N = 1. Therefore,
we anticipate that the large-N results connect smoothly
to the physical results at N = 1. One can then perform
controlled calculations by including all diagrams up to a
certain order in 1/N . Although in our calculations we
stop at the next-to-leading-order (1/N), systematic im-
provements could be achieved by going to higher orders.
A complementary approach, which uses the similar spirit,
is the dimensional ǫ expansion. We will briefly discuss the
ǫ expansion [33–35] in the end of this section.

A. Large-N expansion

We consider a three-dimensional spin-1/2 interacting
Fermi gas with N fermionic flavors (i, j = 1, . . . , N) for
each spin degree of freedom σ =↑, ↓, described by an
action (setting the volume V = 1 and ~ = kB = 1) [30–
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S =

ˆ

d3xdτ





N
∑

i=1

∑

σ=↑,↓

ψ∗
iσ

(

∂τ − ∇2

2m
− µ

)

ψiσ

+
U0

N

N
∑

i,j=1

ψ∗
i↑ψ

∗
i↓ψj↓ψj↑



 , (1)

where ψiσ (x, τ) are Grassmann fields representing
fermionic species of equal mass m and the imaginary
time τ takes values from 0 to the inverse temperature
β = 1/T . µ is the chemical potential and U0 is the bare
interaction strength to be renormalized in terms of the
s-wave scattering length as via the relation

m

4πas
=

1

U0
+
∑

k

1

2εk
(2)

with εk = k2/(2m). The action possesses invariance un-
der the symplectic group Sp(2N ) and in the case ofN = 1
describes the usual spin-1/2 Fermi gas.

By decoupling the interaction term in the action via a
standard Hubbard-Stratonovich transformation and inte-
grating out the fermionic Grassmann fields, at the level of
Gaussian fluctuations (i.e., the first nontrivial correction
at the order of 1/N), we obtain the pressure [41–44]

P
T

= 2N
∑

k

ln
(

1 + e−βξk
)

−
∑

q,iνl

ln
[

−Γ−1 (q, iνl)
]

, (3)

where ξk = εk−µ and Γ(q, iνl) is the two-particle vertex
function with bosonic Matsubara frequencies νl = 2πlT
(l = 0,±1,±2, · · · ),

Γ−1 (q, iνl) =
m

4πas
−
∑

k

[

γ (q,k)

iνl − ξq/2+k − ξq/2−k

+
1

2εk

]

.

(4)
γ(q,k) ≡ 1− f(ξq/2+k)− f(ξq/2−k) with the Fermi dis-

tribution f(x) = 1/(eβx + 1) includes (in-medium) Pauli
blocking of pair fluctuations. By recalling that the ver-
tex function is essentially the Green function of pairs, the
pressure in Eq. (3) simply describes a non-interacting
mixture of 2N fermionic species and the bosonic pairs
[44]. By converting the summation over Matsubara fre-
quencies into an integral over real frequency and intro-
ducing an in-medium two-particle phase shift [41–43]

δ(q, ω) ≡ −Imln[−Γ−1(q, ω + i0+)], (5)

the contribution from the bosonic pairs can be rewritten
as

∆P =
∑

q

ˆ +∞

−∞

dω

π
b(ω)δ (q, ω) , (6)

where b(ω) = 1/(eβω − 1) is the Bose distribution. Ac-
cording to standard scattering theory, the two-particle
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FIG. 2: (Color online) Temperature dependence of the total
energy of a unitary Fermi gas predicted by the large-N ex-
pansion theory. The large-N expansion results (solid line) are
compared with the accurate experimental measurement from
the MIT group (solid circles) [45], as well as the 2nd-order
virial expansion prediction (empty squares) [48]. The dot-
dashed line is the energy of an ideal, non-interacting Fermi
gas.

phase shift is associated with the density of state and in-
creases by π when a two-body bound state emerges [41].
It should vanish precisely at ω = 0, as required by the
integrability of Eq. (6).

For a unitary Fermi gas in the attractive (ground
state) branch, the application of the large-N expansion
has been successful. At zero temperature, the predicted
Bertsch parameter ξN = 0.279 [31] is in reasonable agree-
ment with the most recent experimental measurement
ξ = 0.376 ± 0.005 [45] and quantum Monte Carlo result
ξ = 0.37− 0.38 [46, 47]. The predicted inverse superfluid
transition temperature, (TF /Tc)N = 6.579 [30], is also
very close to the experimental data (TF /Tc)N = 6.0±0.5
[45]. Near the quantum critical point µ = 0, the large-N
expansion approach was recently examined by Enss [32],
by comparing the results for the equation of state and
Tan’s contact with more favorable theoretical predictions
(i.e., bold diagrammatic Monte Carlo, BDMC) or the
accurate experimental data [45]. It was shown that for
the pressure P , there are excellent agreements (less than
4%) between the large-N calculation PN = 0.928nkBT
and the experimental data P = 0.891 ± 0.019nkBT (or
the BDMC data P = 0.90 ± 0.02nkBT ) [32]. There is
also a similar good agreement for the entropy density
S/(NkB). For Tan’s contact C, the large-N prediction
(CN = 0.0789k4F ) is just 1.4% below the BDMC calcu-
lation (C = 0.080 ± 0.005k4F ). This is very impressive,
given the simplicity of the large-N calculation [32].

