
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dirac and Weyl rings in three-dimensional cold-atom optical
lattices

Yong Xu and Chuanwei Zhang
Phys. Rev. A 93, 063606 — Published  7 June 2016

DOI: 10.1103/PhysRevA.93.063606

http://dx.doi.org/10.1103/PhysRevA.93.063606


Dirac and Weyl Rings in Three-dimensional Cold Atom Optical Lattices

Yong Xu1,2 and Chuanwei Zhang1∗
1Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA

2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Recently three-dimensional topological quantum materials with gapless energy spectra have at-
tracted considerable interests in many branches of physics. Besides the celebrated example, Dirac
and Weyl points which possess gapless point structures in the underlying energy dispersion, the
topologically protected gapless spectrum can also occur along a ring, named Dirac and Weyl nodal
rings. Ultra-cold atomic gases provide an ideal platform for exploring new topological materials
with designed symmetries and dispersion. However, whether Dirac and Weyl rings can exist in the
single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realiz-
ing Dirac and Weyl rings in the single-particle band dispersion of a cold atom optical lattice. Our
scheme is based on previously experimentally already implemented Raman coupling setup for real-
izing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal
and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zee-
man field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive
Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.

PACS numbers: 67.85.-d, 03.65.Vf, 03.75.Lm

I. INTRODUCTION

The topology of band structures plays a crucial role
in many important phenomena [1–4] in various physical
fields. Remarkably, apart from gapped topological in-
sulators that exhibit metallic edge states protected by
symmetries [3, 4], materials with gapless band disper-
sions could also possess non-trivial topological proper-
ties and protected edge states. A well-known example
of two-dimensional gapless materials is graphene with
Dirac points [2]. In recent years, gapless Dirac and Weyl
points in three dimensions (3D) have been theoretically
predicted [5–12] and experimentally observed [13–18] in
a variety of Dirac and Weyl semimetals. Besides isolated
topological gapless points, the gaps of energy spectra in
3D could also close along a line, forming Dirac and Weyl
nodal rings in nodal semimetals [19–28]. However, the
band dispersion of such nodal semimetals usually also
consists of trivial bulk spectra at the same energy as the
nodal rings, which dominate the properties of the mate-
rials over nodal rings.
Cold atomic gases provide a clean platform for dis-

covering new topological quantum materials due to their
high controllability for engineering Hamiltonians with de-
sired symmetries and dispersion, and versatile tools for
directly probing topological states. In this context, re-
cent experimental achievements for realizing cold atom
topological matter, both gapped and gapless, mainly
focus on low dimensional (2D or 1D) systems [29–
35]. In 3D, although various topological gapless struc-
tures such as traditional and structured Weyl points and
rings have been theoretically predicted in quasiparticle
spectra of superfluids [36–44], their realization requires
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very low temperature that is unachievable within cur-
rent experimental technology [45, 46]. In contrast, the
single-particle spectra of ultra-cold fermionic gases have
been routinely observed in experiments at degenerate
Fermi temperature [45, 46]. However, apart from Weyl
points [47, 48], a realistic scheme for realizing Dirac and
Weyl rings in single-particle spectra of cold atoms is still
lacking.

In this paper, we propose an experimental scheme
for engineering a Hamiltonian that hosts Dirac or Weyl
rings in its single-particle spectrum of cold atoms with-
out involving other topological trivial bulk spectra. The
scheme is based on the experimentally already imple-
mented Raman coupling setup for spin-orbit coupling
[45, 46, 49–53], therefore it should be experimentally fea-
sible and may pave the way for the experimental gen-
eration and observation of topological gapless materials.
Our main results are:

(i) We construct a new spin-dependent Hamiltonian in
continuous space and derive its tight-binding form. Such
a Hamiltonian has not been discussed previously in solid-
state materials [19–27]. The Hamiltonian preserves both
pseudo-time-reversal and inversion symmetries without
Zeeman fields, allowing the existence of Dirac rings. The
pseudo-time-reversal symmetry is broken with a Zeeman
field and a Dirac ring splits into two Weyl rings. The
parameter regions as well as the topological character-
ization (e.g., topological invariance, surface states) for
these topological gapless rings are obtained.

(ii) We investigate the superfluidity of attractive Fermi
gases in this Hamiltonian and find two distinct superfluid
phases. The transition between them is the first order.
Interestingly, Dirac and Weyl rings also exist in quasi-
particle spectra in certain superfluids’ region.

