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We show that measurement-based quantum computation on scalable continuous-variable (CV)
cluster states admits more quantum-circuit flexibility and compactness than similar protocols for
standard square-lattice CV cluster states. This advantage is a direct result of the macronode struc-
ture of these states—that is, a lattice structure in which each graph node actually consists of several
physical modes. These extra modes provide additional measurement degrees of freedom at each
graph location, which can be used to manipulate the flow and processing of quantum information
more robustly and with additional flexibility that is not available on an ordinary lattice.

PACS numbers: 03.67.Lx, 42.50.Ex

I. INTRODUCTION

Quantum information processing using measurement-
based quantum computing (MBQC) [1] is divided into
two steps: (1) preparation of a universal, highly-
entangled resource state (the standard choice is a cluster

state with a square-lattice graph [2]), followed by (2) a se-
quence of single-site projective measurements with feed-
forward.
The last 15 years have seen the emergence of numer-

ous extensions, improvements, and generalizations of this
basic model. Important for this work is its generaliza-
tion from cluster states made of qubits to those made of
continuous-variable (CV) quantum systems [3]. Unlike
their photonic-qubit counterparts [4, 5], optical CV clus-
ter states can be generated both deterministically and
on a large scale with minimal experimental equipment.
They need only offline squeezing and linear optics [6], all
of which can be implemented using a single optical para-
metric oscillator (OPO) [7–10]. Extremely large cluster
states of this type can be made with existing technology
based on either frequency modes [11, 12] or temporal
modes [13, 14].
Using CV cluster states for quantum computation

comes with a price. Ideal states are infinitely squeezed [3,
15]; thus, noise is introduced into the computation due to
the fact that only finite-squeezing resources (and hence,
finite energy) can be used in generating the state [15–17].
If left unchecked, this noise limits the length of computa-
tion possible using these states [18, 19]. Nevertheless, it is
still possible to achieve universal fault-tolerant quantum
computation with CV cluster states [20] by employing
known quantum-error-correction protocols [21], provided
that the experimentally achievable squeezing levels are
high enough. The current best recorded squeezing level
in an optical setup is 12.7 dB of squeezing [22], whilst the
lowest theoretical upper bound on the required squeezing
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for fault tolerant quantum computing is 20.5 dB [20].
Closing this squeezing gap in scalable CV cluster state

implementations is of paramount importance for their
use in large-scale, fault-tolerant quantum computation.
A significant step in this direction is the development of
resource-customized measurement-based protocols that
capitalize on the available squeezing in order to minimize
the noise per gate [10, 17, 23].
In the same vein, here we give a new measurement

protocol that is customized for a type of universal CV
cluster state that is particularly scalable, known as the
quad-rail lattice (QRL) [12, 14]. The generation proce-
dure of the QRL is particularly simple owing to the fact
that its graph [12, 14] is self-inverse and bipartite [8, 9].
Indeed, it needs only two-mode squeezed states (TMSSs)
and a single 4-port linear optics gate (known as a four-
splitter) as building blocks [12, 14]. This state’s graph
contains within it a square-lattice topology (making it
universal) with respect to four-mode lattice sites known
as macronodes. Our protocol leverages extra degrees
of freedom present in each macronode, resulting in im-
proved circuit compactness and flexibility. This work
extends the macronode protocol presented in Ref. [17],
which applies to the 1D resource state known as the CV

dual-rail wire [11–14, 17].

The structure of this Article is as follows: In Sec. II
we review some basics of Gaussian pure states and the
QRL [12, 14]. In Sec. III we introduce the basic compo-
nents of our measurement protocol, including encoding,
unitary gates, and measurement readout. In Sec. IV we
describe how these elements can be composed, allowing
for flexible design of quantum circuits. In Sec. V we
compare this protocol to previous work. We conclude in
Sec. VI.

II. BACKGROUND

Throughout this Article, we adopt the following con-
ventions for all modes: q̂ = 1√

2
(â+ â†), p̂ = 1

i
√
2
(â− â†).

Using [â, â†] = 1, this implies that [q̂, p̂] = i with ~ = 1.
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A. Symplectic formalism and gate definitions

The Heisenberg action of an N -mode Gaussian uni-
tary Û acting on the vector of Heisenberg-picture opera-

tors x̂ =
(

q̂

p̂

)

can be written as

Û †x̂Û = SÛ x̂, (2.1)

where we have ignored displacements and

SÛ =

(

A B

C D

)

(2.2)

is a 2N × 2N real, symplectic matrix. Some useful ex-
amples are given below.

