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The correlated atoms in a tilted optical lattice driven by an ac-field are studied within the Hubbard
model. By making use of both the photon-assisted tunneling and coherent destructive tunneling
effects, we can move a pair of strongly correlated atoms in the lattice via manipulating the global
amplitude of the driving field. We propose a scheme of creating entanglement between the particle-
pair and a single particle through interacting oscillations. Our model may provide a new building
block for investigating quantum computing and quantum information processing with ultracold
atoms in optical lattices.
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I. INTRODUCTION

The high level of controllability and cleanness of ul-
tracold quantum gases in optical lattices has enabled the
simulation and exploration of fundamental many-body
physics[1, 2]. In experiments, the progress in detect-
ing techniques has reached the single-site resolution level
with high fidelity[3–5]. Many theoretical models, such
as the tight-binding Hubbard models[6–9], the Harper
Hamiltonian with artificial gauge fields[10, 11], are now
experimentally achievable. In these systems, signifi-
cant phenomena were demonstrated, including the ba-
sic superfluid-Mott insulator (SF-MI) transition[7], (frac-
tional) quantum Hall effects[12–15], etc.

The accurate manipulating and engineering schemes of
such systems are the major tasks that require for further
investigation. The celebrated Bloch oscillations (BO)
is one of the direct quantum controls of a wavepacket
moving in a tilted lattice[16]. On the other hand, a
periodically driving field can lead to photon-assisted
tunneling[17], dynamical localization (DL)[18, 19], and
coherent destruction of tunneling (CDT)[20–23], etc[24–
26]. These effects provide potential application for quan-
tum control, and give better understanding of the solid
state physics. Recently, an induced effective gauge field
based on the Floquet theory was considered for the study
of topological effects[27–29]. The control of single parti-
cle tunneling was proposed in Ref.[30], where the bipar-
tite super-lattices were modulated periodically to induce
the directed CDT. Two-particle entanglement can also be
realized in such systems. The interaction between parti-
cles has novel effects on the dynamics[31–33]. Researches
on the correlations have led to some specific phenomena
like the coherent transport[34–36] and BOs with frac-
tional Bloch periods[37, 38].

In a previous work we have investigated the directed
migration of a pair of strongly correlated atoms in opti-
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cal lattices driven by doubly modulated ac-fields[39]. In
this paper we demonstrate the migration of a correlated
particle pair in a one-dimensional (1D) tilted optical lat-
tice driving by a modulated ac-field. This scheme may
be more experimentally feasible[17], in comparison to di-
rectly manipulating the on-site interaction through the
Feshbach resonance[40, 41]. The relevant factors in our
scheme include re-normalization of the hopping ampli-
tude, photon-assisted tunneling as well as CDT. The time
evolutions of the correlated pair are simulated by apply-
ing the Schrödinger equation with the time-dependent
Hamiltonian. We propose a scheme of creating entangle-
ment between the interacting atoms in the driven lattice
which may find potential applications in quantum com-
puting and engineering.

The paper is organized as follows. In Sec.II we describe
the driving system within the Bose-Hubbard model and
derive the effective hopping. The migration scheme and a
bifurcating quantum motion are presented in Sec.III. In
Sec.IV, we show the mixing and separating of a (2+1)-
particle system via properly modulating the driving field,
which creates entanglement between a single particle and
a particle pair. A summary is included in Sec.V.

II. FORMULISM

We first consider two interacting particles in a 1D tilted
lattice by applying a dc-field and an adjustable ac-field.
Within the tight-binding approximation, the dynamics of
the particles is described in the framework of the Bose-
Hubbard model (BHM),

Ĥ = − J
∑
j

(b̂†j b̂j+1 + h.c.) +
U

2

∑
j

n̂j(n̂j − 1)

+ K(t)
∑
j

j · n̂j , (1)

where b̂†j (b̂j) are the bosonic creation (annihilation) op-

erators and n̂j = b̂†j b̂j the number operators acting on
site j. Parameters J , U are the nearest hopping rate
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and the on-site interaction, respectively. The quantity
K(t) = K0 + K1 cos(ωt) in the last term contains the
dc-ac field, with K0, K1 the amplitudes and ω the driv-
ing frequency. The K0 term can be acquired by applying
a magnetic gradient along the lattice and the K1 term
by periodically shifting the mirror which is used to form
the standing waves. For weak interaction and small tilt-
ing, a high-frequency oscillation can lead to the standard
re-normalization of the hopping rates[42]. As the tilt-
ing is increased until K0 = nω with n an integer, we
will expect the photon-assisted tunneling effects[17, 43].
For strong interaction cases, the two particles occupy-
ing the same site form a bound pair, which undergoes
correlated quantum walks, or fractional BO in different
situations[33, 37].