(iii) The spin-dependent Hamiltonian can be realized
using an experimental setup based on previous Raman
coupling scheme for spin-orbit coupling [45, 46, 49–53].
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Specifically, two pairs of Raman laser beams are used to
couple two hyperfine spin states of atoms for generating a
specific spin-dependent optical lattice, which is essential
for the creation of these topological nodal rings. Com-
pared to solid-state materials, the chemical potential of
the cold atomic gases can be readily tuned to the nodal
rings by controlling the atom number.

II. MODEL HAMILTONIAN

We start from a spin-dependent Hamiltonian in con-
tinuous space that can support the existence of nodal
rings

H =
p2

2m
−

∑

ν=x,y,z

Vν cos
2(kLνrν) + hzσz − VSOσy, (1)

where p = −i~∇ is the momentum operator, m is the
mass of atoms, Vν and aν = π/kLν are, respectively, the
strength and period of a periodic lattice along the ν di-
rection, hz is the Zeeman field, σν are Pauli matrices for
spins, and VSO = ΩSO sin(kLxrx) cos(kLyry) cos(kLzrz)
corresponds to a spin-dependent optical lattice. For sim-
plicity, we explore the physics of this Hamiltonian in the
tight-binding model (see the appendix) that can be writ-
ten as

HTB = Hh +HZ +HSO, (2)

where Hh = −
∑

j

∑

σ

∑

ν(tν ĉ
†
j,σ ĉjν+1,σ +

tNν ĉ
†
j,σ ĉjν+2,σ + h.c.) includes the nearest-neighbor

(NN) and next nearest-neighbor (NNN) hopping with
the tunneling amplitudes tν and tNν , respectively,

HZ = hz
∑

j(ĉ
†
j,↑ĉj,↑ − ĉ†j,↓ĉj,↓) is the Zeeman field

term, and HSO = itSO
∑

j(−1)jx+jy+jz (ĉ†j,↑ĉjx+1,↓ −

ĉ†j,↑ĉjx−1,↓) + h.c. is the position-dependent spin-orbit

coupling term. Here ĉ†j,σ (ĉj,σ) creates (annihilates) an
atom at site j with spin σ.
The position dependent spin-orbit coupling of the

Hamiltonian breaks the one site translation symmetry,
leading to a unit cell consisting of two sites: A and B.
These new unit cells form a rocksalt crystal structure
as shown in Fig. 1(a). In the new basis Ψ(k)T with
Ψ(k) = ( eikxaxÂk↑ eikxaxÂk↓ B̂k↑ B̂k↓ ), the Hamil-
tonian in momentum space takes the form

H(k) = hNt − htτx + hzσz + dxτyσy, (3)

where hNt = −2
∑

ν tNν cos(2kνaν), ht =
2
∑

ν tν cos(kνaν) and dx = 2tSO sin(kxax). τ are Pauli
matrices for the A, B sublattice space. When hz = 0, this
Hamiltonian preserves both the pseudo-time-reversal
symmetry T −1HT = H(−k) with T = iτxσyK [54]
and K being the complex conjugate operator, and the
inversion symmetry I−1HI = H(−k) with I = τx.
These two symmetries guarantee that the state at each
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FIG. 1. (Color online) (a) and (b) Rocksalt lattice structure
and corresponding first Brillouin zone. Dirac (hz = 0) and
Weyl rings (hz = 0.5t), denoted by the red (central) and blue
(inner and outer) rings respectively, are located at the kx = 0
plane [yellow (light gray) plane] around (kyay = π, kzaz = π).
(c) and (d) Without and with hz, density of states at zero
energy without including NNN hopping when there are edges
along x. The dashed square indicates the first Brillouin zone.
(e) and (f) Spectra along kyay = kzaz [the solid grey line in
(c) and (d)] with edges along x with NNN hoppings, where
the black and red (dark gray) lines denote the surface states.
tx = 1.17t, ty = tz = t, tSO = 0.53t, and tN = −0.07t.
ax = ay = az.

k is at least two-fold degenerate, which implies that a
gapless touching point, if exists, is four-fold degenerate.
Therefore a ring formed by such gapless points is a
Dirac ring. When one of the symmetries is broken, for
instance, hz breaks the pseudo-time-reversal symmetry,
a Dirac ring splits into two Weyl rings, as visualized in
Fig. 1(b).

