
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Signatures of spatial inversion asymmetry of an optical
lattice observed in matter-wave diffraction

C. K. Thomas, T. H. Barter, T.-H. Leung, S. Daiss, and D. M. Stamper-Kurn
Phys. Rev. A 93, 063613 — Published 13 June 2016

DOI: 10.1103/PhysRevA.93.063613

http://dx.doi.org/10.1103/PhysRevA.93.063613


Signatures of spatial inversion asymmetry of an optical lattice observed in

matter-wave diffraction

C. K. Thomas1, T. H. Barter1, T.-H. Leung1, S. Daiss2, and D. M. Stamper-Kurn1,3∗
1Department of Physics, University of California, Berkeley CA 94720,

2Max-Planck-Institut fr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany,
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: April 27, 2016)

The structure of a two-dimensional honeycomb optical lattice potential with small inversion asym-
metry is characterized using coherent diffraction of 87Rb atoms. We demonstrate that even a small
potential asymmetry, with peak-to-peak amplitude of ≤ 2.3% of the overall lattice potential, can
lead to pronounced inversion asymmetry in the momentum-space diffraction pattern. The observed
asymmetry is explained quantitatively by considering both Kaptiza-Dirac scattering in the Raman-
Nath regime, and also either perturbative or full-numerical treatment of the band structure of a
periodic potential with a weak inversion symmetry breaking term. Our results have relevance both
for the experimental development of coherent atom optics and also for the proper interpretation of
time-of-flight assays of atomic materials in optical lattices.

In x-ray crystallography, the diffraction of light is an-
alyzed to determine the exact crystalline structure of
a material. Similarly, with the availability of ultracold
sources of coherent matter waves of atoms, one can use
atomic diffraction to characterize potentials experienced
by the atoms. Of particular interest are the optical lat-
tice potentials produced by periodic patterns of light in-
tensity and polarization, formed by the intersection of
several coherent plane waves of light or by direct imag-
ing. Lattice potentials of various geometries and dimen-
sionalities, some incorporating atomic-spin dependence
and gauge fields, have been produced or proposed for the
purpose of creating synthetic atomic materials by placing
quantum-degenerate atoms within them [1–3]. Just as in
condensed matter, the characteristics of such synthetic
atomic materials derive from the nature of the optical
crystal upon which they are based. Matter-wave crystal-
lography therefore becomes a vital tool in the study of
such synthetic quantum matter [4].

A key first step in determining the structure of a lat-
tice is the assignment of its point-group and space-group
symmetries. The violation of a symmetry is identified
in x-ray crystallography by a difference in the intensi-
ties of diffraction spots [5]. Following such work, here we
detect the inversion asymmetry of an optical lattice by
observing significant asymmetries in the diffraction of a
coherent matter wave from the potential. For this, we
produce a spin-polarized 87Rb Bose-Einstein condensate
at rest, and then impose for a variable pulse duration the
two-dimensional honeycomb optical lattice potential pro-
duced by three light beams intersecting at equal angles
[6]. The resulting Kaptiza-Dirac diffraction is quantified
by imaging the gas after it is allowed to expand freely.
By tuning the pulse time and working with a deep opti-
cal lattice, we produce highly visible (over 50% contrast)
inversion asymmetry in the populations of the first-order
diffraction peaks even while the inversion asymmetric
part of the potential is≤ 2.3% of the overall lattice poten-

tial. This observation highlights the extreme sensitivity
of coherent matter-wave scattering in revealing features
of a potential landscape under investigation.

