This is the accepted manuscript made available via CHORUS. The article has been published as:

Probing and extracting the structure of vibrating SF_\{6\} molecules with inner-shell photoelectrons

Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, and Anh-Thu Le
Phys. Rev. A 93, 063419 - Published 21 June 2016 DOI: 10.1103/PhysRevA.93.063419

# Probing and extracting structure of vibrating $\mathrm{SF}_{6}$ molecules with inner-shell photoelectrons 

Ngoc-Ty Nguyen,,$^{1,2}$ R. R. Lucchese, ${ }^{3}$ C. D. Lin, ${ }^{1}$, and Anh-Thu Le ${ }^{1}$<br>${ }^{1}$ Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, USA<br>${ }^{2}$ Department of Physics, University of Pedagogy,<br>280 An Duong Vuong, Ward 5, Ho Chi Minh City, Vietnam<br>${ }^{3}$ Department of Chemistry, Texas A $\mathcal{M} M$ University, College Station, Texas 77843-3255, USA


#### Abstract

We propose a scheme for probing the structure of vibrating molecules with photoelectrons generated from ultrashort soft X-ray pulses. As an example we analyze below- 100 eV photoelectrons liberated from the $\mathrm{S}(2 \mathrm{p})$ orbital of vibrating $\mathrm{SF}_{6}$ molecules to image very small structural change of molecular vibration. In particular, photoionization cross sections and photoelectron angular distributions (PAD) at non-equilibrium geometries can be retrieved accurately with photoelectrons near the shape resonance at 13 eV . This is achieved with a pump-probe scheme, in which the symmetric stretch mode is first Raman excited predominantly by a relatively short laser pulse and then later probed at different time delays by a few-femtosecond soft X-ray pulse with photon energy near 200 eV .


## I. INTRODUCTION

Imaging the internal molecular structures has always been one of grand challenges in physics, chemistry, and biology. Most of our knowledge on molecular structures have so far been derived from X-ray and electron diffraction measurements. With the advent of ultrashort intense lasers [1] and X-ray free electron lasers (XFELs) [2-5], ultrafast imaging with femtosecond temporal resolution and sub-Ångström spatial resolution is becoming a very active research area with the promise of providing a "molecular movie" of the dynamics of a chemical process. Apart from the more traditional approaches based on X-ray diffraction $[2,6]$ and ultrafast electron diffraction (UED) [7], methods based on the recollision phenomena with intense driving lasers have been proposed and successfully tested on simple molecules. We mention here high-order harmonic generation (HHG) spectroscopy [812] and laser-induced electron diffraction (LIED) [9, 1318]. Time-resolved photoelectron spectroscopy (TRPES) and time-resolved molecular-frame photoelectron angular distribution (TRMFPAD) measurements proposed recently $[19,20]$ are capable of imaging valence-electron dynamics and atom motion during a chemical reaction. In this approach, the temporal resolution is limited to about hundreds of femtoseconds, owing mostly to the VUV laser pulse duration used in the experiments.

Since X-ray diffraction suffers from weak elastic scattering cross sections, to take advantage of the currently available and future short XUV or X-ray pulses, different schemes have been proposed for gas-phase molecules which rely on photoelectron diffraction [21-29]. In contrast to the TRPES method that probes valence electrons, photoelectron diffraction with localized inner-shell electrons is capable of directly imaging atomic positions. In Ref. [23], multiple scattering theory was used to fit to experimental photoelectron diffraction images to extract bond lengths and bond angles for small oriented molecules. It has been shown that the method
can be extended to laser-aligned molecules [30, 31]. In Ref. [32], C-C bond length was retrieved from experimental "double-slit" interference pattern by photoelectrons resulting from ionizing inner shell $\mathrm{C}(2 \mathrm{~s})$ in simple hydrocarbons. So far most of these works have been limited to static targets.

In this paper we propose a scheme of applying short (sub-femtosecond to few-femtosecond) soft X-ray pulses for inner-shell photoelectron spectroscopy to follow fast dynamics of the nuclear wave packet and to extract photoionization cross sections for molecules away from equilibrium geometries. Although imaging with photoelectron diffraction works in principle with a broad range of energy, we choose to illustrate the method near a shape resonance, where the photoelectron signal is significantly enhanced. As is well-known, shape resonances in photoionization (or photoabsorption) are caused by temporary trapping of the photoelectron by a dynamical angular-momentum barrier [33] during its emission. Usually it can also be thought of as an electron making transition to an unoccupied valence molecular orbital embedded in the continuum that later decays to release the photoelectron. Shape resonances are thus expected to be very sensitive to atomic positions in molecules.

To be specific, we demonstrate the method by probing small-amplitude vibration in $\mathrm{SF}_{6}$ in real time. $\mathrm{SF}_{6}$ was chosen because it is known to have very pronounced shape resonances for transition from $\mathrm{S}(2 \mathrm{p})$ to $2 t_{2 g}$ and $4 e_{g}$ at photon energy near 185 eV and 195 eV , respectively [34, 35] - the ionization energy from $\mathrm{S}(2 \mathrm{p})$ is 180.67 eV [36]. Similar shape resonances exist for valence electrons, but they are significantly less pronounced [37, 38]. The schematic of energy levels of relevant molecular orbitals (MO) is shown in Fig. 1(a).