In Fig. 2, we provide our benchmark of the large-N
theory and systematically compare the large-N predic-
tions with the experimental results in the non-degenerate
regime with T > TF . The large-N expansion prediction
for the universal energy reasonably agrees with the re-
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FIG. 3: (Color online). The in-medium phase shift δrep(q, ω)
of a quasirepulsive Fermi gas at the interaction parameter
kF as = 0.5 and T = 0. We have taken a chemical potential
µ = εF , which is suitable for the weakly interacting regime.
The inset shows the corresponding in-medium phase shift for
an attractive Fermi gas δatt(q = 0, ω), together with the real
and imaginary parts of the negative inverse of the two-particle
vertex function, −Γ−1(q = 0, ω).

cent experimental measurement by the MIT group [45]
and with the second-order virial expansion result at suf-
ficiently large temperatures [48].

B. Phase shift of the upper branch

The above theory is only for the attractive branch
(ground state). One crucial component of our finite-
temperature theory for the quasirepulsive upper branch
is an appropriate definition of a many-body phase shift.

For the attractive ground state, the phase shift
δatt (q, ω) is in general positive and the condition
δatt(q, ω = 0) = 0 is a sufficient criterion to determine
the lowest temperature (i.e., Tc) for Cooper pairing insta-
bility. In the inset of Fig. 3, we show a typical phase shift
for the attractive branch at 1/(kFas) = 2 with a chemi-
cal potential at Fermi energy, µ = εF = k2F /(2m). With
increasing frequency, the phase shift jumps from 0 to π at
a critical value ωb(q), where the vertex function develops
a pole. This simply signals the existence of a two-body
bound state. With further increasing frequency above
the scattering threshold ωs(q) = q2/(4m)− 2µ > ωb(q),
the phase shift deviates from π as the imaginary part
of −Γ−1(q, ω) is no longer zero, indicating the scatter-
ing continuum. We note that in this case the criterion
δatt(q, ω = 0) = 0 is clearly not satisfied. This is be-
cause we have used an unrealistic large chemical poten-
tial for the attractive ground state. In a realistic solution,
the chemical potential will be necessarily pinned by the
Thouless criterion to a value slightly larger than the half
of the bound state energy −1/(ma2s) [41].

For the quasirepulsive upper branch, we first notice

that the two-body phase shift in vacuum is given by

δ2B(E) = −Imln

[

− 1

as
+
√

−m(E + i0+)

]

. (7)

For the BEC side with as > 0, we have

δ2B(E) =







0 , −∞ < E < εB
π , εB < E < 0

π − arctan(as
√
mE) , E > 0,

(8)

where εB = −1/(ma2s) is the bound state energy level.
The π-jump at E = εB shows clearly the existence of a
bound state. Therefore, to define a quasirepulsive two-
body system, the π-shift coming from the bound state
should be subtracted. Inspired by this two-body picture,
we find another repulsive solution for the phase shift, by
considering a different branch cut for the argument of
−Γ−1(q, ω), which differs from δatt by a constant shift π
from the scattering threshold:

δrep (q, ω) = [δatt (q, ω)− π] Θ [ω − ωs (q)] . (9)

In the following, we show that Eq. (9) is an appropri-
ate prescription of the phase shift for the upper branch
from the viewpoint of virial expansion [48]. In brief, it
is known that the bosonic contribution ∆P contains all
two-particle virial series to infinite order of the fugacity
z = eβµ [48]. It can be expressed as

∆P = P(2) =

∞
∑

n=2

P(2)
n , (10)

where P(2)
n ∝ zn is the n-th two-particle virial contri-

bution. Since the two-body energy spectrum is known

exactly, we can precisely separate P(2)
n into its contribu-

tions from the bound state and from the scattering con-
tinuum. By resumming only the scattering contributions
to all orders in z, we obtain precisely the prescription (9).

At high temperature, the fugacity becomes small, z =
eβµ ≪ 1. The contribution of two-particle scattering
process to the pressure can be expressed as [48]

P(2) =
∞
∑

n=2

P(2)
n =

2T

λ3dB

∞
∑

n=2

b(2)n zn, (11)

where λdB = [2π/(mT )]1/2 is the thermal de Broglie

wavelength and b
(2)
n is the two-particle contribution to

the n-th virial coefficient.
The n-order contribution P(2)

n can be obtained by mak-
ing the virial expansion of the pressure ∆P . To this
end, we put the dependence on the chemical potential µ
into the distribution functions by using a new variable
E = ω + 2µ− q2/(4m). Then we obtain

P(2) =
∑

q

ˆ ∞

−∞

dE

π
b

(

E +
q2

4m
− 2µ

)

δ(E,q). (12)
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Here the phase shift δ(E,q) in terms of E can be ex-
pressed as δ(E,q) = −Imln [A(E,q) + iB(E,q)], where
the functions A(E,q) and B(E,q) are given by

A(E,q) = − 1

as
+

4π

m
p.v.

