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In this work, we employ the SO(2)-rotations of a two-component, one-, two- and three-dimensional
nonlinear Schrödinger system at and near the Manakov limit, to construct vector solitons and vortex
structures. This way, stable stationary dark-bright solitons and their higher-dimensional siblings
are transformed into robust oscillatory dark-dark solitons (and generalizations thereof), with and
without a harmonic confinement. By analogy to the one-dimensional case, vector higher-dimensional
structures take the form of vortex-vortex states in two dimensions and, e.g., vortex ring-vortex ring
ones in three dimensions. We consider the effects of unequal (self- and cross-) interaction strengths,
where the SO(2) symmetry is only approximately satisfied, showing the dark-dark soliton oscillation
is generally robust. Similar features are found in higher dimensions too, although our case examples
suggest that phenomena such as phase separation may contribute to the associated dynamics. These
results, in connection with the experimental realization of one-dimensional variants of such states
in optics and Bose-Einstein condensates (BECs), suggest the potential observation of the higher-
dimensional bound states proposed herein.

PACS numbers:

I. INTRODUCTION

One of the most paradigmatic models of multi-component system dynamics within integrable nonlinear systems and
wave phenomena is the so-called Manakov model [1, 2]. This is a vector variant of the famous nonlinear Schrödinger
(NLS) equation [3–5], featuring equal (nonlinear) interactions within a certain component and across the different ones.
Vector solitons of this model have attracted considerable interest, both in the case of focusing [4] and defocusing [5, 6]
nonlinearities.

In the present setting, the case that will be of interest is that of the defocusing nonlinearity, as referred to in nonlinear
optics; on the other hand, in the context of atomic Bose-Einstein condensates (BECs) [7], this case corresponds to
repulsive interatomic interactions, and is thus referred to as repulsive nonlinearity. In the original, one-dimensional
(1D) Manakov system a particularly intriguing structure that is supported is the so-called dark-bright (DB) soliton.
Here, the bright soliton component, which would not otherwise exist in the defocusing setting, arises because of
an effective potential well created by the dark soliton through the inter-component interaction. In that light, DB
solitons can be considered as “symbiotic” structures. The extensive study of such states [8–14], has stemmed in
good measure from their potential applications in optics, where dark solitons were proposed to effectively act as
adjustable waveguides for weak signals [15]. In this field, the theoretical/analytical developments were (already a
couple of decades ago) supplemented by experimental work in photorefractive media pioneering the observation of
DB structures [16, 17].

Our work is largely inspired by the setting of atomic condensates, where such structures have been explored in
multiple recent experiments. The latter, were chiefly focusing on the dynamics of pseudo-spinor (two-component)
atomic gases, featuring two hyperfine states of the same atom species, such as 87Rb. Here, the early theoretical
prediction of DB solitons [18] was – after a considerable hiatus – followed by the experimental realization by the
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Hamburg group [19]. This, in turn, led to numerous further directions of explorations, many of which were pursued at
Pullman [20–25]. In particular, in Ref. [19], robust DB solitons were created by a phase-imprinting technique and their
robust oscillations were probed in a quasi-1D parabolic trap. On the other hand, in subsequent experiments, different
types of structures, including DB and dark-dark (DD) solitons [20–24], emerged spontaneously via instabilities in
counterflow dynamical scenarios.

In the BEC setting, one of the significant advantages of the spinor gases is that, naturally, the coefficients of inter-
and intra-component interactions are very close to being identical; in fact, the differences are not more than a few
percent, which is important, e.g., in phase separation [5, 7, 26]. Hence, the model is naturally proximal (in as far as
its nonlinearity coefficients are concerned) to the Manakov one. Remarkably, the Manakov case bears an additional
symmetry under rotations, i.e., the model is invariant under the action of the SU(2) Lie group. This invariance has
been employed in order to generate unitary (in fact, chiefly orthogonal) rotations of states, such as the DB solitons.
The resulting waveforms, produced even experimentally [23, 24], are a particular form of DD solitons. Depending
on the frequency (chemical potential, as we will refer to it below), the resulting evolution of the components can be
intrinsically oscillatory i.e., breathing in their atomic density. While the transformation is exact only in the Manakov
case, weak deviations from this integrable limit relevant to the atomic species appear to maintain such DD states as
sufficiently robust nonlinear excitations in order for them to be experimentally observable.