The emergence of Dirac and Weyl rings can be seen
from the energy spectrum of H(k): Eλ = hNt ±
√

(hz + λht)2 + d2x with λ = ±. Clearly, two bands
(four bands when hz = 0) touch to form nodal rings
in k space as shown in Fig. 1(b), when dx = 0 (i.e.,
kx = 0) and hz + λht = 0, requiring −2t1 < hz < 2t2 or
−2t2 < hz < 2t1 with t1 = ty+tz+tx and t2 = ty+tz−tx.
Specifically, when hz = 0 and ty + tz > tx, there exist a
four-fold degenerate Dirac ring. With hz, the Dirac ring
splits into Weyl rings, whose number equals to the num-
ber of the above conditions satisfied. Around a point on
a nodal ring, the energy dispersion is linear except along
the tangent direction to the ring. At the critical points
(i.e., hz = ±2t1, ±2t2), a ring shrinks to a point around
which the dispersion is quadratic.

To discuss the topology of these nodal rings,
we transform the tight-binding Hamiltonian (2) by
(−1)jx+jy+jz ĉj,↑ → ĉj,↑ [55], which transforms Eq. (3)
to

H1(k) = hNt + dzσz − dxσx, (4)
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with dz = ht + hz. The eigenvalues are E±
k

= hNt ±
√

d2x + d2z, where ± refer to the helicity, the eigenvalue

of H1(k)/
√

d2x + d2z.

This transformation simplifies the lattice structure to
a simple cubic and hence enlarges the Brillouin zone so
that one nodal ring in the kx = 0 plane is moved to
the kxax = π plane. In this transformed model that
possesses the chiral symmetry, i.e., σyH(k)σy = −H(k)
without NNN hoppings, we see that the Weyl ring can be
characterized by the winding number nw = ±1 [56] (be-
longs to AIII class [57]), the number of rotations that the
vector d = dzex − dxey undergoes when it travels along
a closed trajectory enclosing any gap closing point. Such
nonzero nw also amounts to the quantized Berry phase
C1 mod 2π = π, half of the solid angle that d winds [58].
For a Dirac ring, the Hamiltonian (3) (hz = 0) respects
a σy symmetry, i.e., σyH(k)σy = H(k) and hence the
classification is Z × Z, i.e., each band in two subspaces
with different eigenvalues σy = ±1 has a quantized Berry
phase [59, 60]. We note that although the NNN hopping
breaks the chiral symmetry by changing the eigenvalues,
it does not modify the eigenstates, thereby leaving the
quantized Berry phase unchanged.

In Fig. 1(c) and (d), we plot the surface density of
states at zero energy (without NNN hoppings) when the
edges are imposed along the x direction in the model (2).
The density of states is extremely large between rings in
different Brillouin zones, implying the vanishing disper-
sion of the surface states (i.e., the surface spectrum is
flat). With NNN hoppings, the surface spectrum gains
a slight dispersion as shown in Fig. 1(e) and (f) where
the black and red (dark gray) lines denote the surface
spectra. Without hz, the surface spectra are four-fold
degenerate, whereas with hz, this four-fold degeneracy is
lifted so that the surface states connecting different pairs
of gapless points are separated [black and red (dark gray)
lines]. This breaking is also reflected in Fig. 1(d) where
the density of states in the red (dark gray) region is twice
as large as that in the green (light gray) one.

III. SUPERFLUIDS IN NODAL RING

LATTICES

The Dirac and Weyl nodal ring lattices can be real-
ized for both Bose and Fermi atoms. Here we consider
fermionic cold atoms with contact attractive interactions
that can be tuned by Feshbach resonances. With attrac-
tive interactions, Fermi gases form superfluids. Under
the mean-field approximation, we can define the order
parameter for both A and B sublattices, respectively, as
∆A = −U〈Âj↓Âj↑〉 and ∆B = −U〈B̂j↓B̂j↑〉 with the
interaction strength U (U > 0). Note that we only con-
sider the case with spatially uniform ∆A and ∆B cor-
responding to the BCS pairing with zero center-of-mass
momenta [61]. The dynamics of the superfluid is gov-
erned by the Bogliubov-de Gennes (BdG) Hamiltonian
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FIG. 2. (Color online) (a) The order parameter ∆A as a
function of µ and hz at zero temperature. SF1 and SF2 cor-
respond to the phases with ∆A = ∆B and ∆A = −∆B, re-
spectively. A black line divides SF1 phase into gapless (left
part) and gapped (right part) regions, while the whole SF2
phase is gapless. (b) The thermodynamical potential Ω of
the SF1 (solid red line) and SF2 (dotted-dashed green line)
phases with respect to hz with µ = 1.1t. Note that when
hz > 0.7t the SF1 state is no longer a local energy minimum
state, while the SF2 state is in the whole region. (c) Ω as a
function of ∆A for SF1 (solid red and dotted black lines) and
SF2 (dotted-dashed green and dashed blue lines). Solid red
and dotted-dashed green lines are for µ = 1.1t, hz = 0.5t, and
dotted black and dashed blue lines are for µ = 1.1t, hz = 0.6t,
respectively. (d) and (e) The gap Eg of quasiparticle spectra
in (kyay, kzaz) with kx = 0 for the parameters denoted by
the green (lower) and yellow (upper) squares in (a), respec-
tively. (f) The gap Eg in (d) along kz for fixed kyay = π.
Here tx = 1.17t, ty = tz = t, tSO = 0.53t, tN = −0.07t, and
U = −4t. ax = ay = az.