∑

k

[

γ(k,q)

E − 2εk
+

1

2εk

]

,

B(E,q) = −4π2

m

∑

k

γ(k,q)δ(E − 2εk). (13)

For E > 0, p.v. stands for the principal value. The virial
expansion of P(2) can be worked out by making use of the
expansions of the Bose and Fermi distribution functions.
The distribution functions can be expanded as

b

(

E +
q2

4m
− 2µ

)

=

∞
∑

n=1

z2ne−nβ(E+ q2

4m
) (14)

and

f (ε− µ) =
∞
∑

n=1

zn(−1)n−1e−nβε. (15)

Accordingly, the phase shift δ(E,q) can be expanded as

δ(E,q) = δ2B(E) +

∞
∑

n=1

znφn(E, q), (16)

where δ2B(E) is the two-body phase shift in the vacuum,
Now we consider the BEC side with as > 0. According

to the expansion (16) of the phase shift δ(E,q), we can
divide the pressure P(2) into four contributions.

(A) The first two contributions come from the leading-
order expansion of the phase shift. Keeping only the
vacuum two-body phase shift δ2B(E), we obtain

P(2)
2B =

∞
∑

n=1

z2n
∑

q

e−
nβq2

4m

ˆ ∞

−∞

dE

π
e−nβEδ2B(E). (17)

The relative two-body motion and the center-of-mass mo-
tion are decoupled because δ2B(E) depends only on E.
We can separate the two-body phase shift into its bound-
state part δb(E) and scattering-state part δs(E). We
have δ2B(E) = δb(E) + δs(E), where

δb(E) = πΘ(E − εB),

δs(E) = [δ2B(E)− π] Θ(E − εB). (18)

Accordingly, the pressure P(2)
2B can be divided into its

bound-state contribution P(2)
b and its scattering-state

contribution P(2)
s . We have P(2)

2B = P(2)
b + P(2)

s , where

P(2)
b =

∞
∑

n=1

z2n
∑

q

e−
nβq2

4m

ˆ ∞

−∞

dE

π
e−nβEδb(E),

P(2)
s =

∞
∑

n=1

z2n
∑

q

e−
nβq2

4m

ˆ ∞

−∞

dE

π
e−nβEδs(E). (19)

Notice that these two contributions are not simply sep-
arated by E < 0 and E > 0. Completing the integrals
over q and E, we obtain

P(2)
b =

23/2T

λ3dB

∞
∑

n=1

z2n

n5/2
e−nβεB ,

P(2)
s =

23/2T

λ3dB

∞
∑

n=1

z2n

n5/2

ˆ ∞

0

dk

π
e−

nβk2

m
dδ(k)

dk
. (20)

Here δ(k) = − arctan(kas) is now the usual scattering
phase shift without bound state. It becomes evident

that P(2)
b and P(2)

s correspond to the bound-state and
scattering-state contributions, respectively. For n = 1,
they recover the well-known Beth-Uhlenbeck formula of
the second virial coefficient.

(B) The other two contributions come from the higher-
order expansions of the phase shift which show explicitly
the medium effect. These contributions can be called
medium corrections and can be expressed as

P(2)
m =

∞
∑

n=1

∞
∑

l=1

z2n+l
∑

q

e−
nβq2

4m

×
ˆ ∞

−∞

dE

π
e−nβEφl(E, q). (21)

We notice that the relative two-body motion and the
center-of-mass motion cannot be separated for these con-
tributions. To obtain the expansion coefficients φn(E, q),
we need to evaluate the expansions for A(E,q) and
B(E,q). We thus consider two regimes of E: E < 0 and
E > 0. We will see that the bound-state and scattering-
state contributions are separated by these two regimes.
(1) E < 0. In this regime we have B(E,q) = 0. The real
part A(E,q) can be expressed as

A(E,q) = − 1

as
+

√
−mE +

∞
∑

n=1

(−1)n−1

n
znAn(E, q),(22)

where the expansion coefficients read

An(E, q) =
16mT

πq
e−

nβq2

8m

ˆ ∞

0

pdp
e−

nβp2

2m sinh nβpq
2m

p2 −mE
.(23)

In this regime, the medium effect (z ≪ 1) induces a shift
of the bound state pole. Therefore, we have formally

φl(E, q) = π

l−1
∑

ν=0

δ(ν)(E − εB)ϕ
ν
l (εB, q), (24)

where δ(ν)(x) is the ν-th derivative of the Dirac delta
function. The expression of ϕν

l (εB, q) is rather compli-
cated and is not shown here. From this formal expres-
sion, the medium correction to the pressure in the region
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E < 0 can be expressed as

P(2)
mb =

∞
∑

n=1

∞
∑

l=1

z2n+l
∑

q

e−
nβq2

4m

ˆ 0

−∞

dEe−nβE

×
l−1
∑

ν=0

δ(ν)(E − εB)ϕ
ν
l (εB, q). (25)

The integral over E can be completed and finally P(2)
mb

can be formally expressed as

P(2)
mb =

∞
∑

n=1

∞
∑

l=1

z2n+le−nβεBHnl(εB), (26)

where Hnl(εB) is a rather complicated function of εB (and
also T ) and will not be shown here.
(2) E > 0. In this regime we have

A(E,q) = − 1

as
+

∞
∑

n=1

(−1)n−1

n
znAn(E, q),

B(E,q) = −
√
mE +

∞
∑

n=1

(−1)n−1

n
znBn(E, q), (27)

where

An =
16mT

πq
e−

nβq2

8m v.p.