The phase-delay gate is defined to be

R̂(θ) := exp(iθâ†â)

= exp

[

iθ

2
(q̂2 + p̂2 − 1)

]

. (2.3)

Its Heisenberg action on x̂ = (q̂, p̂)T is given by the sym-
plectic matrix

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

. (2.4)

Note that R̂(−ω δt) implements forward time evolution
for an oscillator with frequency ω over a small time inter-
val δt > 0. Thus, for positive θ, the gate R̂(θ) will delay
the oscillator by a time interval θ/ω. This motivates our
choice of terminology and sign convention for this gate.
In the Schrödinger picture, a phase delay by θ

[i.e., R̂(θ)] rotates the state’s Wigner function counter-

clockwise by an angle θ. Viewed instead from the
Heisenberg picture, this operation rotates the vector x̂ of
quadrature operators in the same fashion—i.e., counter-
clockwise by θ.

The single-mode squeezing gate we use has the fol-
lowing (nonstandard) definition:

Ŝ(s) := R̂(Im ln s) exp

[

−
1

2
(Re ln s)(â2 − â†2)

]

= R̂(Im ln s) exp

[

−
i

2
(Re ln s)(q̂p̂+ p̂q̂)

]

, (2.5)

where s ∈ R\{0} is called the squeezing factor. This is re-
lated to the more commonly used squeezing parameter r
through

|s| = er. (2.6)

This gate differs from the ordinary squeezing gate only by
an additional π phase delay when s < 0. Its Heisenberg
action on x̂ is given by the symplectic matrix

S(s) =

(

s 0
0 s−1

)

. (2.7)

In the Heisenberg picture, this evolution multiplies the
q̂ quadrature by s and the p̂ quadrature by s−1. We
define this to be what is meant by “squeezing by a factor
of s”. (In addition to the π phase delay when s < 0, this
operation anti-squeezes q̂ and squeezes p̂ when |s| > 1,
and vice versa if |s| < 1.)

The beamsplitter gate is defined to be

B̂ij(θ) := exp
[

−θ(â†i âj − â†j âi)
]

= exp[−iθ(q̂ip̂j − q̂j p̂i)], (2.8)

where sin θ is the reflectivity of the beamsplitter. Its
Heisenberg action on x̂ = (q̂i, q̂j , p̂i, p̂j)

T is given by

Bij(θ) =







cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ






. (2.9)

While this beamsplitter is often defined in the litera-
ture with additional phase delays incorporated (in order
to match the physics more closely), the definition here
matches that in Refs. [14, 17, 24] and is more suitable for
analysis of CV quantum-computing applications.
A useful property of this gate is that, up to displace-

ments, it commutes with the action of the same single-
mode Gaussian unitary gate on two-modes, i.e.,

[

B̂ij(θ), ÛiÛj

]

= 0, (2.10)

where Û is a single-mode Gaussian unitary gate without
displacements.

Proof of Equation (2.10). It suffices to check that their
symplectic matrix representations commute. Denote the
symplectic matix representation of Û by U. Then, the
symplectic matrix representation of ÛiÛj can be repre-
sented as U ⊗ I, where ⊗ is a kronecker product and
I is the 2 × 2 identity matrix. Note similarly that
B(θ) = I⊗R(θ). Clearly, these matrices commute.

The 50:50 beamsplitter gate is defined as

B̂ij := B̂ij

(π

4

)

, (2.11)

i.e., it is a special case of the above defined beamsplitter
where θ = π

4
, and the dependence on the angle is dropped

for notational convenience. Note that B̂†
ij = B̂ji.

Finally, the foursplitter gate is defined to be

Âjklm := exp
[π

4

(

(â†k + â†l )(âj − âm)− h.c.
)]

= exp
[

−i
π

4

(

(q̂j − q̂m)(p̂k + p̂l) + (q̂k + q̂l)(p̂m − p̂j)
)]

,

(2.12)
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FIG. 1. (a) Two-mode continuous-variable cluster state rep-
resented using the full graphical calculus [24] (left) and the
simplified graphical calculus [14] (right). Edge weights ε
and t are defined in Eq. (2.20) and Eq. (2.21), respectively.
(b) We similarly represent a four-mode square CV cluster
state. (c) Seven-mode state containing two inputs (green
nodes)—one is disconnected (tensor product with the rest of
the state), and the other is attached to a three-mode Gaussian
pure state.

where “h.c.” abbreviates the hermitian conjugate (†) of
the first term in the exponent. Its Heisenberg action on
x̂ = (q̂i, q̂j , q̂k, q̂l, p̂i, p̂j, p̂k, p̂l)

T is given by

Aijkl :=

(

Ã 0

0 Ã

)

, (2.13)

where 0 denotes the 4× 4 matrix of zeroes and

Ã =
1

2







1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1






. (2.14)

This gate admits the following convenient decomposi-
tions into four 50:50 beamsplitters [12, 14]:

Âijkl = B̂ijB̂klB̂ikB̂jl = B̂ikB̂jlB̂ijB̂kl. (2.15)