In the present work, we extend the consideration of such states to higher dimensions. In particular, in section II,
we revisit the mathematical framework of the SU(2) and more specifically the SO(2) group generator that produces
the relevant invariance. For completeness, and also to make connections with earlier work, in section III.A we start
with the 1D case by briefly discussing the DD soliton, stemming from the rotation of the DB one. We then examine
the two-dimensional (2D) case, by considering vortex-bright solitons. The latter, involve a vortex in one component
trapping a bright soliton in the other component [27, 28]. These structures, are also known as “filled core vortices”
(that were experimentally observed in Ref. [29]), “half-quantum vortices” [30, 31] or “baby Skyrmions” [32], and
their stability and dynamics, have been studied, respectively, in Refs. [27, 33] and Refs. [27, 30]. Rotating these in
section III.B, we obtain (by analogy to the DD states) vortex-vortex structures with their constituent vortices rotating
around one another. Finally, we turn to the three-dimensional (3D) setting, and examine the cases of vortex lines
(VL) and vortex rings (VR), which are the prototypical excitations therein [5, 34]. Once again, our starting point
is the vortex-line, or vortex-ring in the first component, that traps a (line or ring, respectively) bright soliton in the
second component. The rotation of such a stationary state allows us to capture a vector vortex-ring state with its own
intrinsic vibrating dynamics, as we will illustrate in what follows in section III.C. Finally, in section IV, we summarize
our findings and present a number of possibilities for future study.

The main finding of our work is that the notion of SU(2) (and more specifically SO(2)) symmetry is in no way
restricted to the integrable 1D case or to a homogeneous setting, but rather can be extended, under equal (intra- and
inter-component) nonlinear interactions to arbitrary dimensions even in the presence of an external potential. This
enables the creation of unprecedented states involving vector vortices, vortex lines or vortex rings with their own
intrinsic vibrational dynamics. Furthermore, as we depart from this limit of equal nonlinear interactions, remnants of
these states (and of their internal vibrations) appear to persist under experimentally realistic parametric variations,
even as nontrivial deviations of the dynamics arise, e.g., due to phase separation, as we will see in detail below.

II. THE MODEL AND ANALYTICAL/COMPUTATIONAL SETUP

We start by presenting our model, as well as the analytical and computational setup. We consider the coupled
defocusing NLS system written in dimensionless form [5] as

i∂tΦ− = −1

2
∇2Φ− +

(
g11|Φ−|2 + g12|Φ+|2

)
Φ− + V (r) Φ−, (1a)

i∂tΦ+ = −1

2
∇2Φ+ +

(
g21|Φ−|2 + g22|Φ+|2

)
Φ+ + V (r) Φ+, (1b)

where ∇2 stands for the standard Laplace operator in the respective dimension of the problem, the interaction
coefficients are gjk > 0 (∀j, k = 1, 2), with g21 ≡ g12, and the external potential V (r) assumes the standard harmonic
form of V (r) = 1

2Ω2|r|2, with |r|2 = x2+y2+z2 and normalized trap strength Ω (note that in 1D,∇2 = ∂2x, V = 1
2Ω2x2,

and so on). The fields (representing the macroscopic wavefunctions in BECs [5]) Φ± = Φ±(r, t) in Eqs. (1a)-(1b) are
assumed to carry the dark (with “−” subscript) and bright (with “+” subscript) soliton components, respectively.

The starting point for our discussion below is the construction of stationary solutions. Such stationary solutions to
Eqs. (1a) and (1b) with chemical potentials µ± are found by employing the well-known ansatz,

Φ±(r, t) = φ±(r) exp(−iµ±t), (2)
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where φ±(r) stand for the steady states of the corresponding solitary waveforms. Then, Eqs. (1a)-(1b) reduce to the
coupled system of stationary equations

µ−φ− = −1

2
∇2φ− +

(
g11|φ−|2 + g12|φ+|2

)
φ− + V (r)φ−, (3a)

µ+φ+ = −1

2
∇2φ+ +

(
g12|φ−|2 + g22|φ+|2

)
φ+ + V (r)φ+. (3b)

