
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Simulation of laser cooling by the bichromatic force
Xiang Hua, Christopher Corder, and Harold Metcalf
Phys. Rev. A 93, 063410 — Published 10 June 2016

DOI: 10.1103/PhysRevA.93.063410

http://dx.doi.org/10.1103/PhysRevA.93.063410


Simulation of Laser Cooling by the Bichromatic Force*

Xiang Hua, Christopher Corder, and Harold Metcalf
Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800

(Dated: May 13, 2016)

The bichromatic force allows laser cooling using stimulated processes only. We provide details of
our simulations of the bichromatic force when the effects of spontaneous emission are suppressed
by restricting the atom-light interaction time to be short enough that there cannot be a significant
number of spontaneous emission events. This short interaction time requires that the simulation
include dynamics of the atomic motion through the light field that is coupled to the internal state
dynamics that determine the force on the atom. The simulation is first tested with several standard
optical field configurations to confirm its accuracy. Then the results, using conditions that match
our experiment, are presented and compared with our measurements. The simulation shows that
the resolution of the experiment greatly obscures the degree of cooling. Our simulation predicts an
observed velocity distribution reduced by up to a factor of 4 in width over a time comparable to
the excited state lifetime. This technique can allow the direct laser cooling of atoms and molecules
without closed cycling transitions.

I. INTRODUCTION AND BACKGROUND

This paper describes a numerical simulation of the
optical forces that can produce laser cooling using the
bichromatic force (BF) [1–3]. Its primary purpose is to
provide support for the simulation assertions in Ref. [4].
Our interest comes from the fact that the BF derives from
purely stimulated processes, and cooling without sponta-
neous emission has been a topic of interest for us for
several years [4–6]. It turns out that spontaneous emis-
sion serves only to help define a direction for the BF over
long interaction times [7, 8]. The entire simulation is for
a two-level atom with excited state lifetime τ ≡ 1/γ and
transition wavelength λ ≡ 2π/k. For our 23S1 ↔ 33P2

transition in He, λ = 389 nm and τ = 106 ns.

The calculation begins by establishing the light field.
This requires both the atomic position z(t) in the bichro-

matic plane standing waves with ~k = kz to determine the
relative optical phase, and the atomic velocities vz(t) to
determine the Doppler shifts and hence the detuning for
the Hamiltonian H. The strength of the atom-light inter-
action is defined by the Rabi frequency Ω for each of the
four traveling-wave beams needed to produce the BF.

Knowledge of the light field seen by the atoms enables
the solution of the Optical Bloch Equations (OBE’s),
with damping, to determine the atomic internal state in
the form of the density matrix ρ(t) [9]. Then the force
is found from tr[ρ(t)∇H], the atomic velocity vz(t) and
position z(t) are updated classically with the resulting ve-
locity and path changes in a short time interval (typically
ps), and the calculation is iterated on the ps time scale.

Simulating an experiment requires calculation of the
atomic trajectories since these determine the outcome of
the measurements. Thus we calculate atomic trajectories
[z(t), vz(t)] over a fixed time span of the evolution of
ρ(t). Note that this differs from the more commonly used
“dragged atom” approach (vz = constant) that produced
force vs. velocity curves [1, 3]. Instead, we update vz(t),
z(t), and the field, after each time interval.

The code is fundamentally different from earlier ver-
sions of similar calculations (see Fig. 4.3 of Ref. [10] and
Ref’s. [1–3, 11–13]) because it takes into account the ini-
tial conditions. In those previous calculations, the OBE’s
were allowed to iterate for a long enough time for ρ(t) to
reach a steady state in the light field at a fixed velocity,
and then the force was calculated from the result. Here
we specify the initial values of z, vz, starting time t0, and
optical phase, and then solve for the time-dependent force
using tr[ρ(t)∇H]. An ensemble of atoms with different
initial conditions is treated, and the temporal evolution
is calculated for relatively short interaction times. We do
this because we want to simulate the absence of sponta-
neous emission since both the calculation and the exper-
iment run for times comparable to or less than 2τ [4, 6].