Briefly, the present method is based on the Raman pump - soft X-ray probe scheme, illustrated schematically in Fig. 1(b). An $\mathrm{SF}_{6}$ molecule is first Raman excited predominantly to the symmetric stretch mode by a relatively weak and short infrared laser pulse. Its nuclear dynamics is later probed at different time delays by a short


FIG. 1. (a) Schematic of relevant molecular orbitals (MO) of $\mathrm{SF}_{6}$ and the potential barrier. Experimental ionization potentials are taken from [36] and [37]. (b) Schematic of Raman pump - soft X-ray probe experiment.
(sub-femtosecond to few-femtosecond) soft X-ray pulse. By analyzing photoelectron signals from $S(2 p)$ for fixed photoelectron energies as a function of time delay, we extract time-dependent nuclear wave packet and photoionization cross sections at positions away from the equilibrium geometry. The photon energy is carefully chosen to be near 200 eV , such that photoelectron from $\mathrm{S}(2 \mathrm{p})$ have relatively small kinetic energies and well separated energetically from other channels. During its emission, a low-energy photoelectron spends longer time in the vicinity of the surrounding atoms and thus more influenced by their precise positions. Although the technique should be applicable for a wide range of photoelectron energy, we show that it is most efficient for the photoelectrons near $4 e_{g}$ shape resonance at 13 eV , where the photoionization cross section is most sensitive to the nuclear geometry. Since $S(2 p)$ orbital (or more precisely, $2 \mathrm{t}_{1 u}$ ) is nearly unchanged during the vibration, these photoelectrons, in essence, probe the changes in the resonance state $4 e_{g}$ in real time.

The rest of this paper is organized as follows. In Sec. II,
we briefly describe the theoretical method, namely, the simulation of vibrational Raman excitation and calculation of photoionization cross section (PICS) and photoelectron angular distribution (PAD). The main results are presented in Sec. III, where we analyze the behavior of the photoelectron signal vs pump-probe delay time. The theoretical predictions demonstrate qualitative differences in the spectra that can be tested with future experiments. The differences encode information of photoionization cross sections as function of the S-F bond length. We further show how the photoionization cross section and nuclear wave packets can be retrieved from those data. Finally, we finish our paper with a summary and outlook in Sec. IV.

## II. THEORETICAL METHOD

## A. Vibrational Raman excitation

Raman excitation of $\mathrm{SF}_{6}$ by a short Ti:Sapphire laser pulses (with wavelength near 800 nm ) has been studied before (see, for example, [39, 40]). It was shown [39] that, with typical laser intensity of $5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ and duration of 30 fs , the symmetric stretch mode $\left(A_{1 g}\right.$ at $775 \mathrm{~cm}^{-1}$, to be denoted in the following also as $\left.\nu_{1}\right)$ is dominantly populated while the two other Raman-active modes $\left(E_{g}\right.$ at $643 \mathrm{~cm}^{-1}$ and $T_{2 g}$ at $525 \mathrm{~cm}^{-1}$, to be denoted as $\nu_{1}$ and $\nu_{5}$, respectively) are about an order of magnitude weaker. In this paper we therefore consider only the effect of the symmetric stretch mode, in which S-F bond length $R$ changes with time during $\mathrm{SF}_{6}$ vibration. To simulate the effect of the Raman pump pulse on the molecule, we follow Refs. [40, 41]. Briefly, when a molecule is exposed to a Raman pump pulse, the nuclear wavefunction $\chi(q, t)$ satisfies the time-dependent Schrödinger equation
$i \frac{\partial \chi(q, t)}{\partial t}=\left(-\frac{1}{2 \mu} \frac{\partial^{2}}{\partial q^{2}}+U(q)-\frac{1}{2} \sum_{i, j} \alpha_{i j}(q) E_{i}(t) E_{j}(t)\right) \chi(q, t)$.
Here $q$ is the normal coordinate for the symmetric stretch mode, $\mu$ is the reduced mass, $U(q)$ is the potential energy surface, $\alpha$ is the polarizability tensor, and $E_{i}$ is the component of the electric field of the laser pulse along the $i$-axis. The polarizability tensor is calculated from the Gaussian 03 code [42], within the Hartree-Fock approximation with an augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set. We have also checked that density functional methods give somewhat different values for polarizability (up to about 20\%). Nevertheless, $\partial \alpha_{i j} / \partial q$ remains quite stable and the results for vibrational wave packet are quite similar. The potential energy is approximated by a harmonic oscillator, which should be adequate for small-amplitude vibration considered in this paper. A pump with intensity of $5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$, wave length of 790 nm and duration of 13


FIG. 2. (Color online) Nuclear wave packet corresponding to symmetric stretch mode ( $\nu_{1}$ ) before the pump (solid curve), 15 fs and 36 fs after the pump pulse, in dotted and dashed curve, respectively. For the pump pulse parameters, see text.
fs is used. With such a pump, ionization is insignificant (ionization potential of $\mathrm{SF}_{6}$ is 15.7 eV ). We also expect that the molecule remains in the ground electronic state.

