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This paper investigates the fast Hamiltonian control of n = 2 density operators by continuously
varying the flag (i.e. the eigenspaces) as one moves away from the completely mixed state. In
general, the critical points and zeros of the purity derivative can only be solved analytically in the
limit of minimal purity. We derive differential equations that maintain these features as the purity
increases. In particular, there is a thread of points in the Bloch ball that locally maximizes the
purity derivative, and a corresponding thread that minimizes it. Additionally, we show there is
a closed surface of points inside of which the purity derivative is positive, and inside of which is
negative. We argue that this approach may be useful in studying higher-dimensional systems.
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I. INTRODUCTION

In the last three decades, there has been great inter-
est in controlling quantum systems for the purposes of
coherent control of chemical reactions [1][2], NMR [3],
and quantum computation [4][5]. One of the key chal-
lenges of quantum control is counter-acting the influence
of the environment, which causes decoherence (loss of co-
herence between quantum states) and dissipation (loss of
energy) (see [6], [7], [8] and [9] for surveys). If one models
an open system as Markovian and time-independent, the
dynamics are described by a quantum dynamical semi-
group and the Lindblad master equation [10][11][12].
While there is research towards engineering open sys-
tem dynamics[13][14][15], control functions often appear
in the system Hamiltonian, which are only capable of
steering within a given unitary orbit [16][17][18]. The
motion between orbits depends on the Lindblad super-
operator. This includes, in particular, variation in the
purity Tr(ρ2), which is constant on any given orbit. This
incentivizes unitary control that is fast relative to the
time-scale of the Lindblad dynamics[19].
One method of representing open systems is the gen-

eralized Bloch representation [18][20], which yields an
affine differential equation on the vector space of den-
sity operators. In this paper we use a different approach
in which the structure of the space of density operators
is decomposed into the space of unitary orbits, and the
orbit manifolds themselves, which are complex flag man-
ifolds [21][22]. If one has sufficiently fast and complete
Hamiltonian control for an n = 2 system, the inter- and
intra-orbit dynamics can be turned into a control equa-
tion, where the position along the orbit is considered a
control variable, and the orbit itself is treated as a state
variable [23][24]. Mathematically, the position along the
orbit is a flag: a nesting of subspaces, which in this case
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are built out of the eigenspaces of the density opera-
tor. Our approach is based on continuously adjusting
the eigenvectors, and thus we refer to our viewpoint as
flag-based control. In a follow-up paper [26], we exam-
ine flag-based control for arbitrary n > 2 and how to
approach the control of ρ by manipulating its flag.

The difficulty in this approach is that the orbit is a
non-linear manifold, and applying standard control the-
ory to obtain explicit trajectories is non-trivial. Control-
lability for n = 2 can be treated analytically, but not
in a way that will scale practically to higher dimensions.
At the completely mixed state however, the structure
of the Lindblad term simplifies significantly regardless
of dimension. This paper considers an approach that
begins at the completely mixed state, and introduces a
continuously varying adjustment in the flag, which main-
tains critical points and zeros of the purity derivative as
the purity increases. In this way, one can plot a thread
through ρ-space, the so-called Bloch ball, that maximizes
(at least locally) the time-derivative of Tr(ρ2). There is a
corresponding thread that minimizes the time-derivative
(better said, maximizes it in the negative direction). Ad-
ditionally, a different adjustment can be derived that
maintains a surface that separates the Bloch ball into
purity-increasing and purity-decreasing regions. The pu-
rity derivative on this surface vanishes.

We have not made any assumptions on the structure
of the Lindblad super-operator. Dissipation of a two-
level quantum system is often modelled with the phase-
damping or amplitude-damping channels [25], which use
simple Lindblad operators. In principle, there is no
physical reason that more complicated channels could
exist. Lindblad operators are obtained by tracing out
the interaction of the system with the environment [12],
and given the complexity of the environment, many dif-
ferent types of interactions may exist in nature. We
have used a framework that describes generalized damp-
ing, where the Lindblad dissipation can be described
by three phase-damping channels and a damping-bias
vector. This framework incorporates the single phase-
damping and amplitude-daming channels as particular
cases.
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In section II of this paper, we decompose the Lind-
blad master equation into its inter- and intra-orbit com-
ponents, and interpret the resulting ODE as a control
equation. In section III, we derive an adjustment equa-
tion that maintains critical points as purity varies. We
consider the special cases where the adjustment equation
fails. In section IV, we derive the adjustment that main-
tains zeros. In section V we show several examples that
illustrate the effect of the Lindblad super-operator on the
Bloch ball.

II. PRELIMINARIES

An open quantum system is described by a density
operator ρ, which is a trace-one positive semi-definite
operator on the Hilbert space H. If the dissipation is
Markovian and time-independent, the density operator
obeys the Lindblad equation [10]:

d

dt
ρ(t) = [−iH(t), ρ(t)] + LD(ρ(t)) (1)

LD(ρ) :=

N
∑

m=1

LmρL
†
m − 1

2
{L†

mLm, ρ}, (2)

where the braces indicate an anti-commutator, H(t) is
the (Hermitian) Hamiltonian, and {Lm} are the so-called
Lindblad operators.
For n = 2, the density operator can be identified with

the Bloch vector ~n ∈ R3, |~n| ≤ 1. The identification is:

ρ =
1

2



I2 +
∑

j=x,y,z

njσj



 , (3)

where {σj} are the Pauli matrices. The Lindblad equa-
tion translates to the following ODE (see Appendix A for
a derivation):

d~n

dt
= ~b+ ~h× ~n+ (A− tr(A))~n. (4)