Aside from demonstrating sensitive optical-lattice
crystallography, our observation also has implications for
the development of atom optics. Matter-wave interferom-
eters for several applications have employed brief pulses
of light to split and recombine atomic beams coherently
[7, 8]. Kaptiza-Dirac diffraction, i.e. the diffraction of
atoms from standing-wave rather than traveling-wave op-
tical potentials, has the advantage that it is technically
simple to implement, requiring only light waves at a sin-
gle optical frequency [9, 10]. However, as compared with
Bragg or Raman diffraction, it has the disadvantage of
being less efficient and less selective [11]. The tech-
nical simplicity has inspired modifications of Kaptiza-
Dirac diffraction employing several pulses of light so as
to diffract atoms to selected diffraction orders with high
efficiency [12], although the diffraction remained inver-
sion symmetric, with as many atoms diffracted to the
wavevector +G as to the wavevector −G. We show that
this last constraint can be lifted to produce inversion
asymmetric Kaptiza-Dirac diffraction of matter waves in
two dimensions. Similar to the previous demonstration
in one dimension [13], we explain how this asymmetry
arises from the interference between different diffraction
pathways to the same final momentum state.

We begin by describing the optical lattice potential
characterized in this work. As in Ref. [6] and illus-
trated in Fig. 1(a), we form a two-dimensional honey-
comb lattice using three beams of light at the wavelength
λ = 1064 nm, with equal intensity, propagating horizon-
tally and intersecting at equal angles, with each beam
linearly polarized in the lattice plane. We define a quan-
tization axis orthogonal to the lattice plane and show in
Fig. 1(b) that the beams produce a periodic pattern of
varying intensity and optical polarization.

Rubidium atoms exposed to this optical lattice expe-
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rience an ac Stark shift that can be divided into scalar,
vector and tensor terms acting on the atomic hyperfine
spin [14]. The tensor light shift is negligible in our ex-
periment owing to the large detuning of the lattice light
from the atomic transitions. Fig. 1(d) shows the lattice
potentials that result from the scalar and vector parts of
the ac Stark shift. The scalar light shift is proportional
to light intensity and produces a honeycomb lattice po-
tential Vs(r) with two sites of equal depth per unit cell,
labeled A and B in the figure. The vector light shift in
the presence of a dominant external magnetic field pro-
duces a potential Va(r) that is approximately diagonal
in the Zeeman basis defined by the field direction. Va(r)
is proportional to both intensity and the dot product of
helicity and atomic spin [14]. The helicity in the lattice
is staggered so that Va(r) is of opposite sign at each of
the two sites in the unit cell.

The scalar and vector light shift potentials differ in
their inversion symmetry, with Vs(r) being symmetric
and Va(r) being antisymmetric under spatial inversion.
Fig. 1(a) shows one of the zero-intensity locations within
the optical lattice as an example of the center of the
inversion operation. The result of this operation is to
switch sites A and B.
For alkali atoms, Va(r) is suppressed with respect to

Vs(r) owing to the large optical detuning from the atomic
resonance. For the wavelength of light used in our lattice,
the ratio 2|Va(r)/Vs(r)| is at most 2.3%, so that Va(r)
adds only a small inversion symmetry breaking poten-
tial atop a graphene-like, inversion symmetric honeycomb
lattice. Within this limit, we control the magnitude and
sign of Va(r) by tilting the dominant external magnetic
field B0 by an angle θ with respect to the (vertical) axis
defined by the optical helicity. For atoms spin polarized
along B0, the asymmetric potential is then Va(r) ∝ cos θ.
Fig. 1(c,d) shows that the resulting lattice potential has
a small, state-dependent offset in energy between sites A
and B.

In order to characterize this lattice using matter waves,
we create a nearly pure, optically trapped Bose-Einstein
condensate of 3 × 105 87Rb atoms that is spin polarized
in the |F = 1,mF = −1〉 state along the axis defined by
a ∼ 0.5 G applied magnetic field. We then introduce a
three-beam lattice potential with |Vs(r)|max= h× 87± 4
kHz for a pulse time τ between 10 and 100 µs. This lat-
tice depth is calibrated with independent measurements
of the diffraction produced by the one-dimensional lat-
tices formed by pairs of the lattice beams [15]. After
the pulse, we simultaneously switch off the optical lat-
tice and optical trapping potentials and allow the atoms
to expand freely for 20 ms time of flight. We finally take
an image of the density distribution in which the vari-
ous diffraction orders, generated at the reciprocal lattice
vectors by exposure to the lattice potential, are seen as
separate peaks.