We consider two identical bosons in the model and
assume a strong interaction and a large tilting, i.e., U ∼
K0 ∼ ω � J . The effective dynamics can be derived by
applying Floquet theory in the high-frequency limit. In
particular we are concerned with the specific conditions
in the present paper: U = (N + 1

2 )ω, K0 = (M + 1
2 )ω,

with N and M integers. With ω � J ,

U −K0 = (N −M)ω ≡ µω,
U +K0 = (N +M + 1)ω ≡ νω. (2)

The term ω/2 in K0 is significant, since it suppress the
tunneling of an isolated particle to a neighboring empty
site. The equal form of U ensures (U ± K0)/ω to be
integers, which means that the tunneling processes as-
sisted with other particles are possible. The dynami-
cal properties of these conditions will be discussed later.
The two-particle state is represented in the Fock basis as

|Φ(t)〉 =
∑
n,m cn,mb̂

†
nb̂
†
m|0〉, where coefficients cn,m are

the probability amplitudes. This expansion contains a
Bose enhancement factor

√
2 when n = m. By applying

the Schrödinger’s equation of motion i∂t|Φ(t)〉 = Ĥ|Φ(t)〉
(h̄ = 1), one obtains the temporal evolution of cn,m,

i
d

dt
cn,m = −J

∑
σ=±1

(cn+σ,m+cn,m+σ)+Fn,m(t)cn,m, (3)

where Fn,m(t) = Uδn,m+K(t)(n+m). For two Fermions
with distinct spin state, the deduction can be performed
in a similar manner within the Fermi Hubbard model[44].
To employ the rotating-wave approximation and drop the
trivial terms in the oscillation, we rewrite the amplitudes
cn,m(t) in terms of an,m(t) as

cn,m(t) = an,m(t) exp[−i
∫ t

0

dt′Fn,m(t′)]. (4)

From Eqs.(3) and (4), we obtain the equation of motion
for an,m(t):

i
d

dt
an,m = −J{an+1,m exp [iU(δn,m − δn+1,m)t− iF (t)]

+ an,m+1 exp[iU(δn,m − δn,m+1)t− iF (t)]

+ an−1,m exp[iU(δn,m − δn−1,m)t+ iF (t)]

+ an,m−1 exp[iU(δn,m − δn,m−1)t+ iF (t)]},(5)

where F (t) = K0t + K1/ω · sin(ωt). The standard re-
normalization procedure allows one to replace the fast
oscillating terms with their average over a period. Taking
account of the conditions (2), the re-normalized coupling
amplitudes for |n−m| > 1 vanish,

1

T

∫ T

0

dt′ exp{±i[K0t
′ +

K1

ω
sin(ωt′)]} = 0. (6)

Note that Eq.(6) holds in the high-frequency limit due to
the additional term ω/2 in K0.

In order to put the initial expansion of |Φ(t)〉 in a

more compact form, i.e. |Φ(t)〉 =
∑
n<m cn,mb̂

†
nb̂
†
m|0〉 +∑

n cn,n|2〉n, where |2〉n indicates a double occupation on
site n, we make a substitution for each an,m:

• an,n → 1√
2
an,n

• an,m>n → 1
2an,m>n

• an,m<n → 1
2am<n,n

Further calculations yield

i
d

dt
an,n = −

√
2J1an,n+1 −

√
2J2an−1,n

i
d

dt
an,n+1 = −

√
2J1an,n −

√
2J2an+1,n+1,

i
d

dt
an,m = 0 (|n−m| > 1), (7)

where the hopping amplitudes have been re-normalized
as

J1 = JJµ(
K1

ω
), J2 = (−1)νJJν(

K1

ω
), (8)

with Jµ the µ-th bessel function of the first kind. These
hopping amplitudes result from the restricted form of
U and K0. We mention that Eqs.(7) can also be de-
rived from a many-particle system, in which one needs
to expand the quantum state in the Fock basis labeled

by |k〉 ∈ {|n(k)
1 , n

(k)
2 , · · · , n(k)