Here we write ~h and ~lm to represent the traceless parts
of the operators H and Lm, expressed in the basis of
the Pauli matrices, so that H = h0I +

∑3
j=1 hjσj . The

system parameters are defined:

A :=
1

2

∑

m

~lm~̄l
T
m + ~̄lm~l

T
m (5)

~b := i
∑

m

~lm × ~̄lm, (6)

where the bar represents complex conjugate and T matrix
transpose. A is a positive semi-definite matrix, so its
eigenvalues aj must be non-negative. Additionally, the

vector ~b obeys the inequality (see Appendix B):

~bTA~b ≤ 4 det(A). (7)

The objects A and ~b can be interpreted as damping
parameters (see appendix C). Since A is symmetric, it has
a natural coordinate frame, and the system is damped
parallel to these coordinate axes. The eigenvalues of A

specify damping rates r1 = a2 + a3 etc. If ~b is zero, the
system relaxes to ~n = 0; otherwise we say the damping

is biased, and it relaxes to a point with coordinates
bj
rj

in

the coordinate system of A. We refer to~b as the damping-
bias vector.

We would like to decompose the ODE into its radial
and transverse components. Each concentric sphere in
the Bloch ball corresponds to a particular unitary orbit of
density matrices (including the center). The eigenvalues
λ1 ≥ λ2 of ρ can be calculated from the radius r := |~n|
of each sphere: λ1,2 := tr(ρ)

2 ±
√

tr(ρ)2

4 − det(ρ) = 1±r
2 ,

and therefore r = λ1 − λ2. Since each unitary orbit is
uniquely described by an eigenvalue spectrum of ρ, there
is a one-to-one correspondence between the unitary orbits
and the radial component r ∈ [0, 1].

The transverse component, on the other hand, exists
either on a concentric sphere if r > 0, or a singleton-set
if r = 0. In fact, each orbit is a (complex) flag manifold
[22]. A flag is a nesting of subspaces ∅ ⊂ V1 ⊂ V1 ⊕V2 ⊂
· · · ⊂ V1 ⊕ V2 ⊕ · · · ⊕ Vn. In our case, these subspaces
are the eigenspaces of ρ. When r = 0, the nesting is
trivial: ∅ ⊂ H. When r > 0, we set V1 and V2 to be the
eigenspaces corresponding to λ1 and λ2, and therefore
each flag is ∅ ⊂ V1 ⊂ H. Choosing a flag is tantamount
to choosing the leading eigenvector of ρ. In the Bloch
ball picture, this flag can be described by a unit vector
n̂, where ~n = rn̂. For the rest of the paper, we will use the
term flag interchangeably with n̂ when r > 0. Because
our approach is based on manipulating n̂, we call it flag-
based control. In using the word “flag” as opposed to
“unit vector”, we both include the r = 0 case, as well
as prepare for generalizing to higher dimensions where
the Bloch ball picture cannot be used. The authors are
preparing a paper thats considers systems of arbitrary
finite dimension [26].

To decouple the ODE, we use the product rule: d~n
dt

=
dr
dt
n̂ + r dn̂

dt
, which yields dr

dt
= n̂ · d~n

dt
, as well as dn̂

dt
=

− 1
r
n̂× (n̂× d~n

dt
). Then we have:

dr

dt
= ~b · n̂+ r (n̂ ·An̂− tr(A)) =: f(n̂, r) (8)

dn̂

dt
= −1

r
~b⊥ + ~h× n̂− (An̂)⊥, (9)

where the ⊥ subscript indicates the component perpen-
dicular to n̂.

The behavior at r = 0 demands attention. Clearly, dn̂
dt

can be quite large for small r, but for trajectories that
pass through ~n = 0, it is well behaved. At this point,
d~n
dt

= ~b, which means that shortly before or after, we have

~n = ~b δt. It follows that r = |~b δt| and n̂ = sgn(δt)b̂. The
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ODE’s then give:

dr

dt
= sgn(δt)|~b|+O(δt) (10)

dn̂

dt
= sgn(δt)

(

~h× b̂− (Ab̂)⊥
)

, (11)

which are clearly bounded.

III. MAXIMIZING AND MINIMIZING

THREADS

In a control-theoretic context, we are typically able to
choose the HamiltonianH(t) to some degree. The Hamil-
tonian appears only in the transverse equation (9), while
the radial component (8) has no explicit Hamiltonian de-
pendence. We are interested in the question of how to
steer the transverse component in order to influence the
radial. We will presume that we have fast and complete
controllability, i.e., in the absence of Lindblad dissipa-
tion, we are able to steer between any two points on an
orbit in arbitrarily short time (or at least in a time-scale
much shorter than that associated with the Lindblad op-
erators). This means we can consider n̂ to be an effective
control variable: we can search for desirable n̂(t) and
then re-construct H(t) afterwards.
Given this context, we are interested in optimizing the

function fr(n̂) := f(n̂, r) for a given r. That is, we would
like to find the point on an orbit that optimizes the inter-
orbit speed. This can be done using the method of La-
grange multipliers for |n̂| = 1 [27][23], which gives, for
the multiplier ν, the conditions

~b+ 2rAn̂ = 2νn̂, (12)

and

|n̂| = 1. (13)

This leads in the general case to the degree-six polyno-
mial in ν:

3
∑

j=1

b2j(ν − ra[j+1])
2(ν − ra[j+2])

2 −
3
∏

j=1

(ν − raj)
2 = 0,

(14)

where the square brackets indicate modular addition, so
that the indices cycle through 1, 2 and 3.
This approach will not scale up nicely to higher dimen-

sions, since it will involve solving systems of high-degree
polynomials. Instead we try a different tack with bet-

ter scalability. It is easy to analyze f0(n̂) = ~b · n̂. It

is clear that f0 is maximized at n̂+ := b̂, minimized at

n̂− := −b̂ and zero for any vector perpendicular to ~b.
Now if we continuously increase r from zero, we inves-
tigate whether there are differentiable functions n̂±(r),
with adjustment ~m±(r) := d

dr
n̂±(r) such that n̂±(r)

are local optima for the functions fr(n̂) for every r. If

such functions exist, we call the corresponding differen-
tiable curves ~n±(r) := rn̂±(r) maximizing and minimiz-
ing threads.
We know that n̂ lives on the sphere S2, and a tangent

space to S2 can be identified with the two-dimensional
vector space of vectors perpendicular to n̂. The derivative
of fr at a point n̂ with respect to a variation ~ǫ can be
written as

dfr(n̂) · ~ǫ = ~bT~ǫ+ 2rn̂TA~ǫ (15)

= (~b+ 2rAn̂)T~ǫ. (16)

Note that df0(±b̂) · ~ǫ = ~bT~ǫ = 0, since n̂ and ~ǫ must be

orthogonal. It follows that n̂ = ±b̂ are critical points of
f0, and in fact they are the only two critical points.
Our objective is to vary n̂ with r so that it remains a

critical point of fr. To this end, we differentiate the equa-
tion dfr(n̂) ·~ǫ = 0 with respect to r. We must be careful
however since the tangent spaces at each n̂ are different.
We must also vary ~ǫ so that it remains perpendicular to
n̂. Let ~m := dn̂

dr
and ~µ := d~ǫ

dr
. Since n̂(r)·~ǫ(r) = 0, ~µ must

always satisfy n̂ · ~µ = −~m ·~ǫ (from the product rule). We
now have:

d

dr
(dfr(n̂) · ~ǫ) =

∂

∂r
(dfr(n̂) · ~ǫ) + (2rA~m)T~ǫ

+ (~b + 2rAn̂)T ~µ (17)

= (2An̂+ 2rA~m)T~ǫ+ (~b+ 2rAn̂)T ~µ.
(18)

If n̂ is a critical point of fr, the vector ~b+2rAn̂ is parallel
to n̂. Let the norm of this vector be C. We now have:

d

dr
(dfr(n̂) · ~ǫ) = (2An̂+ 2rA~m)T~ǫ+ Cn̂T ~µ (19)

= (2An̂+ 2rA~m)T~ǫ− C ~mT~ǫ (20)

= (2An̂+ Λ~m)T~ǫ, (21)

where Λ := 2rA−C. If we want this expression to vanish
for arbitrary ~ǫ perpendicular to n̂, we need to have, for
some real k:

2An̂+ Λ~m = kn̂ (22)

~m = Λ−1(k − 2A)n̂, (23)

where k can be found by projecting both sides on to n̂:

k = 2
n̂TΛ−1An̂

n̂TΛ−1n̂
. (24)

We can now state the following proposition:

Proposition III.1. Consider a point (r0, n̂0) ∈ [0, 1] ×
S2 that is critical, in the sense that dfr0(n̂0) · ~ǫ vanishes
for any ~ǫ perpendicular to n̂0. Define:

k(r, n̂) := 2
n̂TΛ(r, n̂)−1An̂

n̂TΛ(r, n̂)−1n̂
(25)

Λ(r, n̂) := 2rA− C(r, n̂) (26)

C(r, n̂) := n̂T (~b + 2rAn̂). (27)
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If there is an open set Ω ⊆ [0, 1] × S2 containing
(r0, n̂0), over which (1) Λ(r, n̂) is invertible, and (2)
n̂TΛ(r, n̂)−1n̂ 6= 0, then the ODE

dn̂

dr
= Λ(r, n̂)−1(k(r, n̂)− 2A)n̂, (28)

has a unique solution n̂(r) on some interval [r0, rf ), and
every point on this solution satisfies dfr(n̂(r)) · ~ǫ = 0, ∀ǫ
perpendicular to n̂(r).
If the conditions on Λ(r, n̂) hold for all points on [0, 1]×

S2, there exist two threads, n̂±(r), that satisfy the ODE

and have initial conditions (r0, n̂0±) = (0,±b̂).
Proof. The local existence and uniqueness result is an
application of standard theory of ODE’s on manifolds
[28]. Local existence requires differentiability of the RHS,
which clearly holds given the two conditions. The vanish-
ing of the derivative has alreadly been shown. The global
existence result holds because [0, 1]× S2 is compact.

Both of the conditions on Λ(r, n̂) sometimes fail, which
we shall discuss in section V. The first is always tractable,
while analysis of the second requires the solution of a
polynomial. Apart from these special cases however, we

now have two functions n̂±(r) with n̂±(0) = ±b̂ and
d
dr
n̂± = ~m(n̂±) that optimize (at least locally) fr(n̂) for

each r.