The first-order diffraction peaks in Fig. 2(a,c) show a

pronounced inversion asymmetry. To quantify this asym-
metry, we identify three reciprocal lattice vectors that
describe first-order diffraction as G1 = k3 − k2 and its
cyclic permutations, where k1,2,3 are the wavevectors of
the incident beams that form the lattice. We define an
asymmetry parameter A as

A =

∑

i (PGi
− P−Gi

)
∑

i (PGi
+ P−Gi

)
, (1)

i.e., as the contrast between the diffraction intensities at
wavevectorsGi and −Gi, the two sets of wavevectors be-
ing related by inversion. This measure is robust against
variations in the total atom number and against resid-
ual center-of-mass motion of the condensed atoms with
respect to the lattice potential. We note that imaging
aberrations introduce a slight offset in A (of about 0.1)
in our experiment, seen in Figs. 2 and 3.
We confirm that the momentum-space inversion asym-

metry is caused by the real-space inversion asymmetry of
the lattice potential by varying the magnitude and sign
of the inversion symmetry breaking potential Va(r). We
tune Va(r) by rotating the orientation of the magnetic
field from the vertical axis by the polar angle θ before
exposing the condensate to the lattice potential.
Our data emphasize the fact that even an asymmetry

in the lattice potential of ≤ 2.3% can lead to highly vis-
ible asymmetry in the matter-wave diffraction pattern.
The evolution of the momentum space asymmetry A vs.
pulse time is portrayed in Fig. 3. The asymmetry grows
from small values at early times to over 50% at τ ∼ 50µs,
and also displays clear modulation in time reflecting the
coherent dynamics of matter waves within the imposed
lattice potential. Throughout these dynamics, reversing
the sign of the inversion asymmetry of the lattice re-
verses the observed inversion asymmetry of the diffracted
atoms.
We present two physical pictures that explain the ori-

gin of the observed momentum-space inversion asymme-
try. First, we consider how the momentum-space asym-
metry originates from low-order diffraction in the lattice.
This description, shown schematically in Fig. 4(a,b), is
valid in the limit of a shallow optical lattice and in the
Raman-Nath regime, where we can ignore the kinetic en-
ergy of the diffracting atoms [16]. Both the scalar and
vector Stark shift optical lattice potentials, Vs(r) and
Va(r), can be characterized in momentum space by their
Fourier transforms Vs,a(±Gi) at the wavevectors ±Gi,
where the relation Vs,a(Gi) = V ∗

s,a(−Gi) is valid because
both potentials are real. Considering the C3 rotational
symmetry of both lattices and their respective inversion
symmetries we have Vs(±Gi) = βs and Va(±Gi) = ±iβa,
where βs and βa are both real.
We now consider the probability amplitudes p(±Gi)

for atoms diffracting from their initial zero momentum
state to a final wavevector ±Gi within a time τ . Fig.
4(a) illustrates that such diffraction can be achieved by
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one first-order process, with amplitude −i(βs ∓ iβa)τ/~,
and by two second-order processes, which sum to an am-
plitude (−i)2(βs ± iβa)

2τ2/~2. We ignore higher order
terms. Interference between the first- and second-order
scattering amplitudes results in an imbalance of probabil-
ity for diffraction into opposite wavevectors. Calculating
the asymmetry parameter A at short times and for small
lattice asymmetry (|βa| ≪ |βs|) we obtain A ≃ 6βat/~,
which is plotted as a gray dotted line in Fig. 3 and de-
scribes the data well for small τ .