A key point in our analysis is that, as is well known (see, e.g., Ref. [14]), the Manakov model [cf. Eqs. (1) in 1D with
gij = 1 and without an external potential] is invariant under the action of the SU(2) Lie-group. In fact, this result
does not depend on the dimensionality of the system or the presence of an external potential (with the constraint that
it should be the same for the two components), as long as gij = 1. Indeed, let us first recall that a general matrix
element of SU(2) has the form

U =

(
α −β̄
β ᾱ

)
,

where bar denotes complex conjugate, and complex constants α and β are such that |α|2 + |β|2 = 1. Then, it can be
shown that if the (pseudo-) spinor (Φ−, Φ+)T is a solution of Eqs. (1), then,(

Φ′−
Φ′+

)
≡ U

(
Φ−
Φ+

)
=

(
αΦ− − β̄Φ+

βΦ− + ᾱΦ+

)
,

is also a solution of Eqs. (1). In our considerations for what follows, we will focus on the special case of an SO(2)
rotation parametrized by an angle δ ∈ [0, 2π) with a 2× 2 matrix representation

U ≡ R(δ) =

(
cos δ − sin δ
sin δ cos δ

)
, (4)

corresponding to the choice of α = cos δ and β = sin δ. Then, once stationary solutions in the form of Eq. (2) are
identified, the rotation operator R(δ) given by Eq. (4) acts on Φ = (Φ−,Φ+)T as follows:

Φ→ Φ′ = R(δ) Φ =

(
cos δ φ− exp(−iµ−t)− sin δ φ+ exp(−iµ+t)
sin δ φ− exp(−iµ−t) + cos δ φ+ exp(−iµ+t)

)
. (5)

It is now straightforward to determine the densities of the rotated fields Φ′±, which read:

n′− ≡ |Φ′−|2 = |φ−|2 cos2 δ + |φ+|2 sin2 δ − sin(2δ)Re{φ+φ̄− exp[i∆µ t]}, (6a)

n′+ ≡ |Φ′−|2 = |φ−|2 sin2 δ + |φ+|2 cos2 δ + sin(2δ)Re{φ+φ̄− exp[i∆µ t)}, (6b)

where ∆µ = µ− − µ+. The above equations indicate that the total density,

n′ = n′− + n′+ = |φ−|2 + |φ+|2, (7)

is time-independent (recall that φ± depend only on r), while the individual densities n′± of the rotated states are
periodic functions of time. In fact, the relevant angular frequency, which constitutes the internal beating frequency
of the rotated structures, is ω = ∆µ, while the period of internal vibrations is given by:

T =
2π

∆µ
. (8)

Our algorithm for the construction of the rotated (beating) dark-dark solitons and generalizations thereof in higher
dimensions is described as follows. At first, we identify steady states φ± to Eq. (3) using a Newton-Raphson method
for a given set of chemical potentials µ±. This state will be of the dark-bright variety in 1D, of the vortex-bright in
2D, and of the vortex-line (VL)–bright (VLB) and vortex-ring (VR)–bright (VRB) in 3D. In the majority of the cases
studied below, we consider two cases as far as the interaction coefficients are concerned (unless otherwise noted):

(i) gij = 1, i.e., equal interaction coefficients, and

(ii) unequal ones with g11 = 1.03, g12 = 1, and g22 = 0.97.
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We have used these values as “typical” ones appearing in the context of 87Rb BECs [35], although the precise value
of the coefficients is still under active investigation; see, e.g., the discussion of Ref. [36] and references therein.

Subsequently, the steady states obtained numerically are transformed by utilizing the orthogonal transformation
given by Eq. (5), where we only consider the cases with δ = π/4 and δ = π/8. Then, having the rotated waveforms
at hand, we supply them (at t = 0) as initial conditions, and advance Eq. (1) forward in time using a standard
fourth-order Runge-Kutta method (RK4) and its parallel version (using OpenMP) with fixed time-step. We refer the
interested reader to Refs. [37, 38, 40] for a detailed description on the numerical methods employed in this present
work. In our numerical computations presented below, we consider values of the trap strength Ω of 0.1, 0.2 and 1 in
the 1D, 2D and 3D cases, respectively. In our one- and two-dimensional settings, we also explore the scenarios in the
absence of a trap (i.e., for Ω = 0).