B. Graphical calculus for Gaussian pure states

In this Article, we will be describing the properties
of a Gaussian pure state (the QRL). For convenience,
we will represent this state by its graph [24], which is
defined using the graphical calculus for Gaussian pure
states, summarized below.
Graphs.—Given an undirected, complex-weighted

graph on N nodes with adjacency matrix Z (= ZT) and
ImZ > 0 [24], Z uniquely defines the position-space
wavefunction

ψZ(q) :=
(det ImZ)1/4

πN/4
exp

[

i

2
qTZq

]

(2.16)

of the N -mode Gaussian pure state |ψZ〉, where q is a
column vector of c-numbers. It also gives a compact de-
scription of the nullifiers of |ψZ〉:

(p̂− Zq̂) |ψZ〉 = 0, (2.17)

where q̂ = (q̂1, . . . q̂N )T and p̂ = (p̂1, . . . p̂N)T are col-
umn vectors of operators. Every Gaussian pure state
uniquely defines (up to phase-space displacements and
overall phase) an associated graph Z [24].
Graph update rule.—In the language of the graphi-

cal calculus, Schrödinger-picture evolution of a Gaussian
unitary Û can be represented up to displacements and
overall phase by a graph update rule

Û |ψZ〉 = |ψZ′〉 (2.18)

with

Z′ = (C+DZ)(A +BZ)−1 (2.19)

where the submatrices A, B, C and D are defined via
the Heisenberg action of Û , as in Eq. (2.2).
Simplified graphs.—The Gaussian pure states that we

consider in this Article are specified by few graphical pa-
rameters, i.e., edge and self-loop weights in Z. When
representing such states by their corresponding graph, it
is convenient to use a simplified set of rules known as
the simplified graphical calculus [14]. It makes use of the
following conventions: no self-loops are drawn, and the
color of an edge indicates the sign of its edge weight.
See Fig. 1(a) and (b). In addition to these (standard)
conventions, we will use differently colored nodes—green
instead of black—to denote the inclusion of an input state
localised to a single graph node, as shown in Fig. 1(c).
The self-loops (not shown) on all non-input graph nodes
have weight

iε := i sech 2r, (2.20)

where the squeezing parameter r gives the amount of
vacuum squeezing used in preparing the state [12, 14].
All edge weights between different nodes are

±Ct := ±C tanh 2r, (2.21)

which is the product of the edge-weight coefficient C
(specified on each figure) and a squeezing-dependent fac-
tor t, along with a sign ± denoted by blue/yellow, respec-
tively. Note that ε → 0 and t → 1 as the squeezing pa-
rameter r → ∞, which corresponds to the high-squeezing
limit.
Although our use of the graphical calculus strictly ap-

plies only when the input states (green nodes) are them-
selves Gaussian pure states, this choice is purely for rep-
resentational convenience. All results presented here hold
for general input states, including non-Gaussian and/or
mixed states.

C. The quad-rail lattice

The QRL can be generated from a collection of two-
mode cluster states [defined in Fig. 1(a)]1 arranged along

1 Equivalently, two-mode squeezed states can be used by incorpo-
rating a π

4
phase delay into the measurement of all nodes [25].
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FIG. 2. Simplified graphical-calculus representation [14] of the construction of the quad-rail lattice and conversion to an
ordinary continuous-variable cluster state. (a) A collection of two-mode continuous-variable cluster states. These pairs are
“stitched” together by a foursplitter gate (Eq. (2.12)) at each macronode (indicated by the red ovals) in order to construct the
quad-rail lattice. (b) This graph defines the quad-rail lattice state. (c) Measuring the top three layers (faded) of the quad-rail
lattice in the q̂ basis produces a square-lattice continuous-variable cluster state as shown. Note that each site (red circle) only
contains one mode. In the original proposal [14], universal quantum computation proceeded via the standard measurement-
based protocol [15]. Removing the extra nodes and links from (b), however, wastes squeezing resources [17]. Instead, our
proposal directly employs the state shown in (b), making more efficient use of the available resources (the advantages are
discussed in Sec. V).

edges of a square lattice by applying a foursplitter gate
[Eq. (2.12)] to each four-mode lattice site, a.k.a. a
macronode [12, 14]. The resulting QRL is defined by its
four-layered square-lattice graph, as shown in Fig. 2(b).
Further details about the generation of this state can be
found in Refs. [12, 14].
The QRL is universal for MBQC. To see this, consider

measuring the top three layers of modes in q̂ basis. Note
that such measurements can be implemented experimen-
tally via homodyne detection [12, 14]. Graphically, this
action is represented by node deletion [24], resulting in
square-lattice CV cluster state as shown in Fig. 2(c). Up
to displacements, this is the canonical resource state for
universal MBQC with CVs [3, 15]. Unwanted displace-
ments (due to q̂ measurements on the top three layers)
can be straightforwardly taken into account in the mea-
surement protocol by feedforward.
Achieving universal quantum computation this way

is not optimal, however, because projecting down to a
canonical CV cluster state results in an ordinary lattice
with C = 1

4
(instead of C = 1), which introduces exces-

sive noise when used in a computation [17]. We use the
remainder of this Article to introduce a different—and
much more favorable—MBQCprotocol that runs directly
on the full QRL, Fig. 2(b).

