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The recent experimental realization of 1D equal Rashba-Dresselhaus spin-orbit coupling (ERD-
SOC) for cold atoms provides a disorder-free and highly controllable platform for the implemen-
tation and observation of Majorana fermions (MFs), analogous to the broadly studied solid state
nanowire/superconductor heterostructures. However, the corresponding 1D chains of cold atoms
possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this Letter,
we show that such 1D topological chains with MFs may be on demand generated in a 2D/3D
non-topological optical lattice with 1D ERD-SOC by modifying local potentials on target locations
using experimentally already implemented atomic gas microscopes or patterned (e.g., double or
triple well) optical lattices. All ingredients in our scheme have been experimentally realized and the
combination of them may pave the way for the experimental observation of MFs in a clean system.

PACS numbers: 03.75.Ss, 05.30.Fk, 03.65.Vf, 67.85.-d

I. INTRODUCTION

Majorana fermions (MFs) [1] obey non-Abelian ex-
change statistics and are crucial for realizing fault-
tolerant topological quantum computation [2–4]. Fol-
lowing initial theoretical proposals [5–10], some possi-
ble signatures of MFs have been observed recently in ex-
periments [11–17] using 1D nanowires or ferromagnetic
atomic chains on top of an s-wave superconductor and
with strong spin-orbit coupling (SOC). However, these
signatures are not conclusive because of disorder and
other complications in solid state [18–24]. In this con-
text, the recent experimental realization of SOC [25–31]
in ultra-cold atomic gases provides a disorder-free and
highly controllable platform for observing MFs. In exper-
iments, 1D equal Rashba-Dresselhaus SOC (ERD-SOC)
and tunable Zeeman field have been achieved, which, to-
gether with the s-wave superfluidity, makes it possible
to observe MFs [32–40] in 1D atomic tubes or chains,
similar as the nanowire systems.

However, unlike solid state nanowire systems where s-
wave superconducting pairs are induced from proximity
effects, the superfluid pairing in the 1D atomic chain is
self-generated from the s-wave contact interaction, lead-
ing to the strong quantum fluctuation that renders the
long range superfluid order impossible in the thermody-
namic limit. To circumvent this obstacle, quasi-1D sys-
tems with multiple weakly coupled uniform chains [41–
49] have been studied in both solid state and cold atoms,
where transverse tunneling was found to lift the zero en-
ergy degeneracy of multiple MFs.

In this paper, we consider a truly 2D non-topological
fermionic optical lattice with the experimentally realized
1D ERD-SOC. We raise the question whether single or
multiple topological 1D chains supporting MFs can be
on demand generated at target locations in such non-
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topological 2D systems. Generally, a 1D chain in a 2D
lattice can be locally modified to satisfy the topological
condition for MFs using the recently experimentally real-
ized single site addressing (the atomic gas microscopes)
[50–56] or patterned (e.g., double or triple well) opti-
cal lattices [57–59]. However, the atom chain is strongly
coupled with neighboring chains through transverse tun-
neling in the 2D system, therefore a naive expectation
is that the coupling may destroy the local topological
properties and the associated MFs.

Here we show that 1D topological chains with MFs
can indeed be generated on demand from 2D non-
topological fermionic optical lattices with the experimen-
tally achieved 1D ERD-SOC. Local addressing lasers in
atomic gas microscopes can modify the effective local
chemical potentials along single or multiple 1D chains,
leading to a topological phase transition to generate dis-
crete topological chains that are characterized by non-
zero winding numbers and host MFs at chain ends.
Multiple MFs in spatially separated multiple topological
chains still couple, with the coupling induced zero en-
ergy splitting exponentially decaying with the distance
of neighboring topological chains. We emphasize that
these 1D topological chains are embedded in the true 2D
background where the tunnelings along both x and y di-
rections are the same. This is different from previously
studied quasi-1D systems where multiple 1D chains are
weakly coupled along the transverse direction which usu-
ally destroy MFs. Note that similar results apply also to
3D if 1D chains can be locally addressed in a 3D optical
lattice. In the weak transverse tunneling region (quasi-
1D), the MF coupling is extremely small for two topo-
logical chains separated by one or two non-topological
chains, making it possible to observe multiple MFs in
2D or 3D double or triple well optical lattices without
requiring the single site addressing.
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II. MODEL HAMILTONIAN

We consider a spin-1/2 ultra-cold degenerate fermionic
gas (spin ↑ and ↓) in a 2D square lattice with the lattice
size N = nx×ny. As shown in the schematic picture Fig.
1, two Raman lasers couple two spin states to induce
1D ERD-SOC along the x -axis. The far-detuned local
addressing lasers [50–56] can modify the local potential
of the optical lattice along a 1D chain at target locations
along the x -direction. Multiple spatially well separated
1D chains can also be generated using additional local
addressing lasers. In the 2D lattice, the tight-binding
mean-field BdG Hamiltonian is

HBdG = HL +HSOC +HD +H∆, (1)

where HL = −
∑

i,σ,η tη

(

C†
i,σCi+η,σ +H.c.