IV. TRAJECTORY PLANNING

We now have an adjustment ~m = dn̂
dr

that ensures a tra-
jectory remains on a critical point as it moves inward to
or outward from the completely mixed orbit. Our control
variable however is the Hamiltonian, so to plan a trajec-
tory (for example, to move from the completely mixed
state r = 0 outwards), we must know how to recover an
appropriate Hamiltonian from a given adjustment.

We know previously that dn̂
dt

= − 1
r
~b⊥+~h× n̂− (An̂)⊥.

We also know dn̂
dr

= ~m. If we write dn̂
dt
f(r, n̂) = dn̂

dt
, we

get

~m(r, n̂)f(r, n̂) = ~h× n̂− 1

r
~b⊥ − (An̂)⊥ (29)

~h = n̂×
(

~m(r, n̂)f(r, n̂) +
1

r
~b⊥ + (An̂)⊥

)

.

(30)

Note that the term 1
r
~b⊥ is well-behaved since ~b × n̂ is

zero at r = 0 and O(r) in the vicinity. Also note that

an arbitrary component parallel to n̂ can be added to ~h.
In short, to attain a desired trajectory n̂(r) using its as-
sociated adjustment ~m(r, n̂), one should apply a radially
varying Hamiltonian in the form

~h(r) = c(r)n̂(r) + n̂(r) ×
(

~m(r, n̂(r)) +
1

r
~b +An̂(r)

)

,

(31)

where c(r) is arbitrary.
One might think the piece including ~m may blow up if

Λ becomes non-invertible, but we will see that this is not
the case. There are cases where ~m does blow up, but this
does not occur on the main threads n̂±(r) that arise at
r = 0. Instead, this occurs when alternate threads arise
at some r > 0. We discuss these possibilities in the next
section.

V. SPECIAL CASES

We now consider the instances in which the adjust-
ment may not be well-defined, either due to (1) Λ losing
invertibility, or (2) the denominator in the definition of k
vanishing. The matrix Λ loses invertibility if and only if
the constant C equals one of the eigenvalues aj of 2rA.
But at any critical point, we have:

~b+ 2rAn̂ = Cn̂ (32)

~b = −Λn̂. (33)

In other words, degeneracy of Λ implies that ~b must be
in the image of Λ, which does not have full dimension.
We separate the cases based on the multiplicity of the
eigenvalue of 2rA in question.

(1a) C is a triple eigenvalue of 2rA.
This case is largely trivial. If A is a multiple of the iden-
tity aI2, where a is the only eigenvalue of A, and C = 2ra,

then Λ = 0, and therefore ~b = 0. We have then:

fr(n̂) = −2ar (34)

dfr(n̂) · ~ǫ = 2ran̂T~ǫ = 0. (35)

Therefore all possible n̂ are critical points of fr due to
the rotational symmetry. No optimization is needed
since fr is a constant function.

(1b) C is a double eigenvalue of 2rA.
In this case, we find a plane of critical points that in-
tersect one of the main threads n̂±(r). Additionally,
this case covers the well-studied phase- and amplitude-
damping channels.
Let {ej}, j = 1, 2, 3, be an eigenbasis of A, where the

eigenvalues a1 and a2 are equal, and a3 6= a1. It follows

that for C = 2ra1, we need b̂ = e3. We know critical

points satisfy ~b+ 2rAn̂ = Cn̂, which gives:

2ra1n̂j = Cn̂j , j = 1, 2 (36)

b3 + 2ra3n̂3 = Cn̂3. (37)

There are two solutions. If n̂1 = n̂2 = 0, then n̂3 = ±1.
This solution corresponds to the main threads n̂±(r) =
±sgn(b3). In this case, no adjustment is needed, since
eq. (22) is satisfied for ~m = 0. As it happens, C =
±b3+2ra3, which means that Λ± = ∓b3I +2r(a1 − a3) ·
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diag(1, 1, 0). Invertibility is lost at r = |b3|
2|a1−a3| , but yet

the adjustment solution ~m = 0 is still valid there.
An alternate solution exists. If C = 2a1r, then n̂1

and n̂2 are free. In this case, n3 = rn̂3 = b3
2(a1−a3)

.

So there is a plane of critical points, that happens to
orthogonally intersect one of the main threads at exactly
the point where the corresponding Λ loses invertibility.
On this critical plane, Λ is everywhere non-invertible: it
is equal to diag(0, 0, 2r(a3 − a1)). Yet any ~m with m3 =

b3
2r2(a3−a1)

satisfies eq. (22). This solution allows a valid

~m, unless n̂ approaches the intersection point with the
main thread. Since ~m and n̂must be perpendicular, some
combination of the components m1 and m2 must grow
unbounded, and at the intersection point itself, there is
no solution since perpendicularity forces m3 = 0. This
also implies that one cannot switch from the main thread
to the alternate plane.
We can apply this to a combination of phase-

and amplitude-damping channels [25]. A phase-
damping channel uses a Lindblad operator in the form
Lz :=

√
γzσz , while the amplitude-damping channel uses

Lindblad operators in the form L± :=
√
γ±σ±, where

σ± =
σx∓iσy

2 . In this case, we get the following parame-

ters: a1 = γz, a2 = a3 = γ++γ−

4 and ~b = 〈γ+−γ−

2 , 0, 0〉.
Since b2 = b3 = 0 and a2 = a3, we have a plane of
critical points at e1 · ~n = γ+−γ−

4γz−γ+−γ−
.