For most of the calculational results presented here, a
set of initial parameters is chosen and the trajectories are
calculated for an ensemble of atoms characterized by a
pre-selected range of one of the initial parameters. The
resulting set of trajectories is grouped and arranged to
show the effects of the BF on the velocity distribution
of the ensemble. Their spatial paths have also been cal-
culated for detailed comparison with our measurements.

II. TESTING THE CODE

The first of several tests of the code used a traveling
wave of a single frequency ω` detuned from the atomic
frequency ωa by δ ≡ ω` − ωa ≈ 15γ ≈ + 2π × 22.5 MHz.
In a traveling wave, the position of the atoms has no
bearing on the results so the calculation uses an ensem-
ble of equally-spaced starting velocities. Figure 1 shows
that atoms having initial velocity + 15γ/k experience
the largest force at the start of the evolution because
their Doppler shifts just compensate the blue detuning.
Those with smaller velocities are accelerated into reso-
nance where they experience a large force at later times
(steepest slopes in Fig. 1 at v = +15γ/k), and those with
higher velocities experience less acceleration. Changing
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FIG. 1: (color online) Atomic motion in a traveling wave.
These curves show the velocity vs. time for atoms with differ-
ent starting velocities in a single traveling wave detuned by

δ ≈ +2π×22.5 MHz (blue) and Ω =
√

3/2 δ. For atoms with
v = 15γ/k whose Doppler shifts cancel δ, most of the velocity
change occurs in ∼ 10 µs whereas the time runs for 160 µs,
much longer than the actual experiment..)

the sign of the detuning or the direction of propagation
of the light simply translated these curves vertically or
reflected them about the horizontal.

For the second set of tests we examined the velocity
trajectories in a single-frequency standing wave. Figure
2 shows plots of atomic velocities vs. time in single stand-
ing waves with δ ≈ ±15γ ≈ ± 2π× 22.5 MHz for a range
of initial velocities, and Ω =

√
3/2 |δ| (see below and Eq.

2 for discussion of this choice of Ω). A starting position is
well-defined in a standing wave, but the plots for a range
of starting positions all show similar properties.

As expected, atoms with kinetic energies below the

magnitude of the light shifts were confined to the chan-
nels between the standing wave nodes or antinodes, de-
pending on detuning [14]. For atomic velocity ṽ ≡
v/(γ/k) the kinetic energy is

EK =
Mv2

2
=
M

2

(
ṽγ

k

)2

= h̄γ
ṽ2

4

γ

ωr
(1)

where ωr ≡ h̄k2/2M ≈ 2π × 329 kHz is the recoil fre-
quency of the 23S1 ↔ 33P2 transition of interest here.

Thus confinement requires ṽ < α
√
ωrδ/γ2 where the

numerical factor α ≈ 1.8 can be found by setting this
EK ≤ h̄ωLS (see Eq. 2), using the full Ω without the√

2. This condition is ṽ < 3.3, and indeed atoms with
starting velocities between ṽ = ±3.3 are shown in Fig.
2 to be confined, and exhibit oscillatory velocities and
positions. Only those paths that cross vz = 0 represent
confined atoms.

For velocities outside this range, the unconfined atoms
are travelling in an optical molasses. The difference be-
tween parts (a) and (b) of Fig. 2 is the sign of δ. For
red (blue) detuning, the resulting optical molasses cools
(heats) the atoms so that their velocities decrease (in-
crease) as shown, both above and below the middle of
the plots where |ṽ| > 3.3. The molasses cooling time at

δ ≈ −15γ and Ω =
√

3/2 |δ| ≈ 18γ is ∼ 10µs, and there-
fore cooling (heating) is noticeable but not significant on
this 2 µs time scale. Their slight wobble arises from their
motion over the potential hills and valleys (more rapid
oscillations at higher speeds).