ˆ ∞

0

pdp
e−

nβp2

2m sinh nβpq
2m

p2 −mE
,

Bn =
4mT

q
e−

nβq2

8m e−
nβE

2 sinh
nβq

√
mE

2m
. (28)

The expansion coefficients φl(E, q) can be worked out but
rather lengthy. Formally, it can be expressed as

φl(E, q) =
m

2k

l
∑

ν=1

dνδ(k)

dkν
ηνl (k, q), (29)

where we have set E = k2/m and δ(k) = − arctan(kas)
is again the usual scattering phase shift without bound
state. The function ηνl (k, q) is also rather lengthy and
will not be shown here. Then the medium correction to
the pressure in the scattering continuum E > 0 can be
expressed as

P(2)
ms =

∞
∑

n=1

∞
∑

l=1

z2n+l
∑

q

e−
nβq2

4m

×
ˆ ∞

0

dk

π
e−

nβk2

m

l
∑

ν=1

dνδ(k)

dkν
ηνl (k, q). (30)

From the above discussions, we find that the pure

two-body contributions P(2)
b and P(2)

s cannot be simply
distinguished by the scattering threshold (E < 0 and
E > 0). They are given by the separation of the phase
shift in Eq. (18). On the other hand, the medium cor-

rections P(2)
mb and P(2)

ms are separated by the scattering

threshold. We therefore identify P(2)
b and P(2)

mb as the

contributions from the bound state and P(2)
s and P(2)

ms as
the contributions from the scattering continuum. Sum-
ming only the contributions from the scattering contin-
uum, we obtain the pressure of the quasirepulsive upper
branch,

P(2)
rep = P(2)

s + P(2)
ms . (31)

This result can be finally rewritten in a compact form by
using the fact that

P(2)
s =

∑

q

ˆ ∞

0

dE

π
b [E + ωs(q)] [δ2B(E)− π] (32)

and

P(2)
ms =

∑

q

ˆ ∞

0

dE

π
b [E + ωs(q)] [δ(E,q) − δ2B(E)] ,(33)

where ωs(q) = q2/(4m)− 2µ is the scattering threshold
as defined in the text. We finally obtain

P(2)
rep =

∑

q

ˆ ∞

0

dE

π
b [E + ωs(q)] [δ(E,q)− π] . (34)

Converting to the variable ω, we obtain

P(2)
rep =

∑

q

ˆ ∞

ωs(q)

dω

π
b (ω) [δ(q, ω)− π] . (35)

This result can be re-expressed in terms of the phase shift
δrep for the upper branch,

P(2)
rep =

∑

q

ˆ ∞

−∞

dω

π
b (ω) δrep(q, ω), (36)

where the phase shift δrep (q, ω) is given by Eq. (9).
Therefore, we have shown that, by resumming the two-
particle virial contributions from the scattering contin-
uum to all orders in the fugacity z, we obtain precisely
the formulation of the quasirepulsive upper branch, Eq.
(36).

The above discussions are based on the assumption of
a small fugacity z ≪ 1. However, it is natural to gen-
eralize Eq. (36) to the low temperature region since we
have resummed the two-body virial contributions from
the scattering continuum to infinite order in the fugacity
z.

The resulting phase shift δrep (q, ω) for the upper
branch is shown in Fig. 3. It varies smoothly as a
function of frequency, vanishes identically at ω = 0 and
has the correct negative (positive) sign at positive (neg-
ative) frequency, consistent with a phase shift for repul-
sive interactions. Our prescription of the upper branch
is similar but different from the excluded-molecular-pole
approximation (EMPA) proposed earlier [39]. We can
show that the the EMPA adopts a different phase shift
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FIG. 4: (Color online) The zero-temperature total energy of a
quasi-repulsive Fermi gas. The energy is shown in units of the
non-interacting energy E0 = (3/5)nεF , as a function of 1/N
at two interaction parameters: kFas = 0.1 (empty squares)
and kF as = 0.5 (solid circles). The lines are the contribution
from the linear part.

(see Appendix A) for the upper branch which leads to
a sudden drop of the interaction energy near the reso-
nance and hence an equilibrium switch between the up-
per and lower branches. With our prescription, one can
reach the repulsive unitary limit. The violation of Tan’s
adiabatic theorem near the resonance [49, 50], as pre-
dicted by the EMPA [39], can be avoided. Together with
the controllable large-N expansion and ǫ expansion intro-
duced below, we are able to access the widely forbidden
low-temperature regime, which is previously found to be
mechanically unstable [39]. Furthermore, by extending
the prescription (9) to the BCS side with as < 0, we
can recover the full upper branch as first suggested by
Pricoupenko and Castin [6].