III. USING MACRONODES FOR MBQC

The basic idea for our new protocol is that quantum
computation can proceed via measurements on the QRL
directly (rather than first reducing to the square-lattice
cluster state). We break this section into five parts:
encoding (Sec. III A), measurements (Sec. III B), single-
mode gates (Sec. III C), two-mode gates (Sec. III D), and

measurement readout (Sec. III E).

A. Encoding

In MBQC, once the resource state is prepared, the
only allowable operations are local measurements. In
our protocol, local measurements implement logic gates
on macrolocally encoded input states. This means that
input states are localized with respect to a particular
macronode, but they are distributed nonlocally between
the four physical modes that make it up. (The reason for
this will become evident once we present our protocol.)
Each macronode admits two natural tensor-product

decompositions. The first is the usual one defined in
terms of the physical modes (P). The second—which is
more useful for our purposes—is to define four distributed
modes (D) as balanced linear combinations of the physi-
cal modes. Specifically, in the Heisenberg picture,

âD := A−1âP, (3.1)

where âP := (â1, â2, â3, â4)
T and âD := (âa, âb, âc, âd)

T.
Note that numerical (alphabetical) subscripts are used
for the physical (distributed) modes.
The mapping in Eq. (3.1) is exactly the inverse of a

foursplitter gate [Eq. (2.12)]. Figure 3 displays the QRL
with respect to the physical modes (a) and with respect
to the distributed modes (b). Notice that the former
has fence-like connections between adjacent macronodes,
while the latter consists merely of disjoint pairs. Also
notice that the graphs in Fig. 2(a) and Fig. 3(b) are vi-
sually identical. Nevertheless, they represent different
physical states because they are defined with respect to
different mode decompositions (physical and distributed,
respectively).
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FIG. 3. (a), (b) Two equivalent ways to represent the quad-rail lattice using the simplified graphical calculus [14]. The left
graph represents the state using the physical-mode decomposition of each macronode, while the right graph represents the exact
same state using the distributed-mode decomposition, with Eq. (3.1) connecting the two. Red ellipses indicate the macronodes
(4-mode subsystems) that are left invariant by the change of mode decomposition. (c) Birds-eye view of the quad-rail lattice
with respect to distributed modes with mode label conventions shown in the bottom left macronode. We include three input
states and highlight three examples of macronodes. In A, we have a “blank” macronode that contains no input states. In B
and C, respectively, one and two of the two-mode cluster states have been replaced with an input state.

For the rest of this Article, we will use distributed
modes exclusively because this allows for the simplest de-
scription of information propagation through the QRL.
We allow input states to occupy any of the four possible
distributed modes (a, b, c, d) within a macronode. Unless
otherwise specified, we assume that a maximum of two of
the distributed modes within a given macronode are oc-
cupied by an input state. This guarantees that there is at
least one two-mode cluster state per input that connects
to an adjacent macronode. This condition is required
in order to implement unitary gates (otherwise the out-
put has no place to go). Three examples of input-state
configurations are given in Fig. 3(c).

B. Macronode measurements

Our protocol implements Gaussian unitary gates on
encoded input states by locally measuring the physical
modes that make up each macronode in a rotated quadra-
ture basis p̂(θ) := p̂ cos θ − q̂ sin θ. We vectorize the mea-
surement bases for a given macronode measurement using

p̂P(θ) :=
(

p̂1(θ1), p̂2(θ2), p̂3(θ3), p̂4(θ4)
)T
, (3.2)

where θ := (θ1, θ2, θ3, θ4). Note that local measurements
with respect to the physical modes will generally cor-
respond to nonlocal (four-body) measurements with re-
spect to the distributed modes (and the inputs).
To characterize the effective logic gate implemented by

macronode measurement, we consider the two-input case
(as in C in Fig. 3(c)). This case is the most general as
the no- and single-input cases are special cases with both
or one of the inputs replaced by half of a two-mode CV
cluster state.
There are

(

4

2

)

= 6 different two-input macronode con-
figurations (as shown in Fig. 4) and thus twelve total in-

put configurations with distinct input states. In addition,
each input must be paired with a two-mode cluster state
that contains the corresponding output mode. There are
two possibilities, resulting in 24 distinct input-to-output
mode configurations. It suffices to characterize the sin-
gle case shown in Fig. 5 because all other configurations
are related to this by applying a permutation on the dis-
tributed modes prior to measurement, and this can be
taken into account by a simple change to the homodyne
angles.
To see this, define a generic permutation gate via its

four-mode symplectic matrix representation:

σ =

(

σ̃ 0

0 σ̃

)

(3.3)

where σ̃ is some 4 × 4 permutation matrix (a single 1
entry in each row and column and all other entries 0). It
is sufficient to check the commutation properties of the
four-splitter gate with each element of any generating set
of all four-mode permutation gates. Let σjk denote the
permutation gate that swaps modes j and k. Then we
have that

A−1
σ1,2A = σ2,4,

A−1
σ1,3A = σ3,4,

A−1
σ1,4A = σ2,3R2(π)R3(π), (3.4)

where R(π) is defined in Eq. (2.3). Thus, by commuting
through the four-splitter gate, each 4-mode permutation
gate σ is mapped to a combination of a new permuta-
tion gates and some single-mode π-rotation gates. These
gates can be incorporated directly into the macronode
measurements by permuting the choice of measurement
angles (e.g., θi ↔ θj) and adding π phase delays (e.g.,
θi 7→ θi + π).
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FIG. 4. Birds-eye view of six macronode configurations with
two input states and two adjacent output modes (inside the
purple boxes). We assign distributed-mode labels {a, b, c, d}
consistent with Fig. 3. Each input can be assigned to one of
the two green modes, and each can also be mapped to either
output, resulting in a total of 24 distinct processes. We omit
macronode labels and labels on the output modes.

For the case shown in Fig. 5 and neglect-
ing measurement-dependent displacements and finite-
squeezing effects (which are discussed in the proof below),
the most general Gaussian unitary that can be applied on
the two encoded input modes |ψ〉 and |ϕ〉 by measuring
in p̂P(θ) is

|ψ〉a |ϕ〉b 7→ Ĝc′d′(θ) |ψ〉c′ |ϕ〉d′ , (3.5)

where θ1 6= θ3, θ2 6= θ4, and

Ĝjk(θ) := B̂†
jkV̂j(θ1, θ3)V̂k(θ2, θ4)B̂jk. (3.6)

Sandwiched between the pair of 50:50 beamsplitters is
the single-mode unitary gate

V̂j(x, y) :=

R̂j

(

x+ y

2

)

Ŝj

(

tan

[

x− y

2

])

R̂j

(

x+ y

2

)

. (3.7)

Notice that the output states automatically emerge at
distributed modes (c′, d′) of adjacent macronodes.

Proof of Equation (3.5). We start with Fig. 6, which
shows a macronode measurement circuit where the four-
splitter is decomposed into four beamsplitters [using
Eq. (2.15)]. To go from Fig. 6(b) to Fig. 6(c) we used an
interferometric symmetry of the pair of two-mode cluster
states on modes (c, c′) and (d, d′) derived in Appendix C

of Ref. [10]: acting with B̂cd on this state is equivalent

to acting with B̂d′c′ instead [25].
Fig. 6(c) shows that macronode measurement is equiv-

alent to two copies of a gate teleportation circuit [10, 17]

conjugated by beamsplitters (B̂ab and B̂d′c′). The gate
teleportation circuits each implement

V̂ (r,mj ,mk, θj , θk) := N̂(r)D̂(mj ,mk, θj , θk)V̂ (θj , θk)
(3.8)

FIG. 5. (a) A specific case of a single macronode with two in-
put states and two adjacent output modes equivalent to Fig. 4
(e). The output mode for a is c′ and the output mode for b
is d′. (b) Quantum circuit for macronode measurement of
a general two-input macronode for arbitrary inputs |ψ〉 and
|φ〉 encoded within distributed modes a and b, respectively.
Locally measuring the physical modes is exactly equivalent to
first applying a foursplitter gate on the distributed modes and
then doing the desired measurements. Up to measurement-
dependent displacements and finite-squeezing effects, the out-
put state is given in Eq. (3.5).

where j and k are 1 and 3 (2 and 4) for the top (bottom)

subcircuit in Fig. 6(c), V̂ is defined in Eq. (3.7), and

D̂(mj ,mk, θj , θk) = D̂

[

−ieiθkmj − ieiθjmk

sin(θj − θk)

]

(3.9)

is a phase-space displacement [D̂(α) = eαâ
†−α∗â] that

depends on the homodyne angles and measurement out-
comes mj and mk associated with measuring modes j
and k. Finally,