HBdG = −sz(htτx + µ̃) + dxτyσy + hzσz +HBCS, (5)

where µ̃ = µ − hNt with the chemical poten-
tial µ, and Pauli matrices s act on the Nambu
particle-hole space. This Hamiltonian is written
in the Nambu basis ( Ψ(k) Ψ̃(k) )T with Ψ̃(k) =

( eikxaxÂ†
−k↓ −eikxaxÂ†

−k↑ B̂†
−k↓ −B̂†

−k↑ ). ∆A and
∆B are obtained by numerically solving the nonlinear
gap equations, ∂Ω/∂∆A = 0 and ∂Ω/∂∆B = 0, where Ω
is the thermodynamical potential per site [40].
Before we show the numerical results of ∆A and ∆B,

we first analyze the conditions under which Dirac and
Weyl rings can emerge in quasiparticle spectra. Our nu-
merical results show that real ∆A and ∆B with ∆A =
|∆B| are energetically preferred, therefore we only need
to consider two superfluids phases: ∆A = ∆B (dubbed
SF1) and ∆A = −∆B (dubbed SF2), associated with
HBCS = ∆Asx andHBCS = ∆Asxτz , respectively. When
hz = 0, both phases preserve the pseudo-time-reversal
and inversion symmetries [62], guaranteeing that the
quasiparticle spectra are at least two-fold degenerate at
each k. Therefore gapless rings, if exist, are four-fold de-
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generate Dirac rings because of these two symmetries and
the intrinsic particle-hole symmetry. Finite hz breaks the
pseudo-time-reversal symmetry and splits the Dirac ring
into two two-fold degenerate Weyl rings.

Specifically, for the SF1 state, without
hz, the eigenvalues of HBdG are Eλ

k± =

±
√

h20 + h2t + d2x + 2λ
√

µ̃2h2t + h20d
2
x with h20 = ∆2

A + µ̃2

and λ = ±. Each spectrum is two-fold degenerate.
From (E+

k+
)2(E−

k+
)2 = (h20 − h2t − d2x)

2 + 4∆2
Ah

2
t , we

see that ht = 0 and d2x = h20 for gapless rings. The
latter condition requires µ2 ≤ 4t2SO − ∆2

A, if NNN
hoppings are neglected. For the SF2 state, Eλν

k± =

±
√

h20 + (hz + νht)2 + d2x + 2λ
√

h20(hz + νht)2 + µ̃2d2x
with ν = ±. When hz = 0, the spectra are
two-fold degenerate, and this degeneracy is ex-
plicitly broken by hz. Still, by (E+ν

k+
)2(E−ν

k+
)2 =

[−h20 + (hz + νht)
2 + d2x]

2 + 4∆2
Ad

2
x, we see that nodal

rings appear when dx = 0 and (hz + νht)
2 = h20. This

leads to the existence of rings in the kx = 0 plane when
−2t1+h0 < hz < 2t2+h0 or −2t1−h0 < hz < 2t2−h0 or
−2t2 + h0 < hz < 2t1 + h0 or −2t2 − h0 < hz < 2t1 − h0,
if NNN hoppings are not involved. For Weyl rings
(hz 6= 0), their number equals to the number of the
above relations satisfied, which allow at most two Weyl
rings when h0 > 2(ty + tz). We note that without hz,
the rings are Dirac rings, which split into Weyl rings
when hz is turned on. We also note that NNN hoppings
only slightly modify the shape of nodal rings.