In Fig. 4, we show 1/N -dependence of the energy of an
upper branch Fermi gas at two interaction strengths. At
weak interactions (kF as = 0.1), the dependence is essen-
tially linear and the use of the leading 1/N term is rea-
sonable. For strong interaction strengths (kF as = 0.5),
the dependence is highly non-linear, due to the unrealis-
tic account of high-order pair fluctuations. In this case,
it is physical to keep only the leading linear term of the
order 1/N . The higher-order pair fluctuations should be
taken into account by organizing more diagrams beyond
Gaussian fluctuations (i.e., the single bosonic loop) and
going to the next-to-next-to-leading order O(1/N2).

C. Dimensional ǫ expansion

The dimensional ǫ expansion theory is another non-
perturbative theory developed by Nishida and Son for
strongly interacting unitary Fermi gases [33–35]. This
approach is based on an expansion around four or two
spatial dimensions, where the pair propagator (or Green

function) of Cooper pairs is shown to be a small quan-
tity [34]. Therefore, one may use the small number
ǫ = 4 − d (near four spatial dimensions) or ǭ = d − 2
(near two spatial dimensions) as a parameter to con-
trol the perturbation expansion. It was found that even
at ǫ = 1 and ǭ = 1 the expansion series is reason-
ably well-behaved, suggesting that it would be practi-
cally useful. Indeed, the next-to-leading-order (NLO)
expansion of a unitary Fermi gas already leads to a sur-
prisingly accurate Bertsch parameter at zero tempera-
ture ξNLO = 0.377 ± 0.014 [51], which is very close to
the most recent experimental result ξ = 0.376 ± 0.005
[45] and quantum Monte Carlo result ξ = 0.37 − 0.38
[46, 47]. The predicted superfluid transition tempera-
ture (Tc/TF )NLO = 0.183 ± 0.014 [35] also agrees very
well with the measurement Tc/TF = 0.167 ± 0.013 [45].
For the attractive unitary Fermi gas, one advantage of the
dimensional ǫ expansion is that the Padé (or Borel-Padé)
approximation can be employed to match the expansions
around four and two spatial dimensions and therefore im-
proves the series summations [34, 35, 51, 52].

However, at finite temperature so far the ǫ expansion
theory has only been implemented right at the superfluid
transition temperature Tc. We have re-formulated the
ǫ expansion theory by using the functional path-integral
approach and have made the numerical calculations prac-
tically easy at finite temperature [53]. In Fig. 5, we com-
pare the ǫ expansion results (extrapolated from d = 4)
for the universal energy E(T/TF ) of a ground state uni-
tary Fermi gas with the experimental measurement re-
ported by the MIT group [45]. The agreement is im-
pressively good. This is consistent with the excellent
agreement found earlier at zero temperature and at the
superfluid transition temperature. All these agreements
strongly suggest that the picture of the unitary Fermi gas
as a mixture of weakly interacting fermionic and bosonic
quasi-particles - which is true near four or two spatial
dimensions - could also be a useful starting point even in
three spatial dimensions.

Given the fact that there are no phase transitions by
changing the dimensionality of the system between d = 4
and d = 2, we hope the predictive power of the ǫ expan-
sion theory may persist as well for a unitary Fermi gas in
its quasi-repulsive branch. We note that in the context of
statistical physics, the dimensional ǫ expansion has been
extremely successful and has been applied to describe
the continuous phase transition close to a critical point
[54–56].

III. RESULTS AND DISCUSSION

We have performed numerical calculations for arbi-
trary coupling strength kF as > 0 and temperature T .
For strong coupling at low temperature, the contribu-
tion ∆P becomes very significant and highly nonlinear.
However, our calculations are still controllable with the
choice of a large N or a dimensionality of space close to



8

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

 NLO -expansion
 Ideal Fermi gas
 MIT expt. (2012)
 2nd-order virial expansion

 

 

E/
(n

F)

TF/T

FIG. 5: (Color online) Temperature dependence of the total
energy of a unitary Fermi gas predicted by the dimensional
ǫ expansion theory. As the same as in Fig. 3, the next-
to-leading-order (NLO) ǫ expansion results (solid line) are
contrasted with the MIT data (solid circles), as well as the
2nd-order virial expansion (empty squares).

d = 4. For the large-N expansion, typically, we solve
the chemical potential µ self-consistently by using the
number equation n = ∂P/∂µ for N = 50 − 100, where
n = Nk3F /(3π

2) is the number density. Then, we use
the large-N expansion µ(N) = µ0 + µ1/N + o(1/N)
around the non-interacting chemical potential µ0 to ex-
tract the first nontrivial correction µ1 due to pair fluc-
tuations. The final extrapolation to the N = 1 limit
leads to µ = µ0 + µ1. We apply similar expansions to
the total energy, inverse compressibility and inverse spin
susceptibility.