By solving Eq. (1) numerically, we found that the population in $\nu_{1}=0$ and 1 states are about $85 \%$ and $14 \%$, respectively, quite comparable with Wagner et al [39]. The calculated nuclear wave packet distributions at different time delays, before the pump, at the end of the pump, and 36 fs after the pump, are shown in Fig. 2. The peak position of the wave packet changes only slightly, less than about $\pm 0.1$ au from the equilibrium distance at $R=2.9$ au. We will show below that this smallamplitude vibration can be "imaged" with our method. We remark that the vibrational period is about 43 fs , consistent with known vibrational period for $\mathrm{SF}_{6}$ symmetric stretch mode. Increasing the pump pulse duration to about 30 fs does not change our results significantly.

## B. Theoretical calculation of photoelectron signals

Photoionization from $S(2 p)$ by a soft X-ray probe pulse can be modeled by standard molecular photoionization theory. Briefly, differential photoionization cross section for a transition from an initial state $\Psi_{i}$ to a final state $\Psi_{k}^{-}$can be written as follows

$$
\begin{equation*}
\left.\frac{d^{2} \sigma}{d \Omega_{k} d \Omega_{n}}=\frac{4 \pi \omega k}{c}\left|\left\langle\Psi_{i}\right| \mathbf{r} \cdot \mathbf{n}\right| \Psi_{k}^{-}\right\rangle\left.\right|^{2} \tag{2}
\end{equation*}
$$

where $\mathbf{n}$ is the direction of the pulse polarization, $k$ is the momentum of the ejected photoelectron, $k^{2} / 2+I_{p}=\omega$ with $I_{p}$ being the ionization potential, $\omega$ is the photon energy, and $c$ is the speed of light. In this paper we use ePolyScat package [43, 44] to compute Eq. (2). Note that we neglect spin-orbit coupling in our calculations. The initial molecular wavefunction is calculated
using the Gaussian 03 code [42] within the Hartree-Fock approximation with an augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set. At equilibrium the structure of $\mathrm{SF}_{6}$ has $\mathrm{O}_{h}$ point group symmetry, with the S-F bond length of $1.536 \AA$.

We present in Fig. 3(a) the total (integrated) photoionization cross section (PICS) vs energy and S-F bond length from $2 \mathrm{t}_{1 u}$ molecular orbital [to be referred to as $S(2 p)$ in the following - see Fig. 1(a)] obtained with ePolyScat package [43, 44] with photon energy near 185 eV - 205 eV , slightly above $\mathrm{S}(2 \mathrm{p})$ threshold. The shape resonance can be seen clearly in this range of nuclear vibration. To have a more quantitative idea, we show in Fig. 3(b) the PICS for a molecule at the equilibrium geometry. The PICS shows a strong shape resonance for photoelectron near 13 eV . The position of this peak agrees well with experimental data [34] and has been identified as $4 e_{g}$. The peak would be reduced when averaging over ground state nuclear distribution is taken into account, which brings the calculated PICS to a better agreement with Ferrett et al [34]. We show in Fig. 3(b) the effect of this averaging for the vibrational ground state of the symmetric stretch mode (with $\nu_{1}=0$ ).

It is well-known from molecular photoionization theory that shape resonance is typically quite sensitive to the surrounding atomic environment which influences the potential that photoelectron experiences during its emission from an inner-shell. This is confirmed by our calculated PICS for different photoelectron energies as a function of $R$, as shown in Fig. 3(a). At a more quantitative level, the PICS is also shown in Fig. 3(c) for a few energies as a function of S-F bond length. Indeed the PICS at photoelectron energy of 13 eV drops very fast within the range of the nuclear wave packet (see also Fig. 2). The peak of the PICS already moves beyond the range of nuclear wave packet for photoelectron only a few eV away from 13 eV . It is this sensitivity of PICS (and PAD, in general) that allows us to image small changes in nuclear wave packets during $\mathrm{SF}_{6}$ vibration. At 30 eV , the shape resonance becomes very weak. Similar sensitivity for the PAD will be analyzed separately in Sec. III.B. Since the molecular geometry changes only within a small parameter space near the equilibrium during its vibration after Raman excitation, it is more advantageous to probe it with photoelectrons with energies below about 30 eV when the PICS experiences strong variation with respect to the S-F bond length.

Theoretically, total photoelectron signal ionized from $\mathrm{S}(2 \mathrm{p})$ at a particular energy $E$ and probed at a time delay $\tau$ after the pump pulse can be modeled as

$$
\begin{equation*}
S(E, \tau)=\int \sigma(E, R) \rho(R, \tau) d R \tag{3}
\end{equation*}
$$

Here $\rho(R, \tau)$ is the nuclear wave packet and $\sigma(E, R)$ is the total PICS at a fixed S-F bond length $R$. The above equation was written within the Chase adiabatic approximation [45] under the assumption that nuclei are frozen during the probe pulse. For a finite X-ray pulse with a


FIG. 3. (Color online) (a) Total PICS (in logarithmic scale) vs photoelectron energy and S-F separation .(b) Total PICS vs photoelectron energy for $\mathrm{SF}_{6}$ at equilibrium. Results after averaging over $\nu_{1}=0$ is shown as the dashed line. (c) Total PICS vs S-F internuclear distance $R$ for a few photoelectron energies. The PICS at 30 eV has been multiplied by a factor of 5 .
duration of a few femtoseconds considered in this paper, a convolution over the photon spectral bandwidth is also carried out. A similar formula can also be applied for any given photoelectron emission direction.