With these two quite successful tests of the code, we
are confident in extending it to the case of simultaneous
red- and blue-detuned standing waves (four beams) that
are used to implement the BF.
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FIG. 2: (color online) The
evolution of atomic veloc-
ities in a single frequency
standing wave detuned by
δ ≈ ±2π × 22.5 MHz. The
central regions show that
atoms with starting veloci-
ties between ṽ = ±3.3 are
confined and exhibit oscilla-
tory velocities.

III. THE BICHROMATIC FORCE

A good introduction to the BF is found in Ref. [6],
but a short review is given here. It is implemented
with standing waves of two different frequencies, usually

symmetrically detuned from the atomic resonance fre-
quency ωa by ±δ, and typically |δ| � γ [1]. The stand-
ing waves are spatially offset by λ/8, corresponding to a
spatial phase offset of π/4 of the intensity distribution
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whose spatial period is λ/2 [1]. Here the required, ex-
act, dressed state crossings [3] occur because one of the
standing waves has a node and the Rabi frequency of the
other one is not at its maximum; instead it is Ω/

√
2. For

the two-level atom of our model, the light shift is thus

h̄ωLS =
h̄

2

√(2× Ω√
2

)2

+ δ2 − δ

 (2)

where the factor 2 multiplying Ω/
√

2 arises because there
are two beams making up the standing wave and Ω is the
value for each of these beams [9, 15]. The light shift h̄ωLS

then causes the exact crossing when it is half the splitting
between adjacent dressed states, namely ωLS = |δ|/2,

and this occurs at Ω =
√

3/2 |δ|.

Our simulation of the BF is based on the calculations
described above, in the presence of the four laser beams
needed to make the two standing waves. It is important
to re-emphasize that the details of the trajectories differ
significantly with changes of the initial starting values of
the atomic parameters, but in all cases converge to the
results predicted by the usual models of the BF. Some of
the ideas of this simulation are introduced in Ref. [6].

As a first example of the simulation, we calculate the
velocity trajectories that result from all four beams under
conditions that optimize the BF for δ = ±15γ, namely,
spatial phase offset of the standing waves = λ/8, and

Ω =
√

3/2 |δ|. We run this for 3 µs ≈ 28 τ so that the
full effects of spontaneous emission come into play. Fig-
ure 3a shows that these trajectories bunch tightly in ve-
locity space at a bit below v = −7.5γ/k because the
force profile has some graded decline near its range limit
of ±δ/2k [1, 3].

To ease interpretation of such plots we have also plot-
ted the trajectory density. This involves running the cal-
culation for a much larger number of equally-spaced, ini-
tial velocity values and binning them in velocity and time.
This is shown in Fig. 3b for 3240 initial velocity values
so each bin starts with 65 trajectories. The bin width
is 60 ns to make the grid “square” on this scale, and
the number of trajectories in each bin is counted and
plotted as the third dimension (here indicated by color).
Both of these plots display strong cooling to just below
v = −|δ|/2k as expected. For a spatial offset of the stand-
ing waves of 3λ/8, the force would be reversed and the
cooling would be toward v = +|δ|/2k. For these condi-
tions, all starting positions lead to nearly the same final
velocity distribution.
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FIG. 3: (color online) Part (a)
is a plot of velocity trajecto-
ries and part (b) shows tra-
jectory densities for the BF.
The time span is 3 µs, the de-
tunings are δ = ±15γ, and

Ω =
√

3/2 |δ|. Over such a
long time, ∼ 28 τ , there can be
many spontaneous emissions
and the plots show substan-
tial velocity space compression
just below v = −7.5 γ/k.

A. Velocity Space Trajectories

We can now examine the short-time dependence (com-
parable to τ) of interest to our experiment more carefully.
Spontaneous emission can not be prevented, but in our
experiment its effect is minimized by using a very short
interaction time. For the BF, the characteristic cooling
time is π/4ωr ≈ 380 ns [4]. In the experiment, the laser
beams are carefully controlled so that the average inter-
action time can be just a few τ , corresponding to ≈ 1.5
spontaneous emission cycle times [4].