Figure 6 reports the interaction parameter dependence
of the energy and inverse spin susceptibility at T = 0
from the large-N expansion. We find that at the weak
coupling our large-N expansion results are consistent
with the predictions from the second-order perturbation
theory [57]. However, there is an apparent deviation
when the interaction parameter kFas > 0.4. It is impres-
sive that our results agree well with the latest QMC sim-
ulations that use different interaction potentials [21, 22].
In particular, for the inverse spin susceptibility, the agree-
ment between the large-N expansion and the QMC data
for hard-sphere potential is exceptionally good. Thus, we
determine that at T = 0 there is a Stoner ferromagnetic
transition occurring at (kF as)c ≃ 0.79, close to the QMC
prediction [21].

Figure 7 displays the inverse temperature dependence
of the energy and inverse spin susceptibility of a uni-
tary Fermi gas in the quasirepulsive branch. At high
temperature, our results reproduce the virial expansion
predictions [17, 18, 48, 58, 59], which are the only known
results so far for a repulsive unitary Fermi gas. It is
interesting that, with decreasing temperature down to
(TF /T )c ≃ 0.6 − 0.7 or Tc ≃ 1.5 − 1.7TF , both large-
N expansion and ǫ expansion predict a divergent spin
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1.6
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 2nd order PT
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FIG. 6: (Color online) The zero-temperature large-N results
for the energy (a) and spin susceptibility (b) of a repulsively
interacting Fermi gas as functions of the interaction parameter
kF as, normalized by the non-interacting results at T = 0
E0 = (3/5)nεF and χ0 = 3n/(2εF ). For comparison, we
also plot the predictions from the second-order perturbation
theory (dashed line) and quantum Monte-Carlo simulations
(symbols). The blue squares and red circles are the data for
hard-sphere potential and square-well potential, respectively.
The closed symbols are from Ref. [21] and the open symbols
are from Ref. [22]. The dot-dashed horizontal line in (a) is

the energy of a fully polarized Fermi gas E = 22/3E0.
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FIG. 7: (Color online) The energy (a) and inverse spin sus-
ceptibility (b) of a resonantly interacting Fermi gas in the
repulsive regime, normalized by the corresponding results of
an ideal Fermi gas. In (a), we also show the predictions from
the virial expansion theory, up to the second or third order.
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FIG. 8: (Color online) Phase diagram of a strongly interacting
Fermi gas in its repulsive regime. In the shadow area, the sys-
tem energetically favors spin-domain formation and exhibits
Stoner ferromagnetism. The critical temperature predicted
by the second-order perturbation theory in the low tempera-
ture regime is shown by a dashed line. The inset shows the
inverse spin susceptibility (normalized by the corresponding
non-interacting result) at T/TF = 0 (solid line), 0.25 (dashed
line) and 0.5 (dot-dashed line).

susceptibility (see Fig. 7(b)), signifying the phase transi-
tion into a Stoner ferromagnetic state. The good agree-
ment between the two different non-perturbative theories
strongly indicates that such a transition is realistic and
the predicted transition temperature Tc ≃ 1.6TF should
be qualitatively reliable.

We finally show in Fig. 8 a finite temperature phase di-
agram of the Stoner ferromagnetism. For comparison, we
present also the prediction from the second order pertur-
bation theory [11]. At low temperature, it predicts larger
critical interaction parameter; while close to the unitary
limit, it gives unrealistically high transition temperature
due to the strong overestimate of repulsions (not shown
in the figure).

It is worth noting that, in all the cases, including the
zero temperature in Fig. 6 or the unitary limit in Fig. 7,
the compressibility of the quasirepulsive Fermi gas pre-
dicted by our theory is always positive. The spin sus-
ceptibility is also always well-defined. Therefore, our
approach greatly improves the earlier treatments of the
quasirepulsive upper branch [39, 40].

In the experimental studies of Stoner ferromagnetism,
the Fermi gas was originally prepared with weak inter-
actions and then the interactions were ramped to the
strongly repulsive regime. Dynamic rather than adia-
batic preparation was used in order to avoid molecule
production. In the latest experiment of 6Li Fermi gas
at temperature T ∼ 0.3TF , it was found that the rapid
decay into bound pairs (molecules) prevents the study of
equilibrium phases [8]. The decay rate can be theoret-
ically estimated by studying the pair formation rate ∆,
which is given by the imaginary part of the complex pole

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5  T=0.75TF

 T=TF

 

 

/
F

kFas

FIG. 9: (Color online) The pair formation rate ∆ as a function
of the interaction parameter kFas at T = 0.75TF and T = TF .

of the two-body T -matrix [5] (see also the Supplemen-
tal Information). At low temperatures (T < 0.5TF ), one
finds a large pair formation rate ∆ > 0.1εF in a wide
range of the interaction parameter kFas [5], consistent
with the experimental observation of a rapid decay into
bound pairs over times on the order of 10~/εF .