A few remarks on the temporal scales involved are in order. Naturally we want to have a probe pulse duration much shorter than the vibration period of the nuclear wave packet. In our case, we choose the probe pulse
duration (FWHM) of order of about 1 fs , much smaller than the vibration period of the symmetric stretch mode ( 43 fs ). With this choice, the nuclei will be frozen during the probe. The resonance width is about 1.5 eV for the whole range of S-F bond length during the nuclear vibration, see Fig. 3. Thus the resonance lifetime is estimated to be about 0.44 fs . The changes in nuclear positions during this decay time are negligible such that Eq. (3) is applicable.

## III. RESULTS AND DISCUSSION

## A. Analysis of photoelectron vs pump-probe delay time

Total PICS signal vs time delay is shown in Fig. 4(a)(d), for a few energies near the $4 e_{g}$ shape resonance at 13 eV . Here the signals have been normalized to that from unexcited ensemble (i.e., without the Raman pump pulse). For reference purpose, we also show the averaged $R$ (denoted as $<R>$, right vertical axis) vs time delay. First, we focus on the case with photoelectron of 13 eV , probed with a 1 -fs pulse (FWHM), shown in Fig. 4(a). Interestingly, the normalized photoelectron signal shows a strong modulation with a period of about 21 fs , which is half of the period of the symmetric stretch mode. This can also be seen by comparing with $<R(\tau)>$ curve. This behavior can be explained based on shape of the PICS at 13 eV and the wave packet shown in Fig. 3(b) and Fig. 2, respectively, in combination with Eq. (3). Indeed, during its vibration after the pump pulse, the wave packet probes both sides of the peak near $R=2.9$ au. Note also that this peak is nearly symmetric with respect to $R=2.9$ au. In particular, the wave packet passes through the peak of the PICS twice during a vibrational period. The peak-to-peak modulation amplitude is about $30 \%$, which should be experimentally measurable. Changing the soft X-ray pulse duration to 2 fs does not change the results significantly, see the blue curve in Fig. 4(a).

In contrast, the case of 11 eV is totally different, see Fig. 4(b). Here the modulation follows closely $\langle R(\tau)>$ with the same period as the vibration period of symmetric stretch mode ( 43 fs ). Again, this behavior reflects the dependence of the PICS vs $R$ at this energy, which is probed by the nuclear wave packet. As can be seen from Fig. 2 and Fig. 3(c), the nuclear wave packet can mostly probe only one side of resonance shape (with $R<3 \mathrm{au}$ ), where PICS increases monotonically with $R$. This correlation leads to in-phase modulation as compared to $<R(\tau>$. Also, since the probe spans only on one side of the shape resonance, the peak-to-peak modulation is much larger than that of 13 eV case. At 16 eV , the photoelectron signal in Fig. 4(c) shows an out-of-phase modulation with respect to $<R(\tau)>$. This is due to the fact that, in this case, the shape resonance is mostly probed with $R>2.8 \mathrm{au}$, for which the PICS


FIG. 4. (Color online) (a) Normalized total photoelectron signal at 13 eV with X-ray pulse of duration (FWHM) of 1 and 2 fs. (b), (c), and (d): similar to (a) but for $11 \mathrm{eV}, 16 \mathrm{eV}$, and 30 eV , respectively, for 1-fs pulse. Averaged $<R(\tau)>$ is also shown for comparison (dashed-lines, right vertical axes). In (c) the effect of random errors up to $10 \%$ is also shown (blue dots).
decreases monotonically as a function of $R$. The modulation amplitude is also quite comparable to that of 11 eV case, as can be expected. Note that even at 30 eV , when the PICS does not show a clear peak within the range of accessible $R$, the modulation amplitude is still about $10 \%$, see Fig. 4(d). Again, for this energy, the PICS slightly increases with $R$ for the accessible range of the nuclear vibration, which results in the in-phase modulation as compared to $\langle R(\tau\rangle$, although the modulation is much weaker than 11 eV case. Note that we did not perform averaging over the other vibration modes, which poses a great computational challenge at present.

We remark that probing symmetric stretch mode in $\mathrm{SF}_{6}$ can also be done, in principle, by measuring photoabsorption cross section with similar few-femtosecond soft X-ray sources with photon energies near 200 eV . This is in the spirit of the Near Edge X-Ray Absorption Fine Structure (NEXAFS). Our method has access to more detailed information since by detecting photoelectron different channels can be energetically separated.