Our simulation results for velocity trajectories in a
bichromatic field during a 300 ns time interval are shown
in Fig. 4. The trajectories clearly show a strong coa-
lescence near v = −|δ|/2k ≈ −7.5 γ/k as expected for
the BF [4, 6]. All previous steady state force calcula-
tions and simulations show that the BF essentially van-

ishes at v = ±δ/2k so that atoms accumulate near this
value. Even in the short time of this calculation, they are
collected from a wide region of velocity space spanning
v = ±δ/2k and are compressed into a narrow region near
the velocity limit.

Each plot in Fig. 4 has 81 equally-spaced starting ve-
locities, again using standing waves of spatial phase offset
equal λ/8, δ = ±15γ and Ω =

√
3/2 |δ|. They have dif-

ferent starting parameters indicated by [z0, t0], where the
potential minimum for the blue (red) standing wave is at
z0 = 7λ/16 (z0 = 5λ/16). For part (a) these starting
points are [0, 0], for (b) they are [λ/8, 0], for (c) they are
[0, π/(4|δ|)], and for (d) they are [λ/8, π/(4|δ|)]. (Note
that the starting position is not to be confused with the
standing wave spatial phase offset.) Quite comparable
velocity space compression occurs even though the indi-
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FIG. 4: (color online) Trajectories on the 300 ns time scale for
the BF. These plots span only 300 ns, unlike the much longer
times of Fig’s. 1-3, but are closer to the experimental inter-
action time. Each plot shows 81 velocity trajectories from
the same bichromatic field (spatial phase offset of the stand-

ing waves = λ/8, δ = ±15γ and Ω =
√

3/2 |δ|) but having
different starting parameters. For initial conditions of [z0, t0]
plot (a) is [0, 0], (b) is [λ/8, 0], (c) is [0, π/(4|δ|)], and (d) is
[λ/8, π/(4|δ|)].

vidual paths differ.

Figure 5a shows the trajectory density with the same
laser parameters as Fig. 4 with the same 3240 equally-
spaced initial velocities but with 6 starting positions
summed. The trajectories vary noticeably, but not dras-
tically, with starting position, and this plot is a sum of
six plots with z0 = λ/12, λ/6, λ/4 . . . in steps of λ/12,
but all with starting t0 = 0. Varying t0 results in differ-
ent trajectories but the final distributions are very sim-
ilar. In some cases these plots are easier to see in three
dimensions and from a different perspective, as shown
in Fig. 5b. Note the very strong cooled-atom peak
5γ/k wide and just over 1200 points high centered at
v = −|δ|/2k ≈ −7.5 γ/k. It comes from atoms collected
over a velocity range of ±δ/2k as before, and represents
a velocity change of up to ≈ 35vr, where vr ≡ h̄k/M is
the recoil velocity.

In addition to the very strong cooled-atom peak, there
are small but distinct, narrow features near v = ±δ/k =
±15 γ/k. At these velocities, two traveling waves from
opposite directions and opposite detunings are Doppler
shifted into atomic resonance. Depending on binning,
these features often appear to be doublets correspond-
ing to peaks slightly detuned from exact Doppler-shifted
resonance. Since the light intensity is high, we attribute
these features to the Doppleron resonances described in
Ref’s. [9, 16, 17], especially since they vanish at lower
intensities.
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FIG. 5: (color online) Part (a) shows the atomic trajectory
density in velocity space calculated with the four traveling
waves used to produce the BF. The laser parameters are the
same as Fig. 4, and the bins have summed trajectories with
starting positions from z0 = λ/12 to z0 = λ/2 in steps of
λ/12 (starting times all zero). Part (b) shows the 3D atomic
trajectory density for the same calculation as part (a). Note
that the effective cooling time is ∼ few hundred ns as esti-
mated below. Also, there is little change in the earliest times,
but there are noticeable changes by 30 ns, corresponding to a
few full cycles for the Rabi frequency of ≈ 2π× 27 MHz.