While the model above provides a simple analytic ex-
pression for A, its assumptions are violated under the
conditions of our experiment. For one, our experiments
are performed with a deep lattice that leads to diffrac-
tion to high order, as exemplified by the many diffraction
peaks in our images. Second, the measurements are per-
formed with pulse times that are long enough to be out-
side the Raman-Nath regime, which is shown by the high
kinetic energy of the large momentum states produced in
our experiment. Therefore, the diffraction pattern pro-
duced in our measurement is better described as resulting
from coherent dynamics governed by the band-structure
of the optical lattice.

We performed numerical calculations that trace the
evolution of a non-interacting gas, produced initially at
zero momentum, within the lattice band structure. The
numerical results shown in Fig. 3 are for θ = 0.44 radians
and a lattice depth of 87 kHz with no free parameters.
The calculation matches well with the observed time de-
pendence of the diffraction asymmetry.

To provide an intuitive description of the coherent dy-
namics in A that we both observe and calculate, we con-
sider the effect of a small inversion symmetry breaking
perturbation to the band structure of an inversion sym-
metric lattice potential. The unperturbed Hamiltonian
H0, which includes the kinetic energy and the inversion

symmetric lattice potential Vs(r), has eigenstates |ψ
(0)
i,±〉

that are either even (labeled by +) or odd (labeled by
−) under the action of the spatial inversion. The pertur-
bation Ha results from the small antisymmetric lattice
potential Va(r) and mixes the even and odd eigenstates.
To first order in Ha, the zero quasi-momentum eigen-
states become

|ψ
(1)
i,+〉 ≈ |ψ

(0)
i,+〉+

∑

j

αj,i |ψ
(0)
j,−〉 (2)

|ψ
(1)
j,−〉 ≈ |ψ

(0)
j,−〉+

∑

i

−α∗
j,i |ψ

(0)
i,+〉 (3)

where αj,i =
〈ψ

(0)
j,−

|Ha|ψ
(0)
i,+〉

E
(0)
j,−

−E
(0)
i,+

.

The initial state is a zero-momentum condensate that
can be written in the basis of inversion-even eigenstates

as |ψ(0)〉 =
∑

i ci|ψ
(0)
i,+〉. During the lattice pulse time τ

this initial state evolves in time as

|ψ(t)〉 =
∑

i

cie
−iωi,+t



|ψ
(0)
i,+〉+

∑

j

αj,i |ψ
(0)
j,−〉



 (4)

+
∑

j,k

−αj,kcke
−iωj,-t |ψ

(0)
j,−〉

where ωi,+ = Ei,+/~ and ωj,- = Ej,−/~.
The first term of (4) represents the incorporation of in-

version antisymmetry into the initially even eigenstates,
and the second term represents fully antisymmetric states
for which the perturbation introduces population at zero
momentum. Fig. 4(c) illustrates each of these effects on
two states at zero quasi-momentum that are heavily in-
fluenced by the perturbation Ha: the initially symmetric
ground state and antisymmetric first excited state.
The numerator of the inversion asymmetry parameter

A is the expectation value of an inversion-odd operator
M that is diagonal in the basis of reciprocal lattice mo-
menta, with matrix element ±1 for the wavevectors±Gi.
Using the first-order expression above for |ψ(t)〉, we ob-
tain 〈M〉 =M1(t) +M2(t) with

M1(t) =
∑

i,j,k

(

c∗i cke
−i(ωk,+−ωi,+)tα∗

j,iMj,k + c.c.
)

(5)

M2(t) =
∑

i,j,k

(

c∗kcie
−i(ωj,−−ωk,+)t (−αj,i)M

∗
j,k + c.c.

)

and Mj,i = 〈ψ
(0)
j,−|M |ψ

(0)
i,+〉.