In Fig. 2(a), we plot the order parameter ∆A in the
(µ, hz) plane and there exist two superfluid phases: SF1
and SF2. Such two phases can be understood in two
limits. In the first limit, we assume tSO = 0 and clearly
∆A = ∆B as A and B sublattices can now be connected
by a translational transformation. In the second limit, we
assume tν = tNν = 0, and in the transformed model, the
momenta of Cooper pairs are zero, meaning that ∆B =
−∆A in the original model. Although these two states
can be simultaneously the local energy minimum states
as shown in Fig. 2(c), the ground state should be the
global energy minimum state (i.e., the one with the lower
energy). Therefore with the change of parameters, these
two phases can transition from one to another as shown
in Fig. 2(b), where the ground state changes from SF1 to
SF2 with increasing hz. Clearly, this phase transition is
the first order.

By examining the quasiparticle spectrum, we find that
the SF1 phase is gapless only in a small region (the left
part of the black line), whereas the SF2 phase is gapless
in the whole region. In Fig. 2(d) and (e), we plot the gap
(i.e., Eg = min(|Ekγ |)) of the quasiparticle spectrum in
the kx = 0 plane for the parameters associated with the
green and yellow squares in Fig. 2(a), displaying four and
three Weyl rings, respectively. The gap along kz for fixed
kyay = π for the former is plotted in Fig. 2(f). Similar
to the nodal rings in single-particle spectra, the number
of rings can be tuned by Zeeman fields or chemical po-

FIG. 3. (Color online) Schematics of a laser configuration
to realize the Hamiltonian (1). Ω1 and Ω2, Ω

′

1 and Ω′

2 are
two sets of Raman laser beams coupling two hyperfine states
| ↑〉 and | ↓〉. ∆e and ∆′

e are the detunings, and δ is the
two-photon detuning. Each Raman laser beam consists of
two plane wave laser beams as shown in (b). These Raman
laser beams also generate optical lattices via the Stark effects.
Additional laser beams are also employed to create optical
lattices along x and z.

tential. Such Weyl rings can also be characterized by the
winding number nw = ±1 (see the appendix). For Dirac
rings in the SF1 phase when hz = 0, they can be char-
acterized by the winding number in two subspaces with
different eigenvalues σy = ±1.

IV. REALIZATION OF NODAL RING

LATTICES

We propose an experimental setup (shown in Fig. 3)
based on Raman coupling scheme for generating spin-
orbit coupling [35, 45, 46, 49–53] to engineer the Hamil-
tonian (1).
Two independent pairs of red-detuned Raman lasers

are used to couple two hyperfine states (see the ap-
pendix for experimental parameters). One pair cor-
responds to the lasers Ω1 and Ω2 with the Rabi fre-
quencies Ω1 = Ω10 cos(kRyry)e

−ikRzrz/2 and Ω2 =

iΩ20 sin(kRxrx)e
ikRzrz/2, each of which can be generated

by two plane wave lasers. The other pair of Raman lasers
have the Rabi frequencies Ω′

1 = Ω′
10 cos(kRyry)e

ikRzrz/2

and Ω′
2 = iΩ′

20 sin(kRxrx)e
−ikRzrz/2, respectively. Such

two sets of Raman lasers give rise to the spin-dependent
lattice with ΩSO = 2Ω and kLν = kRν in Eq. (1) when
Ω = Ω′, achieved when the two sets of Raman lasers
come from the same resource. These lasers also lead
to the optical lattices along the x and y directions via
the stark effects: −δVx sin

2(kRxrx) and −Vy cos
2(kRyry)

with δVx = (|Ω20|
2 + |Ω′

20|
2)/∆e and Vy = (|Ω10|

2 +
|Ω′

10|
2)/∆e. Moreover, one needs another stronger opti-

cal lattices along the x direction: −V ′
x cos

2(kRxrx) with
V ′
x > 0 so that the total x direction optical lattice is

−Vx cos
2(kRxrx) with Vx = V ′

x − δVx > 0. Similarly, the
optical lattices along z, −Vz cos

2(kRzrz) with Vz > 0,
can be generated. We note that the Raman lasers can
also create the Zeeman field hz = δ/2 with δ being the
two-photon detuning.
To detect the Dirac and Weyl rings in the single-



5

particle and quasiparticle spectrum [37, 44] of Fermi
atoms, one can consider the momentum resolved radio-
frequency spectroscopy, similar to that in spin-orbit-
coupled atomic gases [35, 45, 46] and conventional su-
perfluids [63]. In terms of a BEC loaded in nodal ring
lattices, one can measure Landau-Zener tunneling prob-
ability to detect the rings [34, 48] and the interference
between two BECs traveling across a Weyl ring to ex-
tract the Berry phase [64].