N 〉}. A similar deduction
within conditions U , K0 = mω/2 (with m an inte-
ger), ω � J , leads to an effective Hamiltonian with
occupation-dependent hopping terms[45],

Ĥeff = −
∑
〈i,j〉

b̂†iJeff(n̂i, n̂j)b̂j . (9)

Explicitly, the tunneling channels between the sites j
and j + 1 with initial occupations nj and nj+1, respec-
tively, have the effective hopping rates

J(nj ,nj+1)→(nj+1,nj+1−1) =

{
JJn+

(K1

ω ), n+ ∈ Z;

0, otherwise,

J(nj ,nj+1)→(nj−1,nj+1+1) =

{
JJn−(K1

ω ), n− ∈ Z;

0, otherwise,

n± = (nj − nj+1 ± 1)Uω −
K0

ω , (10)
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FIG. 1: (Color online) Doublon-dimer oscillations (a,b) be-
tween states |0, 2〉5,6 and |1, 1〉5,6, and (c,d) between states
|2, 0〉5,6 and |1, 1〉5,6. The evolutions of density distribution
are shown in (a) and (c), respectively, with driving ampli-
tudes K1/ω = KA

1 /ω = 3.8317 and K1/ω = KB
1 /ω = 2.4048.

(b,d) are respectively the temporal evolutions of the proba-
bility of the dimer state (black curves) and the doublon state
(blue curves), with the probability labeled by |c(n1,n2)|

2 =

|〈Φ|n1, n2〉j,j+1|2. Analytical results from the effective model
(Eq.(9)) are denoted by the squares.

where Z represents the integer set. Applying Eqs.(10)
to a two-particle system and restricting conditions (2),
the effective tunnelings recover the dynamics described
by Eq.(7), with the hopping rates reducing to J1 and
J2. A small deviation from the “resonant” conditions (2)
will lead to a residual on-site Hubbard energy or a small
lattice tilting[44]. In the Mott-insulator (MI) regime with
K0 = 0, tuning the driving frequency resonant with the
on-site interaction can lead to the destruction of the MI
state as shown in Ref.[46]. It is notable that the on-site
interaction is not required to be positive. Thus our model
is equivalently applicable to attractive particles.

III. MIGRATION OF A CORRELATED PAIR

For the correlated particle-pair model, Eqs.(7) indicate
that all possible tunneling channels are

|2, 0〉j,j+1
A↔|1, 1〉j,j+1

B↔|0, 2〉j,j+1, (11)

where the channels labeled by A and B have hopping
rates J1 and J2, respectively. The tunneling of an isolated
particle is forbidden. Such tunneling properties stem
from the conditions U = (N + 1

2 )ω and K0 = (M + 1
2 )ω.

Multiples of the energy quanta ω (h̄ = 1) which is pro-
vided by the periodically driving can compensate the en-
ergy cost from both the on-site interaction and the lat-

FIG. 2: (Color online) (a,c) Directed migration of the corre-
lated pair realized by the doublon-dimer oscillations shown
in Fig.1(a) and (c). (b,d) are the corresponding ampli-
tude modulations of the driving field, respectively. We set
K1/ω = KA

1 /ω = 3.8317 in the time interval TA and K1/ω =
KB

1 /ω = 2.4048 the time interval TB .

tice tilting. However, the compensation can not be dis-
tributed independently. The difference of the leftward
and the rightward tunneling is a consequence of the bro-
ken mirror-symmetry that is induced by the tilting field.

We call the double occupation state like |2, 0〉j,j+1 the
doublon, and the state with one particle occupation on
nearest-neighboring sites like |1, 1〉j,j+1 the dimer. The
variable amplitude K1 make the tunneling rates J1 and
J2 adjustable. Without losing the generality, we take
a specific case of N = M = 0 hereafter, so that U =
K0 = ω/2, µ = 0, and ν = 1. By setting the oscillating
amplitude K1 so as to J0(K1/ω) = 0 or J1(K1/ω) =
0, we arrive at the CDT and thus obtain an oscillation
between the doublon and the dimer state, namely,

A: |2, 0〉j,j+1↔|1, 1〉j,j+1, while J1(KA
1 /ω) = 0,

B: |1, 1〉j,j+1↔|0, 2〉j,j+1, while J0(KB
1 /ω) = 0.