(1c) C is a single eigenvalue of 2rA.
This case is similar to the preceding, except the plane
of critical points is now a line of critical points. Let
C = 2ra1 and a1 6= a2, a3, we still have b1 = 0. We get:

2a1rn̂1 = Cn̂1 (38)

bj + 2ajrn̂j = Cn̂j , j = 2, 3 (39)

As before, choosing n̂1 = 0 allows us to recover the main
threads n̂±(r). C will equal the offending value 2ra1

at r =
√

b2
2

4(a1−a2)2
+

b2
3

4(a1−a3)2
. The fact that Λ loses

invertibility here does not affect the adjustment, because
the direction of degeneracy happens to be orthogonal to
n̂: that is, Λ is degenerate in the e1-direction. Therefore
the adjustment can still be found.
An alternate thread can be found by setting C = 2ra1

and letting n̂1 run free. In this case, we find that nj =

rn̂j =
bj

2(a1−aj)
, so this thread is orthogonal to the n̂1 =

0 plane. While Λ is non-invertible on this thread, we
can find a solution to eq. (22): m1 can be free, while
m2 = −n2 and m3 = −n3. To satisfy perpendicularity,

however, we require m1 =
n2
2+n2

3

n1
. This clearly blows up

as the thread crosses the n1 = 0 plane.
Note the alternate thread may or may not intersect

the main threads, but from our simulations, we ob-
serve that intersections only seem to occur when a2 = a3.

(2) k is not well-defined.
The above cases are simpler than a generic system, since

a component of ~b vanishes in the natural co-ordinates of
A, which reduces the degree of equation (14) from six
to four (or two). However, it may still happen that Λ
is invertible, yet n̂TΛ−1n̂ = 0. In this case, the algebra
required to find such a location still leads to a degree-six
polynomial. We essentially have five unknowns: r, C and
the three components of n̂. These obey five equations:

bj + 2raj n̂j = Cn̂j (40)

|n̂| = 1 (41)

∑

j

n̂2
j

2raj − C
= 0, (42)

where the final equation is the failure of condition (2).
We can eliminate the variable r and the second equation
by working with the components of ~n instead of n̂. Fur-

thermore, working with µ = C
2r yields nj =

bj
2(aj−µ) . Sub-

stitution into the third equation gives
∑

j

b2j
8(aj−µ)3 = 0.

This yield the sixth-degree polynomial equation:

b21(a2 − µ)3(a3 − µ)3 + b22(a3 − µ)3(a1 − µ)3

+b23(a1 − µ)3(a2 − µ)3 = 0. (43)

One can find solutions numerically for µ and the corre-
sponding ~n follows easily. Such a solution corresponds to
an alternate thread of critical points: when such a thread
becomes tangent to a concentric sphere in the Bloch ball,
the adjustment ~m becomes infinite, which is why the ad-
justment expression fails. It is possible to plot such an
alternate thread by locating an initial point away from
where the adjustment fails, and then using the adjust-
ment in either direction. To locate such a point, one
needs to solve the degree-six polynomial (14). We will
not do this in our examples, as it contradicts the spirit
of this paper. In higher dimensions, the algebra would
not be tractable, therefore we must make peace with the
fact that the adjustment works only to find critical points
locally.

VI. SEPARATION OF THE BLOCH BALL

Besides finding the optimal points of fr, it is also an
interesting question to locate the zeros of fr. It turns

out that for ~b 6= 0, there is a “chimney” region in the
Bloch ball, inside of which the purity “rises”. That is,
f(n̂, r) > 0, and outside of which f(n̂, r) < 0. If we want
r to increase, we must steer inside of this region. We
can locate the “wall” of this chimney by using another
adjustment expression. We know that at r = 0, we have

f0(n̂) = 0 for n̂ · ~b = 0, which has a S1-homeomorphic
set of solutions, say ĉθ, with θ ∈ [0, 2π) being an angle
parameter. We want to take such a solution, use it as
an inital condition, and find an adjustment to ensure
fr(n̂) = 0 as r increases. To do this, we differentiate fr
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with respect to r, with ~m = dn̂
dr
:

d

dr
(fr(n̂)) =

∂

∂r
fr(n̂) +∇n̂fr(n̂) · ~m (44)

= n̂TAn̂− tr(A) + (~b+ 2rAn̂)T ~m (45)

(~b + 2rAn̂)T ~m = tr(A)− n̂TAn̂. (46)

To satisfy this equation, as well as ~m · n̂ = 0, define

~v = ~b+ 2rAn̂. A possible solution is:

~m =
tr(A) − n̂TAn̂

|~v|2 − (n̂ · ~v)2 (~v − (n̂ · ~v)n̂) . (47)

This solution is not unique: for a given r, there is a con-
tinuum of zeros of fr, at least until the chimney termi-
nates. If we kept r fixed, and moved along this continuum
with n̂ = n̂(t), an adjustment dn̂

dt
∝ n̂ × ~v would ensure

fr(n̂(t)) = 0. For our adjustment, we will thus keep the
component parallel to n̂×~v zero, so that we capture only
the necessary motion of n̂.
Of course, the adjustment will terminate for some

r ≤ 1, since fr cannot be positive at that radius. The
terminating condition is n̂ · ~v = |~v|, which matches the
critical point condition. At such a point, the adjustment
becomes infinite. Thus the point on the chimney furthest
from the origin (which we call the apogee) is a critical
point, either on the maximizing thread n̂±, or possibly
on one of the alternate threads. In the following section,
we will show examples of both possibilities.
Finally, it should be noted that the chimney does have

an analytic solution. If one uses rfr(n̂) = 0 and substi-
tutes r2 = ~n2, we obtain an elllipsoid in the co-ordinates
of ~n:

∑

j

ãj

(

nj −
bj
2ãj

)2

=
∑

j

b2j
4ãj

, (48)

where ã1 := a2 + a3 and so forth. In general however,
the ellipsoid center and axes are not aligned with the
axes of A, other than intersecting the center of the Bloch
ball. So the intersection of the ellipsoid with concentric
spheres, which is what we are interested in, will not have
a clean analytic expression. In fact the intersection may
not even be connected: this is what happens when there
is more than one apogee.