We should also notice that in the Manakov case where the transformation is exact, the stability of the rotated states
is inherited from their stationary counterparts and, consequently, all the dynamical solutions considered are stable.
On the other hand, for the case with gij 6= 1, the situation may be more subtle as will be explained in more detail
through our numerical results below.

III. NUMERICAL RESULTS

A. Dark-dark solitons in 1D

We start by considering, at first, the 1D case. It is relevant to mention that while corresponding analysis has been
presented earlier, e.g., in Refs. [23, 24] (see also [14]), we provide the relevant case examples in order to set the stage
for our higher-dimensional generalizations.

Our 1D results are summarized in Figs. 1 and 2. In particular, Fig. 1 corresponds to the case of equal interaction
coefficients, while results obtained using unequal interaction coefficients are presented in Fig. 2. The DB solitons
corresponding to the fundamental ingredients for our study are depicted in the left columns of Figs. 1 and 2 with
dashed-dotted black and blue lines, respectively, while their rotated siblings by π/8 and π/4 are presented with solid
black and blue lines therein. It is worth pointing out that the stability trait of the original, i.e., unrotated DB soliton
states employed here (with and without a trap) has been extensively studied; for a recent example see, e.g., Ref. [37]
and references therein. This way, the underlying unrotated states for values of the chemical potentials of µ− = 1 and
µ+ = 0.9 are stable.

Having identified the states of interest, we now turn our discussion to the dynamical evolution of the (SO(2)) rotated
variants of DB solitons, namely the DD states, and monitor their oscillatory development. Specifically, the middle
and right panels of Figs. 1 and 2 present the spatio-temporal evolution of the densities |Φ−(x, t)|2 and |Φ+(x, t)|2,
respectively (hereafter, for simplicity, we omit primes in the rotated fields). From these panels, the development of the
well-known beating DD soliton [23, 24], showcasing a breathing oscillation of the corresponding individual densities, is
clearly evident. Furthermore, the oscillation persists over a wide time interval of integration forward in time (note the
range of the t-axis in these panels), while these findings indicate the robustness of such states which is also expected
since they were also observed in experiments [23, 24].

Let us highlight some differences between the integrable (i.e., equal interaction coefficients) and the non-integrable
cases, that are apparent not only in the 1D setting, but in the 2D as well as 3D settings which will be discussed
next. It can be discerned from panels (b) and (c), as well as (e) and (f) of Figs. 1 and 2, where the trap is absent,
that robust beating solitons form and oscillate with a fixed period of oscillation [cf. Eq. (8)]. However, as soon as
we depart from the integrable case, the period of oscillations is affected due to the fact that the SU(2)-invariance is
broken away from this limit. In particular, it is evident from these panels of Fig. 2 that the period increases. We note
in passing that small amount of radiation is observed as well (see, e.g., panels (e) and (f) in Fig. 2), which affects the
period of oscillations. Similar findings are reported for the case with a trap as depicted in panels (h) and (i), and (k)
and (l) of Figs. 1 and 2. In all of these cases, the excitation persists. While the presence of the trap does not seem
to dramatically affect its (internal) dynamics, nevertheless, when departing from the equal interaction case, it does
appear to affect its details. Notice, in particular, the vibration frequency [cf. the beating differences between the first
and third, second and fourth row of panels in Fig. 2].

B. Vortex–Vortex structures in 2D

In this section, we take a step further and discuss rotated vortex-bright soliton complexes in 2D, by considering
specific cases spanning various possibilities. Figures 3, 4 and 5 depict examples of initially rotated – so as to produce
the vortex–vortex (VV) state – and dynamically evolved vortex-bright solitons with equal interaction coefficients and
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FIG. 1: (Color online) Summary of results corresponding to the case with equal interaction coefficients and values of the
chemical potentials of µ− = 1 and µ+ = 0.9. Panels (a)-(c), (g)-(i), and (d)-(f), (j)-(l) correspond to a rotation of the original
steady state by δ = π/8 and δ = π/4, respectively. In addition, the first two rows correspond to the homogeneous case whereas
the last two are shown in the presence of an external potential with trap strength of Ω = 0.1. The left column presents the
corresponding SO(2)-rotated waveforms at t = 0 for each case depicted by solid blue (for the bright component) and black
(for the dark one) lines. Also, the original unrotated dark (dash-dotted black line) and bright (dash-dotted blue line) solitary
waveforms are depicted as well for comparison. The spatio-temporal evolution of the densities |Φ−(x, t)|2 and |Φ+(x, t)|2 is
presented in the middle and right columns, respectively, with different colormaps in order to differentiate between the two.
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FIG. 2: (Color online) Same as Fig. 1 but for unequal interaction coefficients, with g11 = 1.03, g12 = 1 and g22 = 0.97.