V. DIRAC CONES IN TWO DIMENSIONS

Not only nodal rings in 3D can be realized in the pro-
posed experimental setup, but also Dirac cones in 2D
can be engineered in a much simpler setup as shown in
Fig. 4 (a) and (b), where only a pair of Raman laser
beams with Rabi frequencies Ω1 = Ω10 cos(kRy) and
Ω2 = iΩ20 sin(kRx) is required, and an additional stand-
ing laser beam is used to engineer an optical lattice along
x. This laser setup leads to the following Hamiltonian

H2D =
p2

2m
−

∑

ν=x,y

Vν cos
2(kRrν) + hzσz − VSOσy, (6)

where VSO = ΩSO sin(kLR
rx) cos(kLR

ry). The tight-
binding model of this Hamiltonian is a simplified version
of Eq. (2) when the hopping terms along x and y are
kept and

HSO = itSO
∑

j

(−1)jx+jy (ĉ†j,↑ĉjx+1,↓− ĉ
†
j,↑ĉjx−1,↓)+h.c..

(7)
Clearly, the Hamiltonian in momentum space is also

a simplified version of the Hamiltonian (3) in the main
text when only the hopping terms along x and y are
kept. In contrast to 2D Dirac cones in honeycomb lat-
tices in previous experiments [34], there are two types of
Dirac cones appearing when hz + λht = 0 on the kx = 0
line: one with four-fold degeneracies (each with Berry
phase being π or −π in the subspaces with σy = ±1
similar to the 3D case) and one with two-fold degen-
eracies (each with Berry phase being π or −π). With-
out Zeeman fields, the former can exist [as displayed
in Fig. 4(c)] only when ty > tx, which can be realized
by choosing a stronger optical lattice along the x di-
rection than that along the y direction. At the critical
point ty = tx, the spectrum becomes quadratic along y
and keeps linear along x. In the presence of hz, each
Dirac cone with four-fold degeneracies splits into two
Dirac cones with two-fold degeneracies in separated po-
sitions in momentum space as shown in Fig. 4(d). They
can exist as long as 2(tx − ty) < hz < 2(ty + tx) and
−(tx+ ty) < hz < 2(ty− tx). When hz = ±2(tx+ ty) and
hz = ±2(ty − tx), two Dirac cones with two-fold degen-
eracies merge—with spectra being quadratic along y and
linear along x—at (kx = 0, ky = 0) and (kx = 0, ky = π),
respectively. Evidently, such Dirac cones can be read-
ily created, moved, and merged by tuning the lattice

k
1
a

0 5 0 0 5

2

4

6

8

k
1
a

k
2
a

0 5 0 0 5
0 5

0

0.5

2

4

6

8
(e) (f)

FIG. 4. (Color online) Schematics of a laser configuration to
realize the 2D Hamiltonian with Dirac cones and the single-
particle spectra of such optical lattice systems. Ω1 and Ω2 are
two Raman laser beams coupling two hyperfine states | ↑〉 and
| ↓〉. ∆e is the detuning, and δ is the two-photon detuning.
Each Raman laser beam is a standing wave formed by a plane
wave laser beam reflected by a mirror as shown in (b). These
Raman laser beams also generate optical lattices via the Stark
effects. An additional laser beam (red line) with different fre-
quency from the Raman lasers (shifted by ∼100MHz using an
acoustic-optical modulator (AOM)) is also employed to create
optical lattices along x. PBS denotes polarizing beamsplitter.
Double arrow and circle dots denote the polarization direction
of laser beams. The PBS separates the Raman beam and the
optical lattice beams so that their phases can be controlled in-
dividually by different mirrors. (c)(d) Single-particle spectra
of the tight-binding Hamiltonian without and with Zeeman
fields, respectively. (e)(f) The gap distribution between par-
ticle and hole branches in momentum space. The white points
indicate the Dirac cones and the Berry phase calculated along
the red (top-left) circle [black (bottom-right) one] is π (−π).
Note in (e) the Berry phase is calculated in the subspace of
σy. Here tx = t, ty = 1.3t, tN = 0.07t, and tSO = 0.64t. The
lattice constants are ax = ay = a and the crystal momenta
are ak = π(k1 + k2)ex + π(−k1 + k2)ey.

strength and Zeeman fields. Note that in previous exper-
iments [34], the Dirac cones are formed due to the hon-
eycomb lattice structure and the spin Zeeman field only
shifts the relative energy between two Dirac cones for dif-
ferent spins, not their positions in momentum space. In
our model, the Zeeman field can split a four-fold degen-
erate Dirac cone into two located at different positions in
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momentum space.
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APPENDIX A: DERIVATION OF