VII. EXAMPLES

The adjustment (23) and (47) can be used to form

ODE’s d
dr
n̂ = ~m(r, n̂) with initial conditions n̂±(0) = ±b̂

or n̂θ(0) = ĉθ that can be solved numerically. The chim-
ney can be plotted by discretizing the circle of initial
points and calculating threads on the chimney. We have
implemented this using a Runge-Kutta method for Lie
groups [29] which ensures n̂ remains normalized. The re-
sults are consistent with the preceding analysis. Fig. 1
shows a typical example. The interval r ∈ [0, 1] has been

FIG. 1. Optimizing threads and chimney for A =
diag(100, 57, 39) and b = 〈29, 67, 61〉. Inside the chimney, the
dynamics drives the Bloch vector outwards, whereas Bloch
vectors outside have negative radial velocity. The thread rep-
resents points that have optimal radial velocity. The piece
from the center to the lower left has minimal velocity, while
the piece in the upper right has maximal velocity.

discretized into intervals of length 1
1000 . The maximizing

thread curls towards the upper right, and the minimiz-
ing thread to the lower left. We have estimated the error

by calculating the component of ~b+ 2rAn̂ perpendicular
to n̂, and we can report that this error does not exceed
3 × 10−10 for either thread in this example. Typically a
discretization of δr = 1

1000 is sufficient to achieve preci-
sion of such order.
The chimney is also plotted by discretizing the circle of

initial points into thirty-six. It is important to note that
the algorithm is not capable of finding the apogee of the
chimney, since the ODE blows up there. One must stop
the algorithm when the error exceeds a certain thresh-
old. For the chimney we estimate the error by calculating
fr(n̂θ(r), r), and we can report for this example the error
does not exceed 2.5 × 10−6. The threshold we used was
1 × 10−3. For this example, the chimney threads finish
near the maximizing thread, so we can infer that their
termination point lies on this thread. The termination
point can be calculated by finding the zero of f(n̂+(r), r).
There are no alternate threads for this example.
In fig. 2, we have an example with an alternate thread.

Since b1 = 0 and a2 = a3, we know there will be a line
of critical points that intersects the maximizing thread.
The alternate thread of critical points is horizontal in the
plot, with thinner line-width. When we plot the chim-
ney we can see that all but two of the thirty-six chimney
threads terminate on the alternate thread, rather than
the maximizing thread. Below the Bloch ball we also plot
f(n̂±(r), r) with thick line-width and f(n̂a(r), r) with
thin line-width, where n̂a is the alternate thread. We
can see that the maximizing thread only gives a local
maximum for radii at which the alternate thread exists,
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FIG. 2. (Top) The main threads are represented by the thick
line, while the transverse line represents an alternate thread.
A = diag(100, 10, 10) and b = 〈0, 32,−26〉. (Bottom) f(n̂±, r)
and f(n̂a, r) for the same system. Thick lines represent radial
velocity of the main threads, while the thinner line represents
the radial velocity of the alternate thread. Clearly, the alter-
nate thread is the global maximum on its domain.

and the alternate thread provides the global maximum.

In fig. 3, we have another example with an alternate
thread. This time b2 = 0 and a1 6= a3, and and we see
the line of critical points does not intersect the optimiz-
ing threads. When we plot f(n̂±(r), r) and f(n̂a(r), r),
we can see the alternate thread does not provide a global
optimum, and the optimizing threads provide global op-
tima for all r.

In fig. 4, we have an example where bj 6= 0, and
yet there is still an (unshown) alternate thread. While
nineteen of the thirty-six chimney threads terminate on
the maximizing thread, the remaining seventeen clearly
terminate elsewhere, and so the chimney has a second
apogee. In fact, there is an alternate thread that begins
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FIG. 3. (Top) The main threads that pass through the chim-
ney are shown in bold, while an alternate thread also exists.
There is no intersection, as a2 6= a3. A = diag(100, 50, 10)
and b = 〈23, 0,−14〉. (Bottom) f(n̂±, r) and f(n̂a, r) for the
same system. The thinner line represents the radial velocity
of the alternate thread. Clearly the alternate thread is not a
global optimum.

inside the chimney and exits at this hole (there is another
exit point that does not serve as a termination point, be-
cause it is a saddle point). In keeping with the spirit of
this paper, we have not attempted to plot this alternate
thread or determine whether it provides a global opti-
mum. We can report that the termination point on the
maximizing thread is at a larger radius (r ∼= 0.748) than
the alternate termination point (r ∼= 0.649).