)

−
∑

i,σ µ̄C
†
i,σCi,σ is the bare Hamiltonian in the 2D

lattice with η = {x, y}. The fermionic operator C†
i,σ

(Ci,σ) creates (annihilates) a particle with spin σ at
site i = (ix, iy). We use µ̄ = µ − 2tx − 2ty for the
effective chemical potential to match with that in the
continuous model. tx and ty are the nearest neighbor
tunnelings along x and transverse y directions respec-

tively. HSOC = α
∑

i
(C†

i,↑Ci−x̂,↓ − C†
i,↑Ci+x̂,↓ +H.c.) +

hz

∑

i
(C†

i,↑Ci,↑ − C†
i,↓Ci,↓) describes the experimentally

available 1D ERD-SOC, with the SOC strength α and

the Zeeman field hz. HD =
∑

i,σ VT (iy)C
†
i,σCi,σ repre-

sents the 1D potential dip with the local potential VT (iy),
which is generated by local addressing lasers and non-

zero only at the iy chain. H∆ = −
∑

i
∆i(C

†
i,↑C

†
i,↓+H.c.)

is the mean-field paring Hamiltonian, with the order
parameter ∆i = −g〈Ci,↓Ci,↑〉 and the on-site interaction
strength g. Hereafter we take tx = t as the energy
unit. We solve the corresponding BdG equation self-
consistently with the pairing gap equation and fixed
chemical potential, following the standard numerical
procedure [60–64]. To find the ground state, the order
parameter has no constraints and could be complex. We
use the box boundary condition for the self-consistent
calculation. In practical experiments, there is a weak
harmonic confinement that may alter the locations of
MFs, but does not change the essential physics [64].

The above BdG Hamiltonian preserves particle-hole
symmetry ΞHBdGΞ

−1 = −HBdG, where Ξ = τxK,
τx = τ̃x⊗ σ̃0⊗ ρ̃0, τ̃i, σ̃i are 2×2 Pauli matrices acting on
particle-hole and spin spaces respectively, ρ̃0 is a N ×N
identity matrix on the lattice site space, and K is the
complex conjugate operator. If the order parameter ∆i is
real, the Hamiltonian is also real, which preserves a time-
reversal like symmetry ΘHBdGΘ

−1 = HBdG with Θ = K,
as well as a chiral symmetry SHBdGS

−1 = −HBdG with
S = Θ · Ξ = τx. In this case, the system belongs to the
BDI topological class characterized by a Z topological
invariant [65, 66].

FIG. 1: Illustration of the proposed experimental setup. Grey
arrows represent 2D square optical lattice lasers. Red tube
demonstrates the 1D potential chain induced by local address-
ing lasers in atomic microscopes (red arrows). Two counter-
propagating Raman lasers (orange arrows) couple two spin
states, generating 1D ERD-SOC [25–31].

III. ONE TOPOLOGICAL CHAIN

Since the superfluid order is not stable in strictly 1D
systems due to the strong quantum fluctuations [67], the
topological analysis fails to work for exact 1D cold atom
systems with interactions. This motivates us to extend
previous calculations for 1D or quasi-1D [41–49] to truly
higher dimensions. To better understand the topological
criteria of our 2D system, we first consider a 2D lattice
with no tunneling along the y-axis (ty = 0). Thus the 2D
lattice is composed of individual x-direction 1D chains.
At the central chain we add an extra constant potential
V

T
(yc) = V , so that the central chain becomes topologi-

cal, while other parts of the system are still in the non-
topological region. Here the topological region is defined
locally by the criteria hz >

√

(µ− VT )2 +△2, same as
the usual 1D topological chains [7, 10]. In our numerical
calculations, we take nx = 81, ny = 9, and yc = 5. In
the central topological chain, two MFs should exist at two
ends. When ty is increased from zero to t, the topologi-
cal chain couples with neighboring non-topological chains
and the system changes from 1D to quasi-1D and finally
to 2D. A nature question is whether MFs at the center
chain will survive with the strong coupling.