These expressions identify two generic scenarios that
lead to a large momentum-space asymmetry. The first
results in oscillations described by bothM1(t) andM2(t)
and involves a trio of eigenstates of the unperturbed
Hamiltonian H0 at zero quasi-momentum – two inversion

symmetric, |ψ
(0)
i,+〉 and |ψ

(0)
k,+〉, and one inversion antisym-

metric, |ψ
(0)
j,−〉. These states can be identified by three

key features. First, the symmetric states have significant
population at zero momentum so as to overlap with the
stationary condensate, giving large ci and ck. Second, the
inversion antisymmetric state is close in energy to one of

the inversion symmetric states, say |ψ
(0)
i,+〉, so that αj,i is

large and they are strongly mixed by the perturbation
Ha. Finally, the inversion antisymmetric state and at

least one of the inversion symmetric states, say |ψ
(0)
k,+〉,

have large population in the first-order diffraction mo-
menta, so that Mj,k is large. When these criteria are
satisfied, we expect modulations of equal strength in M
(and thus in A) at frequencies ωk,+−ωi,+ and ωj,−−ωk,+.
The second scenario is described by M2(t) when k = i

and involves just two states – |ψ
(0)
i,+〉 and |ψ

(0)
j,−〉. These

states are again characterized by large ci and αj,i, and
must both have large population in the first-order diffrac-
tion momenta so that Mj,i is large. This scenario results
in a modulation of A at frequency ωj,− − ωi,+.
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In Fig. 4(d) we show that just one trio of states in
this perturbation picture explains most of the dynamical

variation in A. Fig. 4(c) shows that the state |ψ
(0)
1,+〉 has

large population in the zero and first-order diffracted mo-

menta, that |ψ
(0)
2,−〉 has large population in the first-order

momenta, and that these states are heavily mixed by the
perturbation, i.e., that α2,1 is large. As a result, these
two states are dominant contributors to oscillation in A
as in the second scenario described, and also couple with

a third state |ψ
(0)
k,+〉 as in the first scenario. In Fig. 4(d)

we isolate the symmetric excited state with largest pop-
ulation in the zero and first-order diffracted momenta–
|ψ

(0)
31,+〉. The energy of these three states define three

frequencies that dominate the time-evolution of A. The
large momentum-space asymmetry is observed when the
Kaptiza-Dirac pulse time is tuned so that these temporal
oscillations interfere constructively. We note that there

are several other symmetric excited states besides |ψ
(0)
31,+〉

that also play the role of |ψ
(0)
k,+〉 in the scenario we have

outlined, and provide somewhat smaller contributions to
the overall dynamics.

The observations and theoretical descriptions offered
in this work illustrate how matter-wave diffraction can
be made highly sensitive to, and strongly manipulated
by, fine features of an optical lattice. Our work also sug-
gests an explanation for the momentum-space asymme-
try observed in the diffraction of a Bose-Einstein conden-
sate of two spin states of 87Rb and released from a spin-
dependent optical lattice reported in Ref. [17] (see also
Ref. [18]). The asymmetry was interpreted as evidence
of a ground-state superfluid that forms with a spatially
dependent phase in the superfluid order parameter. A
later theoretical study [19] found no evidence for such a
“twisted superfluid” state, which is consistent with naive
expectations given that the optical lattice and mean-field
interaction potentials experienced by the atoms are both
real valued.

We suggest that the inversion asymmetric diffraction
patterns observed in the experiment [17] may have re-
sulted from matter-wave diffraction from the inversion
asymmetric transient honeycomb lattice that repulsion
from one atomic spin state creates for the second spin
state. Such a transient lattice potential would have an
interaction-energy asymmetry between the A and B sites
of the honeycomb lattice that is on the order of the su-
perfluid chemical potential (around h × 1 kHz). This
potential would persist for a time somewhat less than
the recoil time (i.e., around 100 µs). The strength and
duration of this asymmetric potential are comparable to
those studied in the present work. The interaction-driven
diffraction of one matter wave off another can can be de-
scribed equivalently as nonlinear coherent wave mixing
induced by interatomic interactions [20]. The observation
in Ref. [17] that the sign of the asymmetry parameter A
was consistent between experimental repetitions supports

our view that the asymmetry resulted from deterministic
matter-wave dynamics rather than by spontaneous sym-
metry breaking at a phase transition. Moreover, in a re-
cent experiment with the same system as in Ref. [17], the
diffraction was modified by eliminating one spin popula-
tion from the lattice just before the atoms were released
[21]. The consequent elimination of the asymmetry signal
is consistent with our suggested explanation.
This work was supported by the NSF and the AFOSR

through the MURI program.
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Lühmann, K. Sengstock, and J. Simonet, Phys. Rev. A
93, 033625 (2016).