values of the chemical potentials of µ− = 1 and µ+ = 0.85. Figure 6, corresponding to µ− = 5.2 and µ+ = 4.2,
highlights the effect of unequal interaction coefficients. Furthermore, Figs. 3 and 4 correspond to a rotation by π/4
of the original vortex-bright soliton complex, in the absence and presence of a trap (with Ω = 0.2), respectively.
On the same footing, Fig. 5 corresponds to a rotation by π/8 of the original state whereas Fig. 6 for µ− = 5.2 and
µ+ = 4.2 involves rotation by π/4. Both of the latter examples are in the presence of a trap. Snapshots of the densities
|Φ−(x, y, t)|2 and |Φ+(x, y, t)|2 at different instants of time t are depicted in the top and bottom rows, respectively,
of Figs. 3(a), 4(a), and 5(a), as well as in Fig. 6. Our study is complemented by demonstrating isocontours of the
individual densities of the vortex and bright soliton of each component in panels (b) and (c) of Figs. 3, 4 and 5 with
gray and blue colors, respectively.

As has been illustrated in the recent study of [38] (even in the absence of a trap), but also in earlier works in
the presence of a trap [27], the vortex-bright state is generally stable. As mentioned in Section II, its rotated VV
counterpart inherits these traits. Furthermore, the internal period T of vibration of the VV state in the equal
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interactions coefficients case is given by Eq. (8), as shown in the previous section. In our numerical results the period
calculated numerically follows this analytical prediction, a feature that we have used as a benchmark of our numerical
method [39]. Once again, the presence of the trap does not appear to significantly affect the motion of the vortices
in the case of equal interaction coefficients: the vortex constituents of the VV state in each component continue to
blithely orbit around each other both in the presence and in the absence of the trap.

Specifically, snapshots of the densities are presented in panels (a) of Figs. 3, 4 and 5 at each t which is equal to one
quarter of the period, i.e., t = 0, t = T/4, t = T/2, t = 3T/4 and t = T (with T ≈ 41.88 in these examples). This
way, the vortex–vortex complex performs a circular motion as time evolves (see, the insets therein) and returns to
its original position at t = T (see, the last column of panels (a)). Furthermore, the oscillations of the vortex-vortex
complexes are persistent as our long-time dynamics reveal in panels (b) and (c) of Figs. 3, 4 and 5 (see, the range of
t axes therein) suggesting that the underlying states are indeed robust.

Arguably more intriguing, however, appears to be the case of unequal interaction coefficients. In this case, and in
the presence of the trap, the results are illustrated in Fig. 6; see, also, [42] for a complete movie of the dynamics in this
case. Although the initial vortex–bright soliton is stable (in the realm of linear stability analysis), its vortex–vortex
sibling appears to undergo modifications of its density profile. At first, the vortex–vortex complex follows a circular
motion, where the period increases compared to the analytical prediction of Eq. (8), due to the unequal interaction
coefficients. In analogy to the 1D setting, this is expected based on the fact that the SU(2)-invariance is broken.
Then, the configuration starts changing in shape (see the panels in the second column of the Figure) leading at t = 50
the bright soliton in the second component to disappear, while in the first component the vortex structure cannot be
straightforwardly discerned in the density. However, the complex in the second component regains (qualitatively) its
structural form back around t = 80, leading to the recurrence of the VV state (in a rotated form). It is evident in the
snapshots (especially of the second and third column of Fig. 6) that the dynamics features phase separation phenomena
analyzed in detail, e.g., in the experimental (and computational) analysis of Ref. [35]; see also [36]. Indeed, while
the rotation of the VV pattern persists (or, at least, recurs), the overall density pattern develops the target patterns
analyzed in (the planar projections associated with) Ref. [35]; see also [5] and references therein. Our conclusion in
that connection is that the robustness of the rotational state is, at least in part, affected by the location of the relevant
interaction coefficients with respect to the miscibility/immiscibility transition – associated with crossing the critical
point D = 0 of the immiscibility parameter D ≡ g11g22 − g212 [5].