N̂(r) = e−εq̂2/2e−εp̂2/2t2 Ŝ(t−1) (3.10)

is a non-unitary operator that applies the noise from fi-
nite squeezing to the state (after which the state must be
renormalized) [17].
The macronode measurement maps

|ψ〉a |ϕ〉b 7→ Ĝc′d′(r,m, θ) |ψ〉c′ |ϕ〉d′ , (3.11)

where m = (m1,m2,m3,m4), θ = (θ1, θ2, θ3, θ4), and

Ĝij(r,m, θ) :=

B̂jiV̂i(r,m1,m3, θ1, θ3)V̂j(r,m2,m4, θ2, θ4)B̂ij .
(3.12)

In the limit of large squeezing and when all measurement
outcomes are zero, we have:

V̂ (θj , θk) = lim
r→∞

V̂ (r, 0, 0, θj, θk), (3.13)

and so

Ĝ(θ) = lim
r→∞

Ĝ(r,0, θ). (3.14)

In the more general case, the displacements can either be
actively corrected at each step or merely accounted for
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FIG. 6. (a) Two-mode circuit representation of 50:50 beamsplitter B̂ij and B̂ji. The overall effect of this circuit on modes

i and j is to implement the identity gate. (b) Macronode measurement as in Fig. 5 but with the four-splitter gate Âabcd

replaced with four 50:50 beamsplitters, as in Eq. (2.15). (c) Restructured macronode measurement circuit equivalent to (b)
(see text for details). The vertical ordering of the modes has been changed. Modes enclosed within the red box belong to the
measured macronode. Note that the two subcircuits within the green regions are identical up to the choice of measurement
angles. Each of these subcircuits can be individually interpreted as a CV teleportation protocol with generalized homodyne
measurements [26]. Equivalently, they are each a single-macronode measurement on the CV dual-rail quantum wire, discussed
in Ref. [17].

using feedforward [15]. From this, Eq. (3.5) can be seen
as the large squeezing limit of Eq. (3.11). In the rest of
this Article, we ignore displacements and finite-squeezing
effects for simplicity of presentation.

Note that for θ1 = θ3 or θ2 = θ4, Eq. (3.7) diverges in
the squeezing factor and thus cannot represent a physical
unitary operation. Nevertheless, the case where all four
angles are equal (θ1 = θ2 = θ3 = θ4) will later be shown
to correspond to measurement readout; see Sec. III E.
Next we consider some examples of single- and two-mode
Gaussian gates that are special cases of Eq. (3.6).

C. Single-mode Gaussian unitary gates

The first examples we consider are single-mode Gaus-
sian unitary gates. Consider restricting the homodyne
angles so that

θ2 = θ1 and θ4 = θ3. (3.15)

In this case, the single-mode gates sandwiched between
the beamsplitters above in Eq. (3.6) are identical. Using
Eq. (2.10), the beamsplitters cancel resulting in

Ĝjk(θ)

∣

∣

∣

∣θ2=θ1
θ4=θ3

= V̂j(θ1, θ3)V̂k(θ1, θ3), (3.16)

which implements a pair of single-mode gates on the in-
put states. As the same gate gets implemented on both
inputs, a single macronode measurement does not allow
for the two input states to evolve independently.
Independent single-mode gates can still be applied in

the single-input case by ignoring the effect on the unused
distributed mode. A single-mode V̂ gate is sufficient to
generate arbitrary single-mode Gausian unitary gates up
to displacements (and only two applications are required
for all of them) [17].

Applying further restrictions so that θ3 = ±θ1 imple-
ments a pair of phase delays and squeezers, respectively:

Ĝjk(θ)

∣

∣

∣

∣

θ4=θ3=θ2=θ1

= R̂j(2θ1)R̂k(2θ1), (3.17)

and

Ĝjk(θ)

∣

∣

∣

∣

θ4=θ3=−θ2=−θ1

= Ŝj(tan θ1)Ŝk(tan θ1). (3.18)

D. Two-mode Gaussian unitary gates

Here we provide different restrictions on the homodyne
measurement angles θ that yield interesting examples of
two-mode gates from Eq. (3.6). Setting

θ3 = −θ1 and θ4 = −θ2 (3.19)

implements the two-mode-squeezing operation

Ĝjk(θ)

∣

∣

∣

∣θ3=−θ1
θ4=−θ2

= B̂†
jkŜj(tan θ1)Ŝk(tan θ2)B̂jk. (3.20)

We can also implement a linear-optics gate by setting

θ3 = θ1 −
π

2
and θ4 = θ2 −

π

2
. (3.21)

This implements

Ĝjk(θ)

∣

∣

∣

∣θ3=θ1−π
2

θ4=θ2−π
2

= B̂†
jkR̂j

(

2θ1 +
π

2

)

R̂k

(

2θ2 +
π

2

)

B̂jk

= R̂j(θ+)R̂k(θ+)
[

R̂j

(π

2

)

B̂jk(θ−)R̂k

(π

2

)]