The effective hopping rates are determined by JAres =
JJ0(KA

1 /ω) and JBres = JJ1(KB
1 /ω). Thus frequencies

of the sinusoidal doublon-dimer oscillations A and B are
ωAosc =

√
2JAres and ωBosc =

√
2JBres.

To verify the complete doublon-dimer oscillations, we
carry out the numerical simulation of real-time evolu-
tion using the time-dependent Hamiltonian. The den-
sity distributions in Fig.1(a)(c) show the local oscillation
with U = K0 = ω/2 = 20 (in units of J). We have
set KA

1 /ω = 3.8317 in Fig.1(a)(b) and KB
1 /ω = 2.4048

in Fig.1(c)(d) which correspond to the oscillations A
and B, respectively. The evolutions of the probabil-
ity |〈Φ(t)|doublon (dimer)〉|2 are shown in Fig.1(b)(d),
which indicate the expected oscillations with different pe-
riods π/ωAosc and π/ωBosc. The analytical results from the
effective model shown by squares in Fig.1(b)(d) are in
good agreement with the direct simulation results.

By combining the A, B processes, we can arrive at the
directed migration of correlated particle pair, as shown
in Fig.2(a)(c). The driving amplitude K1 is properly
modulated for the correlated pair to realize the series of
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FIG. 3: (Color online) (a) A bifurcating quantum motion
realized by properly setting duration of the amplitude modu-
lation as shown in (b). The variation of modulation leads to
incomplete transition of the oscillations shown in Fig.1, which
results in coexistence of the doublon and dimer.

hopping processes

|2, 0〉j,j+1→|1, 1〉j,j+1→|0, 2〉j,j+1,

which fulfill a complete cycle of migrating the dou-
blon from site j to j + 1. We have set the period

TA(B) = π/2ω
A(B)
osc for K1 = K

A(B)
1 , as demonstrated

in Fig.2(b)(d). The direction of motion can be well-
controlled by the modulation.

We note that the direction of migration also depends
on whether the pair is initially a doublon or a dimer. By
making use of this feature, one can achieve a bifurcating
quantum motion by halving one of the time durations TA
(or TB). As shown in Fig.3, by shortening the first TB
to its half, the oscillation B is incomplete and the pair
state becomes a superposition of |doublon〉 and |Dimer〉,
i.e., |Ψ〉 = 1/

√
2|1, 1〉7,8 + 1/

√
2|0, 2〉7,8. The state then

propagates in two branches which move oppositely. If
we halve the third TA, then the a further bifurcation oc-
curs which results in four branches. This mechanism can
serve as a quantum beam splitter that divides the cor-
related particle pair into coherent parts that propagate
oppositely.

The proposed particle-pair migration scheme could be
experimentally observed. The periodically driving Hub-
bard model with tilting in our consideration have been
realized with cold atoms in optical lattices[17, 47, 48].
The parameters are highly controllable and can vary in
a wide range. In these experiments with ultracold ru-
bidium atoms, the magnitude of nearest hopping rate
J and on-site interaction U are tuned to J/h̄ ∼ 1kHz,
J/U ∼ 0.2[47], the value of driving amplitude K1 is tuned
up to 4h̄ω[48], and the lattice tilting can be arranged as

FIG. 4: (Color online) A (2+1)-particle migration scheme.
The isolated particle remains motionless while the correlated
pair moves toward, mixes with the single particle. After that
the particles separate. (a) The density evolution reveals the
approaching, oscillating, and separating processes. (b) Mod-
ulations of the driving field with the amplitude between the
KA

1 /ω and KB
1 /ω. (c) The probability of the mixing three

states |102〉〈4,5,6〉 (black), |111〉〈4,5,6〉 (blue), and |021〉〈4,5,6〉
(red) in the time interval 3Tc of (b). The green line indi-
cates that the probability of other states, such as |c(120)|2 and

|c(201)|2, are severely damped.

K0 ∼ nω[17]. We shall consider the driving frequency to
fit the high-frequency limit with magnitude ω ∼ 40kHz.
The hopping rate J decrease drastically with the increase
of lattice depth, making it possible to reach the condi-
tions in this work.