C. VL–VL and VR–VR solitons in 3D

Finally, we study the effect of SO(2) rotations to construct vorticity-bearing vector structures in 3D. In particular,
we focus on the cases of the VL-bright soliton and the VR-bright soliton. As in 1D and 2D, we first identify the
stationary states, study their stability traits and subsequently rotate the corresponding states. Then, we monitor the
dynamics of these states by advancing the NLS system forward in time. A stationary VL–bright soliton state is shown
is Fig. 7. We have checked that the state at the studied parameters is stable using spectral stability analysis methods
analogous to those utilized in Ref. [40], as well as direct dynamical integration up to t = 100.

Subsequently, we perform the SO(2) rotation with δ = π/4, and the VL–bright soliton state morphs into a VL-VL
solitary wave. Dynamical evolution shows that the two vortex lines perform a rotational motion around each other
in the trap. Some typical intermediate stages within a period are shown in Fig. 8. See Ref. [43] for a more complete
movie of the dynamics. We have also verified that similar robust dynamics also hold for δ = π/8. Hence, such VL–VL
states are natural candidates for observation in the dynamics of the system – although, of course, it does not escape
us that unequal interaction coefficients may again impose density modulations via phase-separation phenomena; we
comment on this further below.

Now we discuss the VR–bright soliton. Similarly, a stable stationary state of the VL–bright soliton is shown in
Fig. 9, and is converged upon fixed point iteration. Dynamics in the case of δ = π/4 are shown in Fig. 10, and robust
oscillations also hold for the case δ = π/8. Here, the vortex rings are involved in an intriguing “dance” routine,
where they vibrate between pairs of inner-outer, then top-bottom, then outer-inner, and finally bottom-top (for the
two species), before the cycle restarts, as is illustrated in the figure. A more detailed perspective of the relevant
choreography is given in the movie of Ref. [44].

It is important to remind the reader here that these results were obtained with a fairly confining isotropic trap
of strength Ω = 1. We have explored the dynamics observed in the case of gij 6= 1 for phase separation and
while we did see signatures of the latter, these were found to be quite weak in this setting (relatively to the 2D
case discussion presented above). This is in line with earlier observations, see e.g., [45], indicating theoretically
and computationally that the phase separation transition threshold is shifted (and phase separation is generally
progressively more suppressed) the stronger the confinement of the atomic species.
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FIG. 3: (Color online) Summary of results under the action of the SO(2) rotation by π/4 corresponding to the homogeneous
case with equal interaction coefficients and values of the chemical potentials of µ− = 1 and µ+ = 0.85. Top row : Snapshots of
densities |Φ−(x, y, t)|2 (top panels) and |Φ+(x, y, t)|2 (bottom panels) at different instants of time. Bottom row : Isosurfaces of
the spatiotemporal evolution of the densities |Φ−(x, y, t)|2 and |Φ+(x, y, t)|2 presented in panels (b) and (c), respectively. Each
isosurface depicted by blue and gray color corresponds to a value of 0.001×max(|Φ−(x, y, t)|2) and 0.999×max(|Φ+(x, y, t)|2),
respectively.

IV. CONCLUDING REMARKS AND FUTURE CHALLENGES

In the present work, we have considered the two-component, one-, two- and three-dimensional nonlinear Schrödinger
system with the self-defocusing nonlinearity, and studied the effect of SO(2) rotations on stable stationary dark-bright
solitons and higher-dimensional vortex complexes. Our numerical findings revealed that the complexes considered in
this work are robust (over a wide time interval), suggesting possibilities of observing the underlying states experimen-
tally in Bose-Einstein condensates. While our starting point was the revisiting of the simpler (and experimentally
observed) dark-dark solitons, we illustrated that the transformation and its feature of potentially producing breath-
ing states from stationary ones are independent of dimension. While analytical solutions are not available in higher
dimensions in order to subject them to the transformation, it is straightforward to obtain numerical ones and not
only evolve them dynamically, but also predict on the basis of the difference of their chemical potentials, the period
of the resulting periodic pattern. We performed this step for a vortex–bright soliton in 2D, obtaining a vortex–vortex
state in that system, while in 3D, the robustness of both vortex-line–soliton and of vortex-ring–soliton allowed us to
form structures with vortex lines and vortex rings precessing around each other in the two components.