6

FIG. 1: Three 1064 nm beams interfere at 120◦ with in-plane polarization to create a honeycomb lattice of intensity maxima.
We identify the unit cell of the lattice potential (solid line). A dashed line within the unit cell runs through the two potential
minima, which are marked with ticks and labeled A and B. One-dimensional profiles of the light intensity (b) and optical
potentials (c, d) along this line are shown. The star symbol, located at a minimum-intensity location, serves as a center for
the spatial inversion operation that exchanges the A and B sites of the lattice. (b) We define a quantization axis orthogonal
to the lattice plane and show that the light is predominantly σ+ at site A and σ− at site B. (c) The atoms are polarized by a
uniform magnetic field B0 at an angle θ from the quantization axis. We show the lattice potential for extreme values of cos θ,
where the potential depth at sites A and B maximally differ. (d) The lattice potential is the sum of an inversion symmetric
potential, Vs(r), that arises from the scalar Stark shift and an inversion antisymmetric potential, Va(r), that comes from the
vector Stark shift.

FIG. 2: An asymmetry parameter A is defined as the first-
order population imbalance and measured for data taken as
a function of θ with a pulse time of 50 µs. (a) Time of flight
image for θ = 0.44 shows an asymmetry in the first order
diffraction peaks. (b) We highlight the first order peaks with
circles (at Gi) and triangles (at −Gi). (c) Time of flight
image for θ = 2.2 shows reversal of the observed asymmetry.
(d) A is computed for each of five images and the mean and
standard error of these data are plotted. The solid line shows
the expected dependence on θ.
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FIG. 3: Oscillations in A as a function of the Kaptiza-Dirac
pulse time τ , shown for θ = 0.38 radians (circles) and θ = 2.8
radians (triangles). The data represent the mean and stan-
dard error of five experimental runs at each pulse time. A nu-
merical calculation (solid line) with no free parameters closely
reproduces the time dependence of A, whilst perturbation
theory (dashed line) captures the short time behavior. Inset
time of flight images for τ of 8, 50, 59 and 77 µs show directly
the evolution of the first order asymmetry. We note that
discrepancies between theory and experiment, e.g., at times
around 30, 60 and 80 µs, appear when the total population in
the first-order peaks is small, causing a systematic reduction
in the measured magnitude of A.
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FIG. 4: (a) Atoms at zero momentum are coupled to wavevec-
tors ±Gi by the asymmetric Fourier components of the po-
tential. (b) Interference between first and second order pro-
cesses create a population imbalance at ±Gi. (c) We treat
the inversion asymmetric potential as a perturbation Ha on
the inversion symmetric lattice Hamiltonian H0 and show mo-
mentum space amplitudes (spot size) and phases (color) of the
two lowest energy eigenstates. In our experiment α2,1 is large

and Ha strongly mixes the symmetric ground state, |ψ
(0)
1,+〉,

and the antisymmetric excited state, |ψ
(0)
2,−〉. Both perturbed

states are asymmetric and overlap with a stationary conden-
sate. (d) Much of the oscillatory behavior observed in A can
be attributed to the beating of three states, identified in the

eigenspectrum of H0 as |ψ
(0)
1,+〉, |ψ

(0)
2,−〉 and |ψ

(0)
31,+〉. We show

state |ψ
(0)
31,+〉, which is the excited state that best satisfies the

criteria described in the first scenario of the text. The energy
differences among these states define three frequencies – 2, 65
and 67 kHz – that dominate the signal of A. Our numeri-
cal calculations show that this three state description (dotted
line) captures most of the physics in the full signal of A (solid
line).