## B. Analysis of photoelectron angular distribution

To be specific, we analyze here the behavior of the PAD at photoelectron energy of 13 eV . Let us first focus on the MFPAD. We show in Fig. 5(a), (b), and (c) the MFPAD for different S-F bond lengths of 2.8, 2.9, and 3.0 a.u., respectively. Here the X-ray polarization is along $z$-axis, which coincides with one of the S-F bond. Clearly, the MFPAD changes quickly in both magnitude and shape with SF bond length near equilibrium. In particular,
the lobe along $z$-axis appears to be quite pronounced for $R=2.8$ and 2.9. a.u., but nearly disappears for $R=3.0$ a.u. The lobe near $\{\theta, \phi\}=\left\{90^{\circ}, 45^{\circ}\right\}$ and the ones obtained by rotation of $90^{\circ}, 180^{\circ}$, and $270^{\circ}$ around $z$ axis, are much more pronounced at $R=2.9$ a.u. than the other lobes, whereas the lobes are more comparable at the other $R \mathrm{~s}$. We remark in passing that analysis of the resonant state of the continuum electron has been reported in Refs. [35, 38]. Although the MFPAD is not accessible experimentally for our target, we expect similar sensitivity near a shape resonance for other targets as well, for which the MFPAD or recoil-frame PAD (RFPAD) might be measurable. Furthermore, our results indicate that the sensitivity of the PAD with respect to the change in molecular geometry might survive in the laboratory frame measurements, especially when target molecules are aligned.

By the same token we also expect that PAD vs delay time, especially from aligned molecules, provides much richer information than the PICS, discussed in the previous subsection. For the case of $\mathrm{SF}_{6}$ (which is a spherical top molecule), the PAD dependence on photoelectron emission direction is quite weak, see Fig. 5(d) for comparison between emission parallel and perpendicular to X-ray polarization. It would be of interest in the future to explore the case of, say, symmetric top molecules which can be laser-aligned [31, 46].

## C. Extraction of PICS

The results the the previous subsection prompt us to propose a simple method to extract PICS vs $R$ from photoelectron signal vs time delay. In the absence of actual experimental data, in the following we will treat the photoelectron signals in Fig. 4 as "experimental" data $S^{\exp }(E, \tau)$. To simulate the effect of statistical error in experiments, we further add random errors up to about $10 \%$ to our data [see blue dots in Fig. 4(c) for the case of $16 \mathrm{eV}]$. We assume that the nuclear wave packet $\rho(R, \tau)$ is known from some theoretical calculation. For a fixed energy, in order to retrieve the PICS as a function of $R$, we model it by a Lorentzian form as follows

$$
\begin{equation*}
\sigma^{t h}(R)=B_{0}+\frac{2 A}{\pi} \frac{C}{\left(R-R_{0}\right)^{2}+C^{2}} \tag{4}
\end{equation*}
$$

with $B_{0}, A, C$, and $R_{0}$ as four parameters.
Under such assumptions, we can calculate theoretical photoelectron yield $S^{t h}(E, \tau)$ using Eq. (3). By fitting theoretical results with "experimental" data $S^{\exp }(E, \tau)$, we identify the parameters for the best fit. In this work, we use the least-square fitting for each fixed energy as

$$
\begin{equation*}
\chi=\sum_{\tau_{i}}\left[\frac{S^{t h}\left(E, \tau_{i}\right)-S^{\exp }\left(E, \tau_{i}\right)}{S^{\exp }\left(E, \tau_{i}\right)}\right]^{2} \tag{5}
\end{equation*}
$$

such that the minimum in $\chi$ gives the best fit.


FIG. 5. (Color online) (a), (b), (c) MFPAD of $\mathrm{SF}_{6}$ (in units of $\mathrm{Mb} /$ steradian) with different S-F bond lengths of $2.8,2.9$, and 3.0 a.u., respectively. Sulfur atom is at the origin, while the flourine atoms are located on $x, y$, and $z$ axes. X-ray is polarized parallel to $z$-axis. The magnitude of MFPAD at each emission direction is given as the radial distance from the origin and is also color-coded. (d) Photoelectron signals emitted along parallel and perpendicular directions with respect to the X-ray polarization. The signals have been normalized to that of the unexcited ensemble. X-ray pulse duration (FWHM) is 1 fs . The photoelectron kinetic energy is 13 eV in all sub-figures.


FIG. 6. (Color online) Extracted total PICS from S(2p) of $\mathrm{SF}_{6}$ corresponding to photoelectron energy of $11 \mathrm{eV}(\mathrm{a}), 13$ $\mathrm{eV}(\mathrm{b}), 16 \mathrm{eV}(\mathrm{c})$, and $30 \mathrm{eV}(\mathrm{d})$. The "original" theoretical data obtained from ePolyScat are also shown. For 30 eV case, the results with $5 \%$ random errors is also shown (dashed line). For each energy, the percentage error is defined with respect to the largest signal in case of 16 eV .

The results of this procedure is shown in Fig. 6 for different photoelectron energies. The retrieved PICS indeed agree well with the ePolyScat results for all cases. Note that the PICS can only be retrieved for the range of $R$ where the nuclear wave packet is non-negligible during the vibration. This results clearly indicate that PICS, and more generally PAD, at non-equilibrium geometries can be accessible from experimental measurements.