IV. CREATING ENTANGLEMENT WITH
THREE PARTICLES

One of the advantages of the driving schemes under
conditions (2) is that an isolated particle is forbidden
from tunneling to its adjacent sites whereas the corre-
lated pair can make directed migration via properly mod-
ulating that driving field. Based on this consideration,
we can realize a scattering process between a single parti-
cle and the particle pair. We first consider three identical
particles, one isolated and two in pair, which initially stay
apart. Under the driving field the correlated pair moves
toward the motionless single particle and mix with it, as
shown in Fig.4. The isolated particle can only tunnel
to neighbor sites with the assistance of other particles.
The modulation of driving amplitude is the same as that
in Fig.2(d) before the state |102〉4,5,6 is formed at time
3 · (TA + TB). The further dynamics of the three parti-
cles can be elusive without restriction. However, while
setting K1 = KB

1 , all possible tunneling processes reduce
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to

|102〉〈i,j,k〉↔|111〉〈i,j,k〉↔|021〉〈i,j,k〉, (12)

where 〈i, j, k〉 represents three neighboring sites i, j, k
and |ni, nj , nk〉 the state with ni, nj , nk particles on site

i, j, k, respectively. All hopping rates are the same J̃ =
JJ1(KA

1 /ω).
Expanding the 3-particle state by

|Φ(t)〉 = c1(t)|102〉〈i,j,k〉+c2(t)|111〉〈i,j,k〉+c3(t)|021〉〈i,j,k〉,

the analytical results while assuming c1(0) = 1 are

c1(t) =
1

2
cos(2J̃ t) +

1

2

c2(t) = − i√
2

sin(2J̃ t)

c3(t) =
1

2
cos(2J̃ t)− 1

2
. (13)

These formulas are consistent with the numerical results
shown in Fig.4(a)(c). The oscillation periods are TC =

π/J̃ for both |c1(t)|2 and |c3(t)|2 and TC/2 for |c2(t)|2.
We have set K1 = KB

1 for 3TC as shown in Fig.4(b).
The oscillation will recover the initial |102〉〈4,5,6〉 state at
time 3 · (TA + TB + TC). Thus a reverse modulation can
be applied to separate the three particles into a pair and
an isolated one.

Based on these knowledge, we are able to realize quan-
tum entangle by considering distinguishable particles.
Now we assume the migrating particle pair to be a-type
atoms, and the single particle b-type atom. a, b atoms
can be a neutron boson of different hyperfine states. We
label the particle pair the system A, while the isolated
single particle the system B, as schematically illustrated
in Fig.5(a), thus |Φ〉 ∈ HA⊗HB . The migrating (I), mix-
ing (II) and separating (III) processes are similar to the
identical particle case (Fig.4(a)). The modulation of the
driving field is the same as that in Fig.4(b). The regime
I indicates the process of incidence of system A (the cor-
related a-atom pair) to the motionless system B (the iso-
lated b-atom). We label the initial state as |aa〉A ⊗ |b〉B ,
where |aa〉 means that two particles in A are of type a.
The regime II indicates the mixing regime with various
oscillations. By setting the time duration in regime II to
be multiples of TC , we are able to subsequently separate
the three particles into a bipartite system (the regime
III) of site-resolved A and B.

In general, the states before the incidence and after the
mixing oscillations can be defined by

|Φ〉AB ∈ {|aa〉 ≡ |0〉, |ab〉 ≡ |1〉}A⊗{|a〉 ≡ |0〉, |b〉 ≡ |1〉}B ,

where |ab〉 means finding one particle to be of type b
in system A. The separating process (III) after the 3-
particle mixing oscillations starts from the state |Φ〉 =
|102〉4,5,6. To give an insight into the internal states,
we make a decomposition |102〉4,5,6 = cα|0〉A ⊗ |1〉B +

FIG. 5: (Color online) (a) A schematic illustration of the real-
ization of entanglement with correlated particles in the driv-
ing lattice. The correlated pair of a-atoms (blue double lines)
moves toward a single b-atom (black line) in the time interval
I. After mixing in the time interval II, the separating particles
are entangled in the time interval III. The dashed (red) lines
indicate either a-atom or b-atoms. The double lines denote
the correlated particle-pair. (b) The evolution of the concur-
rences of the system. In II the concurrence is not well-defined
due to the full mixing of the three particles (plotted in dotted
curve) except those values marked by the crosses. In our case,
we hold the oscillation for 3 periods, resulting in a large con-
currence in III. (c) Numerical results in II starting from the
state |0〉A⊗ |1〉B = |aa〉A⊗ |b〉B which belongs to |102〉〈4,5,6〉.
The probability evolution of state |102〉〈4,5,6〉 (|c(102)|2) and

its internal states |0〉A ⊗ |1〉B = |aa〉A ⊗ |b〉B (|c(102)cα|2),

|1〉A ⊗ |0〉B = |ab〉A ⊗ |a〉B (|c(102)cβ |2) are shown by black
solid, blue dashed and red dotted curves, respectively.