B. Experimental Considerations

The magnetic substructure of the two states connected
by the laser light needs to be carefully considered [4].
The 23S1 ground state has three sublevels, and the 33P2

excited state has five sublevels. (Choosing an excited 3P
state with J = 1 or J = 0 would result in fewer atoms
interacting with the light because of the selection rules,
since we assume that all three magnetic sublevels of the
ground state are equally populated by the He source.)
Therefore a given light intensity driving the 23S1 ↔ 33P2

transition results in different Rabi frequencies because of
the different Clebsch-Gordan coefficients for the different
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connected sublevel pairs. Linearly-polarized light driving
∆MJ = 0 transitions produces less variation than other
choices, so that is used. The ratio of the Rabi frequencies
is then

√
3 : 2 :

√
3. Since there is no way for us to select a

single transition experimentally, we need to compromise
on choosing the experimental laser intensity.

To simulate the effect of the multiple sublevels on the
velocity distribution, we combine the simulation results
for two values of Ω. In Fig. 6 we plot calculated results
similar to those of Fig. 5. Part (a) is for Ω = 1.17 |δ| and
part (b) is for Ω = 1.35 |δ|. Parts (c) and (d) are the 2:1
weighted sum of (a) and (b), plotted similarly to Fig. 5.

The ratio of the Rabi frequencies is 1.154 ≈ 2/
√

3 and
the weight of part (a) is twice that of part (b) in the sums
shown in parts (c) and (d) to simulate the actual atomic
structure. All four parts of Fig. 6 have a sum over the
same set of starting positions z0, and have starting times
t0 = 0. The result is that Fig’s. 6(c) and (d) are very
similar to Fig. 5, but slightly smeared.
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FIG. 6: (color online) Trajectory density plots with same laser
parameters and starting position averages as in Fig. 5. Part
(a) has Ω = 1.17 |δ| and part (b) has Ω = 1.35 |δ|. Neither
is optimum but their ratio is ≈ 2/

√
3 corresponding to the

actual Clebsch-Gordan coefficients. Part (c) is a 2:1 weighted
sum of (a) and (b) corresponding to the sublevel multiplicity,
and part (d) is a 3D view of part (c).

Our experimental choice is to vary the light intensity
over a wide range that includes the optimum Ω for each
transition [4]. Thus our measurements are shown as a
plot of the final atomic spatial distribution at the detec-
tor vs. Rabi frequency [4, 6].

C. Comparison With Experiment

To compare our simulation results with these measure-
ments, we need to calculate the atomic spatial distribu-
tion at the detector. In our experiment, atoms in a beam
of metastable He (23S1) cross the laser beams, carefully

imaged to an (adjustable) sub-mm size, at 90◦, and then
fly freely for 63 cm to an imaging detector (see Ref. [6]).
We measure cooling by the BF in the direction trans-
verse to the atomic beam by measuring changes of the
atomic spatial distribution at the detector (initially uni-
form). Since the laser and atomic beams cross very close
to the 500 µm source aperture, and the atoms spread
very little in the few hundred µm interaction region, we
approximate the source as a point. Then the calculated
transverse velocity distribution at the exit of the light
field as shown in Fig. 6(c) or (d) is readily transformed
to the spatial distribution at the detector.

However, in calculating (or measuring) the atomic ve-
locity distribution at the detector there is a further com-
plication [4, 6]. The longitudinal velocity distribution of
the atomic beam is centered at ≈ 1000 m/s but has a
FWHM of ≈ 400 m/s. Thus the 1000 m/s atoms with
a final transverse velocity of +|δ|/2k ∼ 4.3 m/s are dis-
placed by 2.7 mm at the detector. But the 400 m/s range
of longitudinal velocities causes those atoms with a given
transverse velocity to be spread over more than 1 mm
FWHM at the detector. Moreover, atoms with different
longitudinal velocities have different interaction times in
the laser beams. The consequences of this spreading is
one of the primary experimental complications that our
simulation is challenged to resolve.