Fig. 2 demonstrates the existence of MFs even in truly
2D region with ty = t. The amplitude of the superfluid
order parameter ∆i is plotted in Fig. 2(a). We find that
∆i is homogeneous along the x -axis in the self-consistent
calculation, except at the boundary. Furthermore, ∆i has
a constant phase across on the whole 2D system, there-
fore we can choose it to be real without loss of general-
ity for the discussion of the topological properties. Fig.
2(b) shows the quasiparticle energy spectrum, where we
clearly see the existence of Majorana zero energy modes
with a tiny energy splitting E ≈ ±2× 10−5t mainly due
to the finite size effect. The mini-gap energy, defined as
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FIG. 2: MFs in a single 1D topological chain in the 2D optical
lattice. (a) The amplitude of the order parameter |∆i|. (b)
The quasiparticle energy spectrum. (c) The zero energy mode
wave function along the central chain. (d) The zero energy
mode density (Log scale). Parameters: ty = t, α = 2t, g =
−5.5t, hz = 1.4t, V = −1.45t, µ = −1.555t.

the energy difference between the zero energy mode and
the next lowest quasiparticle state, is comparable to the
amplitude of the order parameter ∆i. Fig. 2(c) shows the
wavefunction of the zero energy mode (E ≈ +2 × 10−5t
state) along the central chain, which satisfies the rela-
tion for MFs: uσ = λvσ,λ = ±1, indicating the cen-
tral chain is still topological with two MFs at its ends.
Fig. 2 (d) shows the density of the zero energy mode,
which is square of the zero energy mode wave function
for both spin up and spin down atoms in the 2D plane.
The zero energy mode still localizes at the ends of the
central chain, but slightly spread to neighboring chains
which is due to the transverse tunneling. Note that in
practical experiments, there exists a finite detuning for
the Raman coupling between two bare spin states, which
corresponds to an in-plane Zeeman field hyσy in our no-
tation. Such non-zero in-plane Zeeman field is known to
break the inversion symmetry and lead to the FF type
of ground states with finite momentum pairing. We con-
firm that our results still hold for the FF state. The self-
consistent BdG results are present in Fig. 3 which shows
the existence of MFs in a single 1D topological chain in
the 2D optical lattice with an additional in-plane Zeeman
field hy.

IV. TOPOLOGICAL CHARACTERIZATION

The emergence of MFs at the edges of the central chain
originates from the bulk topological properties of the 2D
optical lattice with the imprinted 1D topological chain.
In the above self-consistent BdG calculations, both the
order parameter and the atom density are almost homo-
geneous along the x -axis, therefore it would be a good
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FIG. 3: (a) The zero energy mode density (Log scale). (b).
The quasiparticle energy spectrum. hy = 0.2t, the other pa-
rameters are the same as Fig. 2.

approximation to assume that the bulk is uniform in the
x direction. With a periodic boundary condition along
the x-axis, the momentum kx is a good quantum num-
ber. The 2D lattices can be taken as a series of individual
1D chains coupled through transverse tunneling, with the
effective BdG Hamiltonian

HBdG(kx) = H0(kx)ρ0 +(V τzσ0 +△′τyσy)ρ
′ − tyτzσ0ρx,

(2)
where H0(kx) = [−2tx cos kx − µ̄]τzσ0 + 2α sinkxτzσy +
hzτzσz+∆0τyσy describes the original uniform individual
chains with the SOC and the Zeeman field. ρ spans the y-
axis chain space with ρ0 as the identity matrix. (ρ′)ij = 1
for i = j = yc and 0 otherwise, (i, j = 1 · · ·ny). The
ρ′ part describes the potential and the order parameter
differences of the central chain from others. The ρx term
describes the y-axis hopping between nearest neighboring
chains, with (ρx)i,j = 1 for |i− j| = 1 and 0 for others.
The topological properties of the BdG Hamiltonian (2)

can be characterized by the winding number W . For
a single 1D chain in the 2D optical lattice, the BdG
Hamiltonian is in the BDI topological class with a chiral
symmetry SHBdG(kx)S

−1 = −HBdG(kx), where S = τx.
Therefore the BdG Hamiltonian can be transformed to
be off-diagonal in the τ space

UHBdGU
+ =

[

0 A(kx)
AT (−kx) 0

]

= h(kx)τx + dτy (3)

by a unitary transformation U = e−i(π/4)τy , where
A(kx) = h(kx) − id, h(kx) = {[−2tx cos kx − µ̄]σ0 +
2α sinkxσy+hzσz}ρ0−tyσ0ρx+V σ0ρ