cβ |1〉A⊗|0〉B , with normalization condition |cα|2+|cβ |2 =
1. A simulation has been carried out for the oscil-
lation regime II. In Fig.5(c), we show the probability
of the states |102〉4,5,6 (|c(102)|2, the black real curve),

|0〉A ⊗ |1〉B (|c(102)cα|2, the blue dashed curve) and

|1〉A⊗|0〉B (|c(102)cβ |2, the red dashed curve). The oscil-

lation of |c(102)|2 (the black curve) in Fig.5(c) is identical
to that in Fig.4(c). In regime (III) the two branches
form a entangled state and the degree of entanglement
for a two-partite system is measured by the concurrence
C(ΦAB)[49], which is defined by

C(ΦAB) = 2|c00c11 − c01c10|, (14)

with {c00, c11, c01, c10} the coefficients of the state |ΦAB〉.
A two-partite system is maximally entangled when C = 1
such as the two-qubit Bell states like 1/

√
2 · (|01〉± |10〉),

while C = 0 indicates the factorizability of the two-
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partite wave function. In our case the concurrence can be
calculated through C = 2|cαcβ |. Note that the final state
in Fig.4 depends on the ending point of 3-particle oscilla-
tion with time duration T̃ = n ·TC , n = 0, 1, 2, · · · . The
concurrence of the system with site-resolved two parts A,
B depends on discrete n. Four possible values of C(n)
are marked by the crosses in Fig.5(b). At the beginning
of the oscillation, we have C = 0 showing no entangle-
ment, which is also true before mixing of the two parts A
and B. After a duration of mixing T̃ = 3 ·TC , we reach a
large entanglement state with C ≈ 0.99. This state is sta-
ble and detectable in the lattice system. With increasing
n, concurrence approaches 2

√
2/3 since |c(102)|2 = 1 and

|cα|2 → 1/3, |cβ |2 → 2/3. In the separating procedure
after oscillating with a large n, the A part of the particle
pair evolves between the doublon and the dimer. When
the dimer is formed from the state |1〉A = |ab〉A, the prob-
abilities of finding the states |a, b〉〈i,j〉 and |b, a〉〈i,j〉 are
equal. By regarding the three particles as site-resolved
tripartite system, we can arrive at the entangled three-
qubit states, e.g.,

|Φ〉 =
1√
3

(|b, a, a〉i,j,j+1 + |a, b, a〉i,j,j+1 + |a, a, b〉i,j,j+1),

(15)
which can be intuitively represented by the specific state
|W 〉 = 1/

√
3 · (|100〉+ |010〉+ |001〉). The |W 〉 state rep-

resents the south pole of a Bloch sphere for the two-
dimensional space, while the north pole is represented by
the orthogonal Greenberger-Horne-Zeilinger state[50].

Since the entanglement has been built at the end of
the interacting oscillation and subsequent modulations
of the particle pair are available, we arrive at a quantum
gate controlled by global modulations of the lattice. The
capabilities of parallel processing in this model indicate
possible applications on the further researches of multi-
particle entangled states.

V. SUMMARY

We have investigated correlated atoms in a driving
Hubbard model. We focus on fast driving, strong interac-
tion and large tilting regime under the specific conditions
U = (N + 1

2 )ω, K0 = (M + 1
2 )ω (N , M are integers) and

ω � J . The driving lattice provides the energy quanta ω
(h̄ = 1) which induces the assisted tunneling effect. The
effective hopping rates indicate the CDTs by properly
modulating the amplitude of the field. We proposed a
scheme to realize the directed migration of strongly cor-
related particle pair and considered a scattering model
with the interaction between the particle pair and an
isolated particle. Their oscillations are utilized to induce
a two-partite or even a three-qubit entanglement and re-
veal the possibility of quantum control, transport and
computing with lattice modulation.
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