Velocity distributions such as those in Fig. 6(c) or (d)
with two Rabi frequencies having the same 2:1 weight (see
Sec. III B), but also weighted by the measured longitudi-
nal velocity distribution, are used to calculate the spatial
distribution of atoms for comparison with the measure-
ments. The measurements shown in Fig. 7a can be com-
pared with the result of such a calculation as shown in
Fig. 7b. Note that the effect of the longitudinal velocity
distribution is to smear the spatial distribution consid-
erably and thereby reduce our resolution. Deconvolution
doesn’t help much because of the large size of the smear-
ing compared with the features of interest - the FWHM
of the large feature near 5 mm is ≈ 2 mm, corresponding
to > 5γ/k ≈ 3 m/s.

Nevertheless, at this point we can compare the simula-
tion results with the measurements. In parts (a) and (b)
of Fig. 7 we see clear qualitative and some quantitative
agreement in the region where the Rabi frequencies Ω are
comparable. To do this, first note that the measured Ω
of part (a) depends on the accuracy of the power meter
and on the geometrical corrections arising from the beam
shape and intensity profile. Clearly the two plots would
look much more alike if the vertical axis of part (a) were
scaled down by ≈ 12%, and this is not unreasonable con-
sidering the experimental uncertainties. Then the upper
region of part (a) is considered to have Ω ≈ 21γ and is to
be compared with the region near Ω ≈ 21γ in part (b).

The dominant features of parts (a) and (b) of Fig. 7 are
the strong depletions of atoms near v = −5 to + 3 m/s
and the large accumulation near v = +4 to +10 m/s,each
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FIG. 7: (color online) Comparison of measurements and simulation. The horizontal axes are the positions on the detector
corresponding to transverse atomic velocities, the vertical axes are the Rabi frequencies in units of γ, and the atomic density at
the detector is indicated by the colors. (The transverse velocity values above each plot are for the case of longitudinal velocity
of 1000 m/s.) Part(a) shows the measured results after ≈ 220 ns and its vertical axis corresponds to the transition between
MJ = ±1 sublevels. Part (b) shows the output of the simulation, including the effects of the two different Rabi frequencies
for the same light field. The qualitative agreement is quite good and there is significant quantitative agreement as well. The
detuning for both parts is δ = ±2π × 25 MHz ≈ ±16.7γ. Part (c) shows the atomic distribution profile from particular sections
of parts (a) and (b) (upper and lower curves respectively). The background is subtracted for the upper (experimental) curve
of part (c). See text for details.

of which spreads over a > 30% range of Ω’s. This is the
region where the BF is strong for the transitions between
the two pairs of magnetic sublevels whose Ω’s differ by
> 15%. For δ = ±16.7γ where the experiments were
done, this corresponds well with Ω =

√
3/2 |δ| ≈ 20.5γ.

These features occur without loss of atoms in the target
region of v = +4 to + 10 m/s suggesting that there is no
force at these velocities > ±δ/2k, as predicted in Ref. [3].

For a more careful comparison of the simulation results
with the measurements, we have taken line profiles from
the Ω ≈ 24γ region of part (a) and ≈ 21γ of of part
(b) of Fig. 7 (near the top of part (a) and at 20γ of
part (b)). These are plotted in Fig. 7c, with background
subtracted for the upper one (measurements). To begin,
the dressed atom model of the BF predicts that about
1/4 of the atoms will be pushed in a direction opposite
to the other 3/4, and that shows clearly in the two peaks
of both parts of Fig. 7c [3, 6]. The wide valley between
these peaks spanning v = −5 to + 3 m/s corresponds to
≈ ±δ/2k = 9.7 m/s as expected from the velocity range
of the BF [3, 6].