′, and d = ∆0σyρ0+
△′σyρ

′. The winding number is

W = −
i

π

∫ π

kx=0

dz

z(kx)
, (4)

where z(kx) = detA(kx)/| detA(kx)| [68].
Fig. 4 shows the change of the topological properties

with the potential V along the central chain. When V is
small, the whole lattice, including the center chain, is in
the non-topological region. The corresponding complex
value of z rotates when kx changes from 0 to kx = π
as shown in Fig. 4 (a), indicating W = 0. When
the potential depth |V | increases beyond a threshold
value Vc ≈ −t, W changes to −1. Across Vc, the band
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structure at the topological phase transition point V = −t.
(d) The winding number as a function of V and ty.

gap closes (Fig. 4 (c)) and reopens, indicating a topo-
logical phase transition to a phase where the central
chain becomes topological and hosts a pair of Majorana
fermions, agreeing with the self-consistent calculation.
This topological phase transition also relies on dimen-
sionality which is controlled by the transverse hopping
strength. Fig. 4 (d) illustrates the winding number as a
function of the potential depth V and transverse hopping
strength ty. The larger transverse hopping, the deeper
central chain potential is needed to move into the topo-
logical region with a finite winding number.

V. MULTIPLE TOPOLOGICAL CHAINS

Multiple topological chains may be generated using ad-
ditional local addressing lasers to obtain multiple MFs.
We first consider two topological chains separated by one
non-topological chain, with the extra potential VT adding
at y = 4 and y = 6. The energy spectrum from the self-
consistent BdG calculation is plotted in Fig. 5 (a), show-
ing one zero energy mode although there are two topo-
logical chains. This is due to the strong coupling between
two chains, leading to the winding number W = −1, in-
stead of −2. Therefore there is only one pair of MFs
when two chains are close. Fig. 5 (b) shows the density
of the zero energy mode, which widely spreads along the
y-axis from y = 4 to y = 6.
When two topological chains are further separated by

more than one non-topological chains, the analysis of the
bulk topological properties based on constant order pa-
rameter phase shows that W = −2, indicating two pairs
of MFs. The effect of adding more non-topological chains
between topological ones on the winding number is sim-
ilar as decreasing the transverse hopping strength. Both
situations give winding number W = −2 and have mul-
tiple degenerate MFs within the assumption of constant
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FIG. 5: MFs in two topological chains at y = 4 and y = 6
(a),(b) or at y = 2 and y = 8 (c),(d). (a) The quasiparti-
cle energy spectrum for two topological chains separated by
one non-topological chain. (b) The zero energy mode density
(Log scale). (c) The quasiparticle energy spectrum for two
topological chains separated by five non-topological chains.
The inset plots the lowest positive quasiparticle energy as a
function of the number of non-topological chains in between.
(d) The phase of the order parameter ∆i. ty = t, the other
parameters are the same as Fig. 2.

value of the order parameter phase. However, in the self-
consistent calculation, the order parameter phase is no
longer uniform due to the interaction between two MFs
at the same end, leading to the splitting of the zero en-
ergy states. In Fig. 5 (c), we plot the quasiparticle en-
ergy spectrum for two topological chains located at y = 2
and y = 8 obtained from the self-consistent calculation.
Fig. 5 (d) shows the phase θ(x, y) of the order parameter
∆i = |∆|eiθ(x,y), which has an antisymmetric structure
between two topological chains. The phase difference be-
tween two ends of one topological chain is opposite to the
one on the other topological chain.

In principle there should be no zero energy modes left
due to the interaction between MFs, which splits the en-
ergy away from zero to a finite value [44, 45]. In prac-
tice, due to the large distance between two topological
chains, the coupling strength between two MFs on dif-
ferent topological chains is extremely small and the en-
ergy splitting becomes negligible. For instance, the five
chain separation in Fig. 5 (c) leads to an energy splitting
E ≈ 8×10−4t. The inset in Fig. 5 (c) shows the change of
the splitting with the number of non-topological chains
between two topological ones. When the number is 0
and 1, W = −1, and the splitting is almost zero since
there is only one MF at each end. When the number is
2 and above, the winding number becomes −2 and the
interaction of two MFs induces a splitting. The energy
splitting decreases exponentially with the distance be-
tween two topological chains and approaches almost zero
for the 5 lattice separation. The above discussions illus-
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insert shows the energy of the second MF mode (pointed by
the red arrow) as a function of transverse hopping strength ty.
(c) The zero energy modes density (Log scale). Other param-
eters ty = 0.1t, α = 0.75t, g = −3.5t, hz = 0.7t, V = −0.55t,
µ = −0.55t.

trate that the MF coupling issue in weakly coupled topo-
logical chains [43–45] is well resolved by separating the
topological chains with non-topological ones. Therefore,
with experimentally already realized single-site address-
ing techniques, we can look for MFs in a truly 2D system,
although the underlying spin-orbit coupling is only 1D.