The molecule formation rate can be well estimated by
studying the in-medium two-body T -matrix [5]. The T -
matrix is given by the vertex function Γ(q, ω) but with
the chemical potential µ replaced by the one for a non-
interacting Fermi gas. The T -matrix normally has a
complex pole ω(q) = Ωq + i∆q, given by the equation
Γ−1(q, ω(q)) = 0. The imaginary part ∆q character-
izes the growth rate of pair formation in these quenched
experiments. For equal spin populations, the maximal
pair formation rate occurs at q = 0. The maximum pair
formation rate ∆ ≡ ∆q=0 is determined by solving the
complex pole from following equation

1

as
−
√
−mE − 8π

m

∑

k

f(ξk)

E − 2εk
= 0. (37)

In Fig. 9, we examine the pair formation rate at higher
temperatures T = 0.75TF and T = TF . At large kF as,
the rate is sensitive to the temperature effect. Especially,
in the nondegenerate temperature regime T ∼ TF , the
pair formation rate becomes vanishingly small for large
kFas. In this regime, it is possible to study the equilib-
rium phases of strongly repulsive fermions since the pair
formation occurs on a very long time scale ≫ 10~/εF .
Therefore, our phase diagram Fig. 8 suggests a promis-
ing and realistic way to observe Stoner ferromagnetism
at high temperature and at large interaction parameter
kFas.

IV. SUMMARY

In summary, we have presented a nonperturbative the-
oretical approach to the quasirepulsive upper branch of
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a Fermi gas near a broad Feshbash resonance and de-
termine the finite-temperature phase diagram for the
Stoner instability. One crucial component of our finite-
temperature theory is an appropriate definition of a
many-body phase shift for the quasirepulsive upper
branch. We proved this prescription by resumming the
two-body virial contributions from the scattering contin-
uum to infinite order in the fugacity. Our results agree
well with the known quantum Monte-Carlo simulations
at zero temperature and recover the known virial expan-
sion prediction at high temperature for arbitrary interac-
tion strengths. At resonance, the predicted Stoner tran-
sition temperature becomes of order of the Fermi tem-
perature, around which the molecule formation rate be-
comes vanishingly small. This suggests a feasible way
to avoid the pairing instability and observe Stoner ferro-
magnetism in strongly interacting atomic Fermi gases.

Note Added. During the revision of this manuscript,
we became aware of a recent experimental work [65],
which reported the evidence for ferromagnetic instabil-
ity in the same system as studied in this paper. They
drastically limit the detrimental pairing instability by
preparing the gas in a magnetic domain-wall configura-
tion. The ferromagnetic instability was revealed by ob-
serving the softening of the spin-dipole collective mode
that is linked to the increase of the spin susceptibil-
ity. The temperature-coupling phase diagram was deter-
mined [65]. Our predictions of the critical gas parameter
at T = 0 ((kF a)c = 0.79) and the critical temperature
around resonance (∼ TF ) agrees with their experimental
measurements.
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Appendix A: Comparison with the

excluded-molecular-pole approximation

The concept of upper branch is well-defined for a two-
particle system, where the whole energy spectrum can be
precisely solved [6, 60]. For many-particle systems, how-
ever, an unambiguous definition of upper branch is yet to
be established. Indeed, even for three fermions, the iden-
tification of the upper-branch energy levels turns out to
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FIG. 10: (Color online). The total energy of the upper branch
(dashed line) and of the attractive ground state (solid line)
at T = 3TF , measured in units of the energy of an ideal,
non-interacting Fermi gas.

be difficult [60]. To the best of our knowledge, the quasi-
repulsive upper branch of an interacting Fermi gas (at
zero temperature) was first mentioned by Pricoupenko
and Castin [6], when they used a lowest order constraint
variational approach to understand a strongly interacting
Fermi gas at the BEC-BCS crossover. The upper branch
prescription provided in this work is a useful extension
of their idea. As a concrete example, in Fig. 10 we show
the total energy of the upper branch and the ground-state
branch at a finite temperature T = 3TF . The generic be-
havior is not sensitive to the temperature. The use of
the temperature T = 3TF is for our convenience to com-
pare with the result from another approach [39]. For the
upper branch, in the BEC limit the Fermi cloud has a
weak repulsion and its energy approaches the ideal gas
result as as → 0+. In the unitary limit with a divergent
scattering length, the energy saturates to a finite value
that depends on the temperature.

In an earlier work [39], Shenoy and Ho proposed a
different prescription, the so-called excluded-molecular-
pole approximation (EMPA), for the quasirepulsive up-
per branch of a strongly interacting Fermi gas. An im-
portant feature of the EMPA is that it predicts an equilib-

rium branch-switching phenomenon: The energy of the
upper branch reaches a maximum when approaching the
resonance from the BEC side and then changes contin-
uously into the lower branch at the BCS side. Here we
shall compare the EMPA with our approach.