Our observations, while exact in the context of the Manakov model, as we showcased via select dynamical examples,
are no longer so in the case of unequal interaction coefficients. In fact, it is evident that in such cases, even weak
deviations from the miscibility-immiscibility threshold that the Manakov system represents (as is relevant for atomic
BECs) may give rise to spontaneously phase-separating patterns for homogeneous or sufficiently weakly trapped
systems, on top of which the vibration of the coherent structures of interest may take place. This is a natural
direction for further quantitative exploration, i.e., a more quantitative identification of the boundaries of robustness
of the states developed herein. Such variation is quite accessible presently, e.g., via Feshbach resonance techniques
[41]. Additionally, the realization that the methodology is independent of dimension and structure also creates the
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FIG. 4: (Color online) Same as Fig. 3 but under the presence of harmonic confinement with Ω = 0.2. Top row : Snapshots of
densities |Φ−(x, y, t)|2 (top panels) and |Φ+(x, y, t)|2 (bottom panels) at different instants of time. Middle row : Isosurfaces of
the spatiotemporal evolution of the densities |Φ−(x, y, t)|2 and |Φ+(x, y, t)|2 presented in panels (b) and (c), respectively. Each
isosurface depicted by blue and gray color corresponds to a value of 0.001×max(|Φ−(x, y, t)|2) and 0.999×max(|Φ+(x, y, t)|2),
respectively. Bottom row : The location of the vortex (x, y) in the first component as a function of time where its abscissa
and ordinate are depicted with blue and red circles, respectively. The solid blue and red lines correspond to the theoretical
prediction.

potential of applying features of this type to other states (including in the focusing case) in order to obtain other such
exotic, time vibrating states. Such studies are currently in progress and will be reported in the future.
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FIG. 5: (Color online) Same as Fig. 4 but for δ = π/8. Top row : Snapshots of densities |Φ−(x, y, t)|2 (top panels) and
|Φ+(x, y, t)|2 (bottom panels) at different instants of time. Bottom row : Isosurfaces of the spatiotemporal evolution of the
densities |Φ−(x, y, t)|2 and |Φ+(x, y, t)|2 presented in panels (b) and (c), respectively. Similarly, each isosurface depicted by
blue and gray color corresponds to a value of 0.001×max(|Φ−(x, y, t)|2) and 0.999×max(|Φ+(x, y, t)|2), respectively.
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FIG. 7: (Color online) The density isocontour plots of a stable stationary vortex-line-bright soliton at µ1 = 7 and µ2 = 6.2 in
an isotropic trap with Ω = 1. The core of the line is highlighted in green (dark) contours.

FIG. 8: (Color online) Robust VL–VL oscillations transformed from the VL-bright soliton state shown in Fig. 7. Typical states
are shown for one period, with the top panel for one component and the bottom panel for the other component. See Ref. [43]
for a more complete movie of the dynamics.
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FIG. 9: (Color online) The density isocontour plots of a stable stationary vortex-ring-bright soliton at µ1 = 9 and µ2 = 7.6 in
an isotropic trap with Ω = 1. The core of the ring is highlighted in green (dark) contours.

FIG. 10: (Color online) Robust VR–VR oscillations transformed from the VR-bright soliton state shown in Fig. 9. Typical
states are shown for one period, with the top panel for one component and the bottom panel for the other component. See
Ref. [44] for a more complete movie of the dynamics.
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stock, Nature Phys., 4, 496–501 (2008).
[20] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev. Lett., 106, 065302 (2011).
[21] S. Middelkamp, J. J. Chang, C. Hamner, R. Carretero-González, P. G. Kevrekidis, V. Achilleos, D. J. Frantzeskakis,
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