VI. MULTIPLE MFS IN SUPERLATTICES

The interaction between MFs in topological chains can
also be significantly reduced by decreasing the tunneling
along the transverse direction, which makes the system
quasi-1D, instead of 2D. In this case, no large separation
between neighboring topological chains is needed, mak-
ing it possible to generate multiple MFs using patterned
optical superlattices along the y-axis. In experiments,

optical superlattices such as double well or triple well
lattices can be generated using the superposition of dif-
ferent lattice beams [57–59], which are much easier than
the single site addressing. Fig. 6 (a) shows a triple well
optical lattice along the y-axis with one of the triple wells
in the topological region (i.e., two neighboring topological
chains separated by two non-topological chains). With a
small transverse tunneling ty = 0.1t, the energy splitting
for the MF zero energy state is as tiny as E ≈ 5× 10−5t,
as shown in Fig. 6. In our calculation, we put three
topological chains at y = 2, y = 5 and y = 8, and find
one pairs of MFs formed at each topological chain ends.
However, if the transverse hopping strength ty is big,
these three topological chains will couple strongly with
each other. The inset of Fig. 6 (b) shows the energy
splitting of the second pair of MFs with increasing ty. In
the large transverse hopping case (ty > 0.1t), the system
leaves only one pair of MFs [45]. We also confirm that
similar physics occurs if another triple well superlattice
is applied along the z-axis to form a 3D lattice with weak
tunneling along both y and z directions.

VII. CONCLUSION

We show that, with the assistant of atomic gas mi-
croscopes or patterned optical super-lattices, 2D non-
topological optical lattices with experimentally achieved
1D ERD-SOC can host non-coupled 1D topological
chains with MFs. We emphasize that although we illus-
trate the idea using a 2D geometry, the same physics also
applies to 3D non-topological optical lattices, providing
selected 1D chains can be locally modified or patterned
optical superlattices are used. All ingredients in our pro-
posed schemes are available in current experiments, and
the scheme may lead to unambitious experimental sig-
nature of the long-sought MFs in a clean cold atomic
system.

Acknowledgments

This work is supported by ARO (W911NF-12-1-0334),
NSF (PHY-1505496) and AFOSR (FA9550-13-1-0045).

[1] F. Wilczek, Nat. Phys. 5, 614 (2009).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.

Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] X. Qi and S. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[5] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407

(2008).
[6] C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma,

Phys. Rev. Lett. 101, 160401 (2008).
[7] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,

Phys. Rev. Lett. 104, 040502 (2010).
[8] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[9] R. M. Lutchyn, J. D. Sau and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[10] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).
[11] V. Mourik et al., Science 336, 1003 (2012).
[12] M. T. Deng et al., Nano Letter 12, 6414 (2012).
[13] A. Das et al., Nature Physics 8, 887 (2012).
[14] L. P. Rokhinson, X. Liu and J. K. Furdyna, Nature

Physics 8, 795 (2012).



6

[15] M. Veldhorst et al., Nature materials 11, 417 (2012).
[16] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K.

Jung, and X. Li, Phys. Rev. Lett. 110, 126406 (2013).
[17] S. Nadj-Perge et al., Science 346, 602 (2014).
[18] G. Kells, D. Meidan, P. W. Brouwer, Phys. Rev. B (R)

86, 100503 (2012).
[19] J. Liu, A. C. Potter, K.T. Law, P. A. Lee, Phys. Rev.

Lett. 109, 267002 (2012).
[20] S. Das Sarma, J. D. Sau, T. D. Stanescu, Phys. Rev. B

86, 220506 (2012).
[21] E. J. H. Lee et al., Phys. Rev. Lett. 109, 186802 (2012).
[22] D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus,

C. W. J. Beenakker, New J. Phys. 14, 125011 (2012).
[23] H. O. H. Churchill et al., Phys. Rev. B 87, 241401 (2013).
[24] E. J. H. Lee et al., Nature Nanotech. 9, 79 (2014).
[25] Y.-J. Lin, K. J. Garcia and I. B. Spielman, Nature 471,

83 (2011).
[26] J.-Y. Zhang et al., Phys. Rev. Lett. 109, 115301 (2012).
[27] C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels,

Phys. Rev. A 88, 021604(R) (2013).
[28] A. J. Olson et al., Phys. Rev. A 90, 013616 (2014).
[29] P. Wang et al., Phys. Rev. Lett. 109, 095301 (2012).
[30] L.W. Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012).
[31] R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. Jiménez-
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