In our experiment (Fig. 7a) the atoms with initial ve-
locities in the wide range from v = −5 to v = +10 m/s
have been cooled into the narrower range from v =
+4 to + 10 m/s. However, comparison of Fig. 7b with
Fig’s. 6c and 6d strongly supports our claim that the
measured width of the final spatial distribution is en-
larged considerably by the effects of the longitudinal ve-
locity spread, and that measuring the transverse veloc-
ity distribution directly would produce a much smaller
width.

Thus the velocity space compression, and hence the
cooling, is stronger than suggested by Fig. 7a. By con-

trast, the wide valley in the region v = −5 to + 3 m/s is
NOT broadened by the effects of the longitudinal veloc-
ity distribution because the atoms are simply not there.
Thus we feel that the simulation results in Fig’s. 6c and
6d more accurately represent the final velocity distribu-
tion achieved in the experiment and demonstrate com-
pression by a factor of 3.

The compromise of the choice of Rabi frequencies re-
sulting from the multiple transition strengths also has
the effect of reducing the effectiveness of cooling, as seen
by comparing Fig. 6 with Fig. 5. For a single transition
at the optimum Rabi frequency, Fig. 5 shows a 4-fold
velocity space compression whereas the compression of
Fig. 6 is only 3-fold. This difference corresponds to a
factor of 16 vs. 9 in temperature.

We can contrast the result of BF cooling with what is
possible from a Doppler molasses on the same transition.
The Doppler cooling limit is given by vD =

√
2h̄γ/M

(full width). For our transition vD = 0.55 m/s, and is
well below the final distribution width attained with BF
cooling. However, the Doppler molasses capture range
is also restricted to vc = 2γ/k = 1.16 m/s (full width),
resulting in a maximum velocity space compression by
a factor of about 2. By contrast, the BF cooling has
a velocity capture range determined by the experimental
parameter δ (as opposed to the atomically determined γ)
allowing a much greater velocity space compression. It is
also important to note that the BF is able to accomplish
this in a shorter time (Doppler cooling requires many
spontaneous emissions).

We assert that these characteristics of Fig. 7 confirm
our hypothesis that laser cooling is indeed possible on a
time scale where spontaneous emission cannot make a
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significant contribution [4–6].

IV. SUMMARY AND CONCLUSIONS

We have presented the results of a series of numerical
simulations of laser cooling by the BF for conditions that
match the experimental conditions of Ref’s. [4, 6]. The
accuracy of the simulation was first tested with velocity-
space trajectories for the more commonly-used single-
frequency optical fields. Next, similar trajectories for
the BF were calculated with an interaction time of 300
ns, and these showed sensitivity to the initial conditions
(z0 and t0) of atoms in the light field. For meaningful
comparison with our experiments, this required calculat-
ing many trajectories over a span of initial conditions to
match the uncontrolled experimental conditions.

The simulations also included the severe effects of the
atomic longitudinal velocity distribution on the time-of-
flight detection technique, as well as those of the different
transition strengths arising from the multiple magnetic
sublevels of the involved states. The experiment cannot
be simultaneously optimized for these different strengths.

The simulation has reproduced the main features of the

measurements of Ref. [4], and provides additional sup-
port for the idea of laser cooling without spontaneous
emission using the BF. Additionally it shows cooling
even when spontaneous emission does occur as shown
in Fig. 3. Thus for systems that wish to reduce the
effects of spontaneous emission, the BF is a good can-
didate. Radiative laser cooling typically requires mul-
tiple absorption-spontaneous emission cycles. However,
the BF can produce cooling without spontaneous emis-
sion, and occasional spontaneous emission events do not
hinder the cooling process. This could be particularly
helpful for the direct laser cooling of molecules without
closed cycling transitions. While spontaneous emission
to additional states requiring repumping may sometimes
be necessary, the BF would reduce the level of repumping
required. Moreover, the huge strength of the BF enables
cooling in tightly confined spaces and/or very short times
[1].

We assert here that these results should further remove
the widespread controversy about laser cooling without
spontaneous emission [4–6].

We thank Martin G. Cohen for careful reading of the
manuscript and multiple suggestions.
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