A key point of the EMPA is that it starts from the
number equation. In the EMPA, the number density due
to two-body interaction is given by

n(2)
rep(T, µ) =

∑

q

ˆ ∞

ωs(q)

dω

π
b(ω)

∂δ(q, ω)

∂µ
, (A1)

where the phase shift is defined as

δ(q, ω) = −Imln [A(q, ω) + iB(q, ω)] . (A2)
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FIG. 11: (Color online) The energy, spin susceptibility,
and compressibility as functions of the interaction parameter
1/(kF as) at T = 3TF calculated by starting from the pressure
(A7) with a simple phase shift δ1(q, ω) given by (A4). The
results are consistent with those reported in [39].

The functions A and B are given in Eq. (13). We notice
that the ambiguity of the phase shift δ(q, ω) is avoided
in the above number equation, since it contains only the
derivative of the phase shift with respect to the chemical
potential. In practice, they use the function atan2(y, x)
[61, 62] to evaluate the phase shift and its derivative.
Then the two-body contribution to the pressure can be
obtained by using the integration method,

P(2)
rep(T, µ) =

ˆ µ

−∞

dµ′n(2)
rep(T, µ

′). (A3)

To compare the EMPA with our prescription, it is con-
venient to convert it to an alternative form which starts
from the pressure. To this end, we first define a simple
phase function

δ1(q, ω) = − arctan

[

B(q, ω)

A(q, ω)

]

. (A4)

Here arctan(x) is the usual inverse tangent function with
a range (−π/2, π/2). We have

∂δ(q, ω)

∂µ
=
∂δ1(q, ω)

∂µ
(A5)

for ω > ωs(q). Hence the number equation of the EMPA
can also be expressed as

n(2)
rep(T, µ) =

∑

q

ˆ ∞

ωs(q)

dω

π
b(ω)

∂δ1(q, ω)

∂µ
. (A6)

The corresponding pressure can be expressed as

P(2)
rep(T, µ) =

∑

q

ˆ ∞

ωs(q)

dω

π
b(ω)δ1(q, ω). (A7)

The proof of the above result is easy. By taking the
derivative of the above pressure with respect to µ and
using the property of the phase δ1(q, ω = ωs(q)) = 0,
we obtain the number equation (A6) and hence (A1).
Therefore, the EMPA is equivalent to a scheme starting
from the pressure (A7) with a simple phase shift given
by (A4). This conclusion can also be confirmed numer-
ically. In Fig. 11, we show the results of the energy,
spin susceptibility, and the compressibility at T = 3TF
calculated by starting from the pressure (A7). They are
consistent with the results reported in [39].

In our prescription, the two-body contribution to the
pressure is given by

P(2)
rep(T, µ) =

∑

q

ˆ ∞

ωs(q)

dω

π
b(ω)δrep(q, ω), (A8)

where

δrep (q, ω) = δatt (q, ω)− π. (A9)

Note that the attractive phase shift δatt (q, ω) should be
appropriately determined from its definition δatt(q, ω) =
−Imln [A(q, ω) + iB(q, ω)] so that it changes smoothly
as a function of ω for ω > ωs(q). This ensures that the
repulsive phase shift δrep(q, ω) is also a smooth function
of ω for ω > ωs(q) and, in particular, δrep(q, ω = 0) = 0
(see Fig. 3 of the text).

In summary, the choice of the phase shift is a non-
trivial issue for a prescription of the upper branch. The
EMPA employs the phase shift δ1(q, ω) given by (A4),
while our prescription adopts the phase shift δrep(q, ω)
given by (A9). Note that our prescription for the phase
shift can be proven by resumming the two-particle virial
series to all orders in the fugacity, as we have shown in the
last section. It is interesting that, in the vacuum, both
the phase shifts δ1(q, ω) and δrep(q, ω) recover the re-
pulsive two-body phase shift δ2B(k) = − arctan(kas) (for
as > 0) without bound state. On the other hand, we can
show that both the EMPA and our prescription can re-
cover correctly the known perturbative equation of state
at weak coupling kFas → 0+ and the second-order virial
equation of state in the high temperature limit. The dif-
ference is that, in the EMPA, the upper branch switches
to the lower branch near the resonance. At resonance,
the EMPA recovers the virial equation of state for the
lower branch, while our theory can reach the repulsive
unitary limit.

In an early experiment [63], the interaction energy of
a strongly interacting Fermi gas was measured by using
the expansion properties of a 6Li gas. At temperature
T ≃ 0.6TF, it was found that the interaction energy of
the repulsive branch suddenly jumps to negative values
at magnetic field B ≃ 720 G, which lies at the BEC side
of the resonance (kF as ∼ 1). This may be an experi-
mental support for the EMPA which predicts an equilib-

rium switch between the upper and the lower branches.
However, to our knowledge, another reasonable explana-
tion for the sudden jump of the interaction energy at
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B ≃ 720 G is the severe nonequilibrium atom loss due
to three-body recombination [8, 63, 64]. We believe that,
once the atom loss rate can be suppressed by some ef-

fects (such as high temperature, narrow resonance, mass
imbalance, and low dimensionality), one can reach the
repulsive unitary limit experimentally.
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