## D. Extraction of nuclear wave packet

If the PAD can be calculated theoretically with a sufficient accuracy and efficiency for a target with a fixed geometry, the retrieval of bond lengths and bond angles from experimental data can be carried out. That has been demonstrated recently for static targets, for example, in Ref. [23]. In their retrieval procedure the multiplescattering theory was used to fit to experimental PAD for relatively low photoelectron energy below about 200 eV . Similarly, Wang et al [31] showed theoretically that bond lengths and bond angles can be retrieved using relatively high energy PAD from laser-aligned molecules, with photoelectron holography theory. In those examples, the nuclei are assumed to be at fixed positions (i.e. without any distribution).

Here we show that we can extract nuclear wave packet during its evolution in real time after the Raman excita-


FIG. 7. (Color online) (a) Extracted nuclear wave packet. (b) Nuclear wave packet obtained from numerical solution of the TDSE.
tion. Again, we treat results of Fig. 4 with the addition of random errors up to $10 \%$ as "experimental" data. We now further assume that PICS can be calculated theoretically with a sufficiently good precision for a fixed geometry near equilibrium. The unknown nuclear wave packet is modeled by a Gaussian form as

$$
\begin{equation*}
\rho(R)=A \exp \left[-\frac{\left(R-R_{0}\right)^{2}}{C^{2}}\right] \tag{6}
\end{equation*}
$$

In Eq. (6) parameters $A, C$, and $R_{0}$ vary as functions of time delay $\tau$. We can then calculate photoelectron signal by using Eq. (3) and compare with "experimental" signals to find the best fit. At each time delay $\tau$, the least-square fitting is used as

$$
\begin{equation*}
\chi=\sum_{E_{i}}\left[\frac{S^{t h}\left(E_{i}, \tau\right)-S^{\exp }\left(E_{i}, \tau\right)}{S^{\exp }\left(E_{i}, \tau\right)}\right]^{2} \tag{7}
\end{equation*}
$$

The result of this procedure is shown in Fig. 7(a), which agrees well with the nuclear wave packet obtained from numerical solution of the TDSE, shown in Fig. 7(b).

## IV. SUMMARY AND OUTLOOK

In conclusion, we have shown, using the example of vibrating $\mathrm{SF}_{6}$ probed by a short X-ray pulse, that photoelectron signals contain sufficient information to allow us to extract target molecular structure and/or the dynamic changes in the nuclear wave packets in real time. Although we assumed that only a single vibration mode is available, inclusion of additional vibration modes should be straightforward. Our method utilizes the sensitivity of the photoelectron signals with respect to the changes in the surrounding atomic position relative to the innershell where electron is emitted. As such, the method is more suitable for low-energy photoelectrons.

Our method should also be applicable for probing large-amplitude vibrations, which can be Raman excited in targets with relatively shallow potential energy surfaces (PES) near equilibrium geometry (see, for example, Refs. [12, 41]). To probe a broader range of $R$, one can increase the intensity of pump laser. However one cannot increase laser intensity too much as it leads to excessive multi-photon ionization of the molecules. The emitted electron might potentially contaminate the photoelectron signals, especially at low energies. To avoid this issue, one can use a pump-pump scheme with a optimized delay between the two pump pulses. Such scheme has been proposed before, for example in Refs. [47-49], where it is used to enhance molecular alignment and orientation. Furthermore, it should be possible to extend the method to the case when the target is prepared in electronically excited states, in particular dissociating or pre-dissociating states, in which the nuclear wave packet experiences significant dynamical changes.

We remark that Wagner et al [39] have shown that small-amplitude vibrations in $\mathrm{SF}_{6}$ can be followed by HHG spectroscopy. In essence, photo-recombination (time-reversed of photoionization) is embedded in HHG signals. Nevertheless, care must be taken to disentangle it from other steps in HHG [50].

While it is true that current attosecond sources are limited by the energy range and photon counts, we anticipate the situation to change in the near future thanks to the rapid progress in laser and XFEL technologies that we have witnessed recently [51-53]. Indeed, recent progress in HHG using mid-infrared driving lasers has pushed the photon energy up to a few-keV region [54], while attosecond pulses in the soft X-ray up to 0.5 keV have been reported using a transient phase-matching mechanism [55]. Recent development in laser sources with high-repetition rates of hundreds of $\mathrm{kHz}[56,57]$ as well as improved phase-matching with wave-guide setup will likely increase the HHG yields further in the near future. The X-ray pulses with duration down to a few femtoseconds are also becoming available at XFEL facilities such as LCLS (at Stanford) [3], SACLA (Japan) [4, 5], and FLASH (Hamburg), depending on photon energy range. The Extreme Light Infrastructure Attosecond Light Pulse Source (ELIALPS) in Szeged, Hungary, is currently under construction, with the promise of providing ultrashort light source with a broad range of energy (see, for example, Ref. [58]).