TIGHT-BINDING MODEL

In this appendix, we derive the tight-binding model
from the continuous model (1) in the main text and com-
pare the single-particle spectra of the tight-binding and
continuous models for typical parameters in experiments.
In the second quantization representation, the Hamil-

tonian takes the form

HII =

∫

drψ̂†(r)Hψ̂(r), (A1)

where H is the single-particle Hamiltonian in Eq.(1) in

the main text, ψ̂(r) = ( ψ̂↑(r) ψ̂↓(r) )
T where ψ̂σ(r)

[ψ̂†
σ(r)] annihilates (creates) an atom with spin σ (σ =↑

, ↓) located at r. They satisfy the anti-commutation or

commutation relation [ψ̂σ(r), ψ̂
†
σ′ (r′)]± = δσσ′δ(r−r′) for

fermionic atoms (+) or bosonic atoms (−), respectively.
The field operator can be expanded by local Wannier
functions

ψ̂σ(r) =
∑

njσ

Wnjσ ĉn,j,σ, (A2)

where Wnjσ is the Wannier function located at the j-th
site for the n-th band for spin σ, and ĉn,j,σ annihilates
an atom at the j-th site in the n-th band with spin σ.
As we only consider the physics in the lowest band, let
us assume n = 1 and further assume that the Wannier
function W1jσ can be approximated by the lowest band
Wannier function Wj of the Hamiltonian with pure spin-
independent optical lattices. Hence

ψ̂σ(r) ≈
∑

j

Wj ĉj,σ, (A3)

where Wj = W x
jx
(rx)W

y
jy
(ry)W

z
jz
(rz) with W ν

jν
(rν) =

W ν(rν−jνaν) being the Wannier function along ν. Based
on this expansion, the tight-binding model without HSO

reads

H1 =−
∑

j

∑

σ

∑

ν

(tν ĉ
†
j,σ ĉjν+1,σ + tNν ĉ

†
j,σ ĉjν+2,σ + h.c.)

+hz
∑

j

(ĉ†j,↑ĉj,↑ − ĉ†j,↓ĉj,↓) (A4)

with the inclusion of the nearest and next nearest neigh-
bor hopping with the corresponding hopping amplitudes
being

tν = −

∫

drνWj [
p2ν
2m

− Vν cos
2(kLνrν)]Wjν+1,(A5)

tNν = −

∫

drνWj [
p2ν
2m

− Vν cos
2(kLνrν)]Wjν+2.(A6)

The tight-binding term contributed by the spin-
dependent lattices can be derived as follows

HSO = iΩSO

∫

drψ̂†
↑(r)VSOψ̂↓(r) + h.c. (A7)

≈ iΩSO

∑

j,j′

ĉ†j,↑ĉj′,↓t
jj′

SO + h.c., (A8)

where

tjj
′

SO =

∫

drWjVSOWj′ =
∏

ν=x,y,z

t
jνj

′

ν

SO , (A9)

with

t
jxj

′

x

SO = t
j′xjx
SO

=

∫

drxW
x
jx(rx) sin(kLxrx)W

x
j′x
(rx), (A10)

t
jyj

′

y

SO = t
j′yjy
SO

=

∫

dryW
y
jy
(ry) cos(kLyry)W

y
j′y
(ry), (A11)

t
jzj

′

z

SO = t
j′zjz
SO

=

∫

drzW
z
jz (rz) cos(kLzrz)W

z
j′z
(rz). (A12)

Because one of the optical wells is located at r =
(0, 0, 0), W ν

0 (rν) =W ν
0 (−rν) and

tjxjxSO = tjxjx+2

SO = t
jyjy+1

SO = tjzjz+1

SO = 0, (A13)

tjνjν+1

SO = −tjν+1jν+2

SO , (A14)

tjνjνSO = −tjν+1jν+1

SO , (A15)

where the last two relations are obtained because the
period of the spin-independent optical lattices is a half
of that of the spin-dependent ones along each direction.
Therefore, with the nearest-neighbor hopping (no next
nearest-neighbor hopping exists), the position dependent
spin-orbit coupling term of the tight-binding model reads
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FIG. A1. (Color online) Single-particle spectra obtained by the tight-binding model [dashed blue (upper) and black (lower)
lines] and the continuous model [solid red (upper) and green (lower) lines]. Each row panel from top to bottom is associated
with hz = 0, hz = 0.032ER, and hz = 0.24ER, respectively. The first and second column panels (from left to right) correspond
to (kx = 0, kzaz = π) and (kx = 0), respectively. The third and fourth column panels plot the spectra along kx around
touching points [yellow (light gray) squares] corresponding to the first and second column panels, respectively. The parameters

for the continuous model are kLx = kLy = kLz =
√

4/5kR, Vx = Vy = Vz = 3.2ER, and ΩSO = 0.8ER; the parameters
for the tight-binding model are t = ty = tz = 0.068ER and tN = −0.07t and tSO = 0.53t. The recoil energy along x is
ERx = ~

2k2

Lx/2m = 0.8ER.