We have however decided to estimate how often a sys-
tem has an alternate thread. We have simulated 100,000
random systems in the following way: the largest eigen-
value of A was fixed to be a1 = 100. The remaining two
were chosen to be uniform on the interval [0, 100]. To ran-

domize~b we know that, due to the positive-definiteness of
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FIG. 4. A system with main threads, and and unshown al-
ternate thread. The main threads optimize radial velocity lo-
cally. However, the fact that chimney lines approach a point
that is clearly not on the main threads indicates there is an
alternate thread that also locally maximizes radial velocity.
A = diag(100, 16, 11) and b = 〈−3,−8, 68〉.

the GKS matrix [11], it obeys the inequality (B3). Thus

the vector ~b∗ = 〈 b1
2
√
a2a3

, b2
2
√
a1a3

, b3
2
√
a1a2

〉 must lie in a

ball of radius one. We impose a uniform distribution on

this ball, choose a ~b∗ and calculate ~b. With this random-
ization, we conducted 100,000 simulations that yielded
59,830 systems without an alternate thread, 30,811 with
one alternate thread and 9,359 with two.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated that it is possible to derive an
adjustment equation that maintains critical points and
zeros as one transitions between quantum orbits. The
behavior at the completely mixed state is easy to ana-
lyze: both the critical points and the zeros of the func-
tion f(r, n̂) = dr

dt
are trivial to compute at that orbit.

As one increases r, these zeros and critical points can
be preserved. The critical points form two threads: one
of which maximizes dr

dt
locally, the other minimizes. If

one has fast controllability and one wants to optimize
the speed at which the state moves between orbits, the
system can be steered to either of these threads, depend-
ing on the desired direction. The adjustment expression
also yields an expression for a Hamiltonian that keeps
the system on the thread.
It is important to note that this mechanism only en-

sures that the optima are local. There are systems where
other optima emerge as one moves away from the com-
pletely mixed state. Sometimes such an alternate opti-
mum is also the global optimum, sometimes not.
We have used a general framework that includes all

possible Lindblad processes. This framework describes

Lindblad dissipation in terms of three phase-damping
processes and a damping-bias vector. Our approach is

useful for biased damping: if ~b = 0 and all damping rates
are non-zero, the system relaxes inextricably to the com-
pletely mixed state. In the presence of biased damping
however, the Hamiltonian can be used to guide the sys-
tem to its optimal relaxation point, at the apogee of the
chimney.
A paper by us considering flag-based control in arbi-

trary finite dimensions is in press [26]. In this paper, we
formally consider the decomposition of ρ into its flag and
eigenvalue spectrum for 2 ≤ n < ∞. The intention of
the follow-up paper is only a first attempt at flag-based
control, and as such, more work has gone into treating
the decomposition of ρ, rather than obtaining sophisti-
cated control results. In particular, the control results
obtained therein are for a discrete control set of flags.
This is in contrast to this paper, where we specifically
examine continuous adjustment of the flag.
Nevertheless, we believe that the continuous adjust-

ment process treated in this paper can be generalized to
higher dimensions. Because the Lindblad term LD(ρ)
in dimension n reduces to 1

n

∑

m[Lm, L
†
m] at the com-

pletely mixed state, it can be treated analytically there,
using the Schur-Horn theorem [30][31]. Hopefully, one
can study the critical points and zeros of LD away from
the complete mixed state by using an adjustment simil-
iar to the method used in this paper. Instead of n̂, one
considers the flag formed by the eigenspaces of ρ. Such
a flag can be made to vary continuously by applying a
skew-Hermitian operator: its tangent space is a subspace
of the Lie algebra su(n). It is reasonable to assume that
one can achieve an adjustment expression on the tangent
space that preserves critical points and zeros.

Appendix A: Derivation of the Bloch vector ODE

A quantum density operator ρ is a trace-one, positive
semi-definite operator. On an n = 2 Hilbert space, we
can write:

ρ =
1

2



I2 +
∑

j=x,y,z

njσj



 , (A1)

where σj are the Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

,

(A2)

which obey the following relations:

[σj , σk] = 2iǫjklσl (A3)

{σj , σk} = 2δjkI2. (A4)

It can be checked that the purity Tr(ρ2) is equal to the
magnitude of the Bloch vector r := |~n|. It can also be
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shown that the eigenvalues of ρ are λ± := 1±r
2 . Each

unitary orbit {UρU † : U ∈ U(2)} corresponds to one
value of r ∈ [0, 1].
If for r 6= 0, we write n̂ := ~n/r, the eigenvectors of

ρ are |ψ±〉 := n̂z±1
2 |0〉 + n̂x+in̂y

2 |1〉. It follows that the
set {|ψ+〉} can be identified with the set {n̂}, which of
course is S2.
Using the above identification, we can transform the

Lindblad equation to an ODE on R
3. If we set H =

h0I2 +
1
2

∑

j hjσj , the Hamiltonian piece becomes:

[−iH, ρ] = 1

4

∑

j,k

hjnk[−iσj , σk] =
1

2

∑

j,k

hjnkǫjklσl

(A5)

=
1

2

∑

l

(

~h× ~n
)

l
σl. (A6)

We can assume the Lindblad operators are traceless, as
any traced part can be absorbed into the Hamiltonian
[12]. In this case, we can write Lm =

∑

j=x,y,z lj,mσj ,
where lj,m ∈ C. We have:

LD(
I2
2
) =

1

2

∑

j,k,m

lj,ml̄k,m[σj , σk] =
∑

j,k,m

lj,m l̄k,miǫjklσl

(A7)

=
∑

l

blσl, (A8)

where

~b = i
∑

m

~lm × ~̄lm. (A9)

If all Lindblad operators are Hermitian, ~b vanishes. This
is known as the unital case.
We also have:

LD(
∑

l

nlσl
2

) =
∑

j,k,l,m

lj,m l̄k,m
nl

4
(2σjσlσk

−σkσjσl − σlσkσj) (A10)

=
1

4

∑

j,k,l,m

lj,m l̄k,mnl (δjlσk + δklσj − 2δjkσl)

(A11)

=
1

2

∑

j,l,m

ll,m l̄j,m + lj,ml̄l,m
2

nlσj − lj,m l̄j,mnlσl

(A12)

=
1

2

∑

l

(A~n)l σl − tr(A)nlσl, (A13)

where A is the symmetric matrix

A :=
1

2

∑

m

(~lm
~̄lTm + ~̄lm~l

T
m). (A14)

Since d
dt
ρ = 1

2

∑

j
dnj

dt
σj , we can combine these pieces

into the following ODE:

d~n

dt
= ~b+ ~h× ~n+ (A− tr(A))~n. (A15)

Appendix B: Parameter conditions

Since A is a symmetric matrix, it has a natural or-
thonormal basis. In this basis, we have six system pa-
rameters: the eigenvalues {aj} of A and the elements

{bj} of ~b, with j = 1, 2, 3. These six parameters must
obey two inequalities.

Consider the matrix A∗ =
∑

m
~lm
~̄lTm. A∗ is the sum of

positive semi-definite matrice, and so itself must be pos-
itive semi-definite. Moreover, its real part, which equals
A, must be positive semi-definite, so we have our first
inequality:

aj ≥ 0 (B1)

Now the imaginary part of A∗ relates to ~b: b1 = i(l2 l̄3 −
l3 l̄2) = 2 Im(A∗)32 etc. If we write A∗ in the natural
basis of A, and take its determinant, we get:

det(A∗) = a1a2a3 −
1

4
(a1b

2
1 + a2b

2
2 + a3b

2
3). (B2)

Since the determinant of a positive semi-definite matrix
must be non-negative, we recover the second inequality:

~bTA~b ≤ 4 det(A). (B3)

Appendix C: Interpretation of Parameters

Let us consider (A15) with ~h set to zero. Because
A is symmetric and positive semi-definite, it can be de-
composed into A = OTAdO, where O is an orthog-
onal matrix and Ad is a diagonal matrix with entries
a1 ≥ a2 ≥ a3 ≥ 0. If the eigenvalues aj are distinct, there
are three unique orthogonal axes in R3 which we call the

damping axes, since the solution to (A15), if ~b = 0, is

~n(t) = OT





e−(a2+a3)t 0 0
0 e−(a1+a3)t 0
0 0 e−(a1+a2)t



O.

(C1)

Correspondingly, we have three damping rates: r1 = a2+
a3, r2 = a1 + a3 and r3 = a1 + a2. If there is a double
or triple eigenvalue, the axes are no longer unique due to
symmetry. Nevertheless, a choice of damping axes can
always be made (although damping does not occur in
one direction if a2 = a3 = 0).
In the Hilbert space, these three damping axes corre-

spond to a sextet of quantum states. If we choose the axis
corresponding to the largest eigenvalue a1, it defines two
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orthonormal states |α1+〉 and |α1−〉. The remaining four
states can be written |αj±〉 = 1√

2
(|α1+〉+ei(θ0+θj±)|α1−〉)

where θ2± = 0, π and θ3± = π
2 ,

3π
2 . The so-called phase-

damping channel corresponds to the case where |α1±〉
are the energy eigenstates, ~b = 0, and a2 = a3 = 0. We
can infer then that a general Lindblad super-operator
includes three phase-damping channels. The phases in
question are not necessarily phases with respect to the
energy eigenstates, as the interaction with the environ-
ment may favor other states.

We call ~b the damping-bias vector, because it biases
the damping in a certain direction. When it is zero
and a2 > 0, the unbiased system relaxes to the point
~n = 0, which is the completely mixed state (if a2 = 0,
only two components relax to zero, while the other does
not change). Such a process corresponds to a so-called
unital Lindblad super-operator, where LD(ρ) = 0. If the
damping is biased however, the system relaxes to a point
where the coordinates with respect to the decay axes are
bj
rj
. Note that the inequality (B3) ensures that bj = 0 if

rj = 0, and that the relaxation point always falls inside
the Bloch ball.
The so-called amplitude-damping occurs when a1 =

a2 > a3 = 0 = b1 = b2 and b3 = r3 = 2a1 (assuming

|α1±〉 are the energy eigenstates). The system relaxes
to the point ~n = (1, 0, 0) which is the ground energy
eigenstate. In this example, the bias is saturated in some
sense because the relaxation point is on the Bloch sphere;
the dissipation cannot be any more biased in that direc-
tion. This type of dissipation is also seen in the cool-
ing problem [17], where spontaneous emission of photons
causes the system to relax to the ground state. One can
extend this to model both absorption and emission of
photons in a reservoir at non-zero temperature by hav-
ing two amplitude-damping channels: one to the ground
state |g〉, and one to the excited state |e〉. In this case,
we have −r3 < b3 < r3, so that the system relaxes to a
mixture ρ = 1+b3

2 |g〉〈g|+ 1−b3
2 |e〉〈e|.
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[30] I. Schur. Über eine Klasse von Mittelbildungen mit An-
wendungen auf die Determinantentheorie. Sitzungsber.

Berl. Math. Ges., 22:9, 1923.
[31] A. Horn. Doubly stochastic matrices and the diagonal of

a rotation matrix. Am. J. Math., 76:620, 1954.