## ACKNOWLEDGMENTS

We thank Prof. A. Rudenko and Prof. D. Rolles for fruitful discussions. This work was supported in part by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under grant no. DE-FG0286ER13491 and by the National Science Foundation under Award No. IIA-1430493. Some of the computing for this project was performed on the Beocat Research

Cluster at Kansas State University.
[1] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[2] H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, R. A. London, E. Plönjes, M. Kuhlmann, R. Treusch, S. Düsterer, T. Tschentscher, J. R. Schneider, E. Spiller, T. Möller, C. Bostedt, M. Hoener, D. A. Shapiro, K. O. Hodgson, D. van der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szöke, N. Timneanu, and J. Hajdu, Nature Physics 2, 839 (2006), arXiv:0610044 [physics].
[3] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, a. Brachmann, P. Bucksbaum, R. Coffee, F.J. Decker, Y. Ding, D. Dowell, S. Edstrom, a. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, a. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, Nature Photonics 4, 641 (2010).
[4] D. Pile, Nature Photonics 5, 456 (2011).
[5] T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Maréchal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, and N. Kumagai, Nature Photonics 6, 540 (2012).
[6] M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski, Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings, and P. M. Weber, Phys. Rev. Lett. 114, 255501 (2015).
[7] A. H. Zewail, Annual Review of Physical Chemistry 57, 65 (2006).
[8] M. Lein, Journal of Physics B: Atomic, Molecular and Optical Physics 40, R135 (2007).
[9] T. Morishita, A.-T. Le, Z. Chen, and C. D. Lin, Physical Review Letters 100, 013903 (2008).
[10] A.-T. Le, R. R. Lucchese, M. T. Lee, and C. D. Lin, Physical Review Letters 102, 203001 (2009).
[11] O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, and M. Y. Ivanov, Nature 460, 972 (2009).
[12] W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H. C. Kapteyn, and M. M. Murnane, Science 322, 1207
(2008).
[13] C. D. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese, Journal of Physics B: Atomic, Molecular and Optical Physics 43, 122001 (2010).
[14] M. Okunishi, T. Morishita, G. Prümper, K. Shimada, C. D. Lin, S. Watanabe, and K. Ueda, Phys. Rev. Lett. 100, 143001 (2008).
[15] D. Ray, B. Ulrich, I. Bocharova, C. Maharjan, P. Ranitovic, B. Gramkow, M. Magrakvelidze, S. De, I. V. Litvinyuk, A. T. Le, T. Morishita, C. D. Lin, G. G. Paulus, and C. L. Cocke, Physical Review Letters 100, 143002 (2008).
[16] M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H. C. Bandulet, H. Pépin, J. C. Kieffer, R. Dörner, D. M. Villeneuve, and P. B. Corkum, Science 320, 1478 (2008).
[17] C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, Nature 483, 194 (2012).
[18] M. Pullen, B. Wolter, A. T. Le, M. Baudisch, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, C. D. Lin, and J. Biegert, Nature Communications 6, 7262 (2015).
[19] C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Geßner, C. C. Hayden, and A. Stolow, Science 323, 1464 (2009).
[20] P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, Nat Phys 7, 612 (2011).
[21] F. Krasniqi, B. Najjari, L. Strüder, D. Rolles, A. Voitkiv, and J. Ullrich, Phys. Rev. A 81, 033411 (2010).
[22] R. Boll, D. Anielski, C. Bostedt, J. D. Bozek, L. Christensen, R. Coffee, S. De, P. Decleva, S. W. Epp, B. Erk, L. Foucar, F. Krasniqi, J. Küpper, A. Rouzée, B. Rudek, A. Rudenko, S. Schorb, H. Stapelfeldt, M. Stener, S. Stern, S. Techert, S. Trippel, M. J. J. Vrakking, J. Ullrich, and D. Rolles, Phys. Rev. A 88, 061402(R) (2013).
[23] M. Kazama, T. Fujikawa, N. Kishimoto, T. Mizuno, J.I. Adachi, and A. Yagishita, Phys. Rev. A 87, 063417 (2013).
[24] K. Ueda, C. Miron, E. Plésiat, L. Argenti, M. Patanen, K. Kooser, D. Ayuso, S. Mondal, M. Kimura, K. Sakai, O. Travnikova, A. Palacios, P. Decleva, E. Kukk, and F. Martín, J. Chem. Phys. 139, 124306 (2013).
[25] E. Plésiat, L. Argenti, E. Kukk, C. Miron, K. Ueda, P. Decleva, and F. Martín, Phys. Rev. A 85, 023409 (2012).
[26] J. B. Williams, C. S. Trevisan, M. S. Schöffler, T. Jahnke, I. Bocharova, H. Kim, B. Ulrich, R. Wallauer, F. Sturm, T. N. Rescigno, A. Belkacem, R. Dörner, T. Weber, C. W. McCurdy, and A. L. Landers, J. Phys. B 45, 194003 (2012).