HSO = iΩSO

∑

j

[

ĉ†j,↑ĉjx+1,↓t
jxjx+1

SO t
jyjy
SO tjzjzSO + ĉ†j,↑ĉjx−1,↓t

jxjx−1

SO t
jyjy
SO tjzjzSO

]

+ h.c. (A16)

= iΩSO

∑

j

[

ĉ†j,↑ĉjx+1,↓ − ĉ†j,↑ĉjx−1,↓

]

tjxjx+1

SO t
jyjy
SO tjzjzSO + h.c. (A17)

= itSO

∑

j

(−1)jx+jy+jz
[

ĉ†j,↑ĉjx+1,↓ − ĉ†j,↑ĉjx−1,↓

]

+ h.c. (A18)

where

tSO = ΩSOt
01
SOt

00
SOt

00
SO. (A19)

Therefore, we obtain the tight-binding model in Eq.(2)
in the main text (H1 = Hh +HZ).
In experiments, we consider 40K atoms and choose

∆e = 2π×1.46THz that can be realized by a red-detuned
laser beam with wavelength 773 nm [45], which gives the
recoil energy ER/~ = 2π × 8.3kHz. A simple geometry

of laser beams gives rise to kRx = kRy = kRz =
√

4/5kR.
The two pairs of Raman laser beams are independent as
|∆e − ∆′

e| ∼ 2π × (10 − 100)MHz ≫ ER. For Ω10 =
Ω′

10 = 2π × 0.14 GHz and Ω20 = Ω′
20 = 2π × 0.035 GHz,

we have ΩSO = 0.8ER, Vy = 3.2ER, and δVx = Vy/16.
For Ω3x = Ω3z = 2π × 0.21 GHz, we have V ′

x = Vz = Vy.
δ can be readily tuned from zero. With these experi-
mental parameters, the tight-binding parameters are cal-

culated from Eq. (A5), Eq. (A6), and Eq. (A19), yield-
ing t = ty = tz = 0.068ER, tNν = tN = −0.07t, and
tSO = 0.53t. We note that we choose tx = 1.17t, which
is slightly different from ty and tz given the distinct cor-
rection of Wannier functions by VSO along x. We also
note that we neglect the next next nearest-neighbor hop-

pings such as ĉ†j,↑ĉjx+1,jy+2,↓ because of their very small

effects (about 0.0034t). Although we choose the Wannier
functions for VSO = hz = 0 [so that W ν

0 (rν) =W ν
0 (−rν)]

as the basis to obtain the tight-binding model, we have
verified its reliability by comparing its single-particle
spectra with that obtained by the continuous model in
Fig. A1, which shows their good agreement with each
other. However, when ΩSO > 1.9ER (much larger than
ΩSO = 0.8ER used in the paper), the spectra obtained
by the continuous model fail to show the nodal rings,
suggesting that the tight-binding model cannot faithfully
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characterize the original continuous model.

APPENDIX B: WINDING NUMBER

CHARACTERIZING DIRAC AND WEYL RINGS

IN SUPERFLUIDS

In this section, we define the winding number for su-
perfluids. Both SF1 and SF2 phases have the chiral sym-
metry (i.e., C−1HBdGC = −HBdG with C = σxsy), and
we can define a winding number nw along any 1D closed
path enclosing a Weyl ring [56] belonging to the AIII
class [57],

nw =
1

2πi

∫ θ=π

θ=−π

dθ
d

dθ
log detA(θ), (A20)

where A(θ) = H0+ i∆Aσy for the SF1 phase and A(θ) =
H0 − i∆Aτyσy for the SF2 phase, with H0 = −(htτx +
µ̃) + dxτzσx + hzσz and kν = kν(θ) referring to a 1D
closed path. We find nw = ±1 for Weyl rings and the
associated Berry phase is ±π. In the SF1 phase, when
hz = 0, there exist Dirac rings and the classification is
Z×Z, which can be characterized by the winding number
in the two subspaces with different eigenvalues σy = ±1.
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