, (3.22)

where θ± = θ1 ± θ2. Thus, up to some additional phase
delays, the above gate implements a variable beamsplit-
ter.
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E. Measurement readout

In addition to implementing unitary gates, we must
also be able to perform projective measurements on the
encoded states. This can be implemented directly on the
QRL, and we allow up to (all) four of the distributed
modes to be filled with inputs. Each input that shares
a macronode during measurement readout will be mea-
sured in the same homodyne basis. (This means that
modes to be measured in different bases must be located
within different macronodes.)
To measure each distributed mode within a single

macronode in the homodyne basis p̂(θ), one simply has
to apply the following restriction on the measurement
angles:

θ = θ1 = θ2 = θ3 = θ4, (3.23)

as we now show. By decomposing the foursplitter gate
Â using Eq. (2.15) and applying the beamsplitter com-
mutation relations in Eq. (2.10), it is straightforward to
verify that

[

Âijkl , R̂i(θ)R̂j(θ)R̂k(θ)R̂l(θ)
]

= 0. (3.24)

Thus, with these restricted measurements, the foursplit-
ter in the standard macronode measurement circuit as
shown in Fig. 7(a) can be commuted through the phase
delays as shown.
Measuring p̂ on all physical modes after the gate Â is

equivalent to just measuring the modes in p̂ and taking
linear combinations (given by Ã) of the measurement
outcomes:

Â†
1,2,3,4







p̂1
p̂2
p̂3
p̂4






Â1,2,3,4 = Ã







p̂1
p̂2
p̂3
p̂4






. (3.25)

The physical four-splitter that is applied can be undone
by classical post-processing (applying Ã−1) on the actual
measurement outcomes. Thus, this macronode measure-
ment is equivalent to measuring all of the distributed
modes locally in the basis p̂(θ), as shown in Fig. 7(b).

IV. CONSTRUCTING FLEXIBLE QUANTUM
CIRCUITS

In the previous sections, we saw how input states can
be encoded macrolocally [defined by Eq. (3.1)] and how
homodyne measurements on macronodes are sufficient to
implement a variety of Gaussian unitary gates [of the
form of Eq. (3.6)], as well as measurement readout. Now
we briefly describe how connected regions of macronodes
can be measured in order to implement quantum circuits.
We will start with how to construct quantum wires.

In Sec. III C we showed that for a specific configuration
of input and output modes (a 7→ c′, b 7→ d′), restricting

FIG. 7. (a) Here we show a macronode measurement circuit
with respect to the distributed modes. In the special case
of restricting measurement angles such as in Eq. (3.23), we
can commute the phase delays past the foursplitter gate us-
ing Eq. (3.24), indicated by the red arrow. (b) Acting with a
foursplitter gate immediately before a collection of p̂ measure-
ments is equivalent to only measuring in p̂ and then classically
taking linear combinations of the outcomes (post-processing).

the measurement angles so that θ1 = θ2 and θ3 = θ4, the
input states that share a macronode do not interact, i.e.,
only single-mode gates are applied. This result can be
generalized for arbitrary input and output mode configu-
rations by employing the permutation freedom discussed
in Sec. III B. By appropriately modifying the homodyne
angles, we can apply the same single-mode gates and tele-
port inputs at sites α and β to γ′ and δ′ respectively, for
any valid assignment of {α, β, γ, δ} 7→ {a, b, c, d}. We
represent this graphically as shown in Fig. 8(a) and (b).

By restricting measurements like this on a connected
sequence (i, j, k, . . . , l) of macronodes on the QRL, (up to
displacements and finite-squeezing effects) we can imple-

ment a single-mode Gaussian unitary V̂l · · · V̂kV̂j V̂i (omit-
ing dependence on homodyne angles) on an input ini-
tially encoded within macronode i and have it propagate
through the sequence of macronodes (i, j, k, . . . , l), out-
puting into macronode l. We illustrate this by way of
example in Fig. 8(c). These sequences thus act as em-
bedded quantum wires, equivalent to the CV dual-rail
wires described in Ref [17].

Multiple wires can be embedded within the QRL pro-
vided that no two wires overlap on a lattice edge. Because
we allow for up to two input states to share any macron-
ode at a given time, these wires are free to intersect and
cross one and other. Note that when two wires meet at a
macronode, the same single-mode Gaussian unitary gate
gets applied to both inputs at that macronode.