[27] C. S. Trevisan, C. W. McCurdy, and T. N. Rescigno, J. Phys. B 45, 194002 (2012).
[28] B. Zimmermann, D. Rolles, B. Langer, R. Hentges, M. Braune, S. Cvejanovic, O. Geßner, F. Heiser, S. Korica, T. Lischke, A. Reinköster, J. Viefhaus, R. Dörner, V. McKoy, and U. Becker, Nature Physics 4, 649 (2008).
[29] J. Söderström, N. Mårtensson, O. Travnikova, M. Patanen, C. Miron, L. J. Sæthre, K. J. Børve, J. J. Rehr, J. J. Kas, F. D. Vila, T. D. Thomas, and S. Svensson, Physical Review Letters 108, 193005 (2012).
[30] K. Nakajima, T. Teramoto, H. Akagi, T. Fujikawa, T. Majima, S. Minemoto, K. Ogawa, H. Sakai, T. Togashi, K. Tono, S. Tsuru, K. Wada, M. Yabashi, and A. Yagishita, Scientific reports 5, 14065 (2015).
[31] X. Wang, A.-T. Le, C. Yu, R. R. Lucchese, and C. D. Lin, Scientific Reports 6, 23655 (2016).
[32] R. K. Kushawaha, M. Patanen, R. Guillemin, L. Journel, C. Miron, M. Simon, M. N. Piancastelli, C. Skates, and P. Decleva, Proceedings of the National Academy of Sciences of the United States of America 110, 15201 (2013).
[33] R. R. Lucchese and F. A. Gianturco, International Reviews in Physical Chemistry 15, 429 (1996), http://dx.doi.org/10.1080/01442359609353190.
[34] T. A. Ferrett, D. W. Lindle, P. A. Heimann, M. N. Piancastelli, P. H. Kobrin, H. G. Kerkhoff, U. Becker, W. D. Brewer, and D. A. Shirley, J. Chem. Phys. 89, 4726 (1988).
[35] M. Stener, P. Bolognesi, M. Coreno, P. OKeeffe, V. Feyer, G. Fronzoni, P. Decleva, L. Avaldi, and A. Kivimaki, J. Chem. Phys. 134, 174311 (2011).
[36] W. Jolly, K. Bomben, and C. Eyermann, Atomic Data and Nuclear Data Tables 31, 433 (1984).
[37] D. Holland, M. MacDonald, P. Baltzer, L. Karlsson, M. Lundqvist, B. Wannberg, and W. von Niessen, Chemical Physics 192, 333 (1995).
[38] J. Jose and R. Lucchese, Chemical Physics 447, 64 (2015).
[39] N. L. Wagner, A. Wüest, I. P. Christov, T. Popmintchev, X. Zhou, M. M. Murnane, and H. C. Kapteyn, Proc. Natl. Acad. Sci. USA 103, 13279 (2006).
[40] Z. B. Walters, S. Tonzani, and C. H. Greene, Journal of Physics B: Atomic, Molecular and Optical Physics 40, F277 (2007).
[41] A.-T. Le, T. Morishita, R. R. Lucchese, and C. D. Lin, Phys. Rev. Lett. 109, 203004 (2012).
[42] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, "Gaussian 03, Revision C.02," Gaussian, Inc., Wallingford, CT, 2004.
[43] F. A. Gianturco, R. R. Lucchese, and N. Sanna, The Journal of Chemical Physics 100 (1994).
[44] A. P. P. Natalense and R. R. Lucchese, The Journal of Chemical Physics 111 (1999).
[45] D. M. Chase, Phys. Rev. 104, 838 (1956).
[46] H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
[47] X. Ren, V. Makhija, A.-T. Le, J. Troß, S. Mondal, C. Jin, V. Kumarappan, and C. Trallero-Herrero, Phys. Rev. A 88, 043421 (2013).
[48] X. Ren, V. Makhija, and V. Kumarappan, Phys. Rev. Lett. 112, 173602 (2014).
[49] P. M. Kraus, D. Baykusheva, and H. J. Wörner, Phys. Rev. Lett. 113, 023001 (2014).
[50] A.-T. Le, R. R. Lucchese, S. Tonzani, T. Morishita, and C. D. Lin, Physical Review A (Atomic, Molecular, and Optical Physics) 80, 013401 (2009).
[51] D. Gauthier, P.R. Ribič, G. De Ninno, E. Allaria, P. Cinquegrana, M. B. Danailov, A. Demidovich, E. Ferrari, and L. Giannessi, Phys. Rev. Lett. 116, 024801 (2016).
[52] F. Campi, H. Coudert-Alteirac, M. Miranda, L. Rading, B. Manschwetus, P. Rudawski, A. LHuillier, and P. Johnsson, Review of Scientific Instruments 87, 023106 (2016), http://dx.doi.org/10.1063/1.4941722.
[53] Z. Chang, P. B. Corkum, and S. R. Leone, J. Opt. Soc. Am. B 33, 1081 (2016).
[54] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Aliauskas, G. Andriukaitis, T. Balciunas, O. D. Mcke, A. Pugzlys, A. Baltuka, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernndez-Garca, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, Science 336, 1287 (2012).
[55] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, Nature Communications 7, 11493 (2016).
[56] A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, Opt. Lett. 36, 3918 (2011).
[57] J. Rothhardt, S. Hädrich, Y. Shamir, M. Tschnernajew, R. Klas, A. Hoffmann, G. K. Tadesse, A. Klenke, T. Gottschall, T. Eidam, R. Boll, C. Bomme, H. Dachraoui, B. Erk, M. Di Fraia, D. A. Horke, T. Kierspel, T. Mullins, A. Przystawik, E. Savelyev, J. Wiese, T. Laarmann, J. Küpper, D. Rolles, J. Limpert, and A. Tünnermann, ArXiv e-prints (2016), arXiv:1602.03703 [physics.atom-ph].
[58] http://www.eli-alps.hu/?q=en/02_Parameters.