Alternatively, the macronodes that act as junctions be-
tween two wires can be used to implement a two-mode
Gaussian unitary, as discussed in Sec. III D. Therefore,
wires and intersection sites can be used to implement
single- and two-mode Gaussian unitary gates respec-
tively, and these components are sufficient to generate
arbitrary multi-mode Gaussian unitaries. Measurement
readout (homodyne detection) can be implemented by
connecting up to four wires to a given macronode and
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FIG. 8. (a), (b) Rather than labelling the modes within each
macronode to indicate how inputs are mapped onto outputs,
we introduce additional red lines that partition each macron-
ode such that the pairs of labels {α, γ} and {β, δ} share a
partition. (a) and (b) above show two examples of this. (c) A
connected sequence of macronodes {i, j, k, l} on the quad-rail
lattice. Embedding of a quantum wire within the quad-rail
lattice. We use light blue macronode coloring to indicate the
use of the restricted measurements [as in Eq. (3.15)].

measuring it with restrictions as in Eq. (3.23).
By combining these results, we have a highly flexible

means for implementing quantum circuits on the QRL.
See Fig. 9 for an example. This is analogous to a field-
programmable gate array (FPGA) since the QRL is a
versatile resource that can be configured by the user at
the “software level” into many different gate networks
by the choice of measurement bases. With access to vac-
uum input states and arbitrary displacements, these op-
erations are sufficient to implement arbitrary Gaussian
computations.
Non-Gaussian resource.—Gaussian operations alone

are known not to be universal for quantum comput-
ing [27]. Full universality can be achieved, however, by
diverting a subset of the QRL nodes to photon coun-
ters instead of homodyne detectors [14, 15]. Depending
on the particular practical implementation—which could
even include encoded qubits and error correction [20]—it
might more favorable to periodically inject non-Gaussian
resources known as magic states [20, 28] instead of count-
ing photons. We leave further discussion of such elements
to future work.

V. COMPARISON WITH PREVIOUS WORK

How does our scheme compare with other previously
established CV cluster-state protocols? Below, we com-
pare it with three alternatives, focusing on the following
four features: (1) circuit flexibility, which is the maneu-
verability of the quantum wires; (2) compactness, which
is the minimum number of sites that must be measured
in order to implement a desired class of gates; (3) noise
due to finite squeezing per gate; and (4) scalability.
Canonical CV cluster state.—The original CV

measurement-based protocol introduced in Refs [3, 15]
uses a single-rail C = 1 square-lattice CV cluster state.
Circuit flexibility is limited because the wires are gen-

FIG. 9. (Above) An example measurement scheme on the
quad-rail lattice. There are five encoded input states on the
left hand side, which we label by different arrow symbols.
We label lattice edges to indicate how these inputs propagate
along the lattice. Light blue macronode coloring indicates ap-
plication of single-mode Gaussian unitaries only [of the form
Eq. (3.16)]. Green macronode coloring indicates the applica-
tion of a two-mode Gaussian unitary, such as those described
in Sec. IIID. Orange macronode coloring is used to describe a
measurement readout step on the lattice, as in Sec. III E. (Be-
low) A quantum-circuit description of the overall Gaussian
unitary implemented above. Light blue small boxes are single-
mode Gaussian unitary gates and connected green boxes are
two-mode Gaussian unitary gates. Measurement operations
are colored orange.

erally constrained to run horizontally along the lattice,
and two-mode gates can only be applied between nearest-
neighbor wires. In general, single-mode Gaussian gates
will require four steps along the lattice [17, 29], thus lim-
iting compactness as well. The natural two-mode gate is
limited to the ĈZ gate. Noise due to finite squeezing is
known to depend on the edge weight (C = 1) [17]. As
such, the amount of noise per single-mode Gaussian uni-
tary gate is roughly similar between this protocol and the
QRL protocol introduced here. This resource state is the-
oretically convenient to analyze, which is why it is often
used for initial studies [3, 15, 20], but it is less amenable
to scalable design than macronode-based approaches (see
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Ref. [10] and references therein).
Projected quad-rail lattice.—The original CV

measurement-based protocol can be modified to
run on a C = 1

4
square-lattice cluster state [14, 17].

This resource state has the advantage that it can be
generated scalably (by the process shown in Fig. 2).
This protocol has the same features as in the C = 1 case
except with poorer noise properties [17]. Specifically, the
lower edge weight C = 1

4
means that using the QRL in

this projected fashion will introduce significantly more
noise (due to finite squeezing) than will applying the full
QRL protocol introduced here.
Bilayer square lattice.—We also consider the highly

scalable bilayer-square-lattice (BSL) resource state re-
cently introduced in Ref. [10] (on which we are authors).
Like the QRL, this state affords a similar macronode-
based protocol, which we refer to here as the BSL pro-

tocol. Like with the above two cases, circuit flexibility is
limited because quantum wires are restricted to run hori-
zontally, and the natural two-mode gates (which includes,

but is not limited to, the ĈZ gate) can only be applied be-
tween nearest-neighbor wires. In terms of compactness,
the BSL protocol is similar to the QRL protocol since
the individual wires themselves are actually CV dual-rail
wires [17]. For technical reasons, however, these wires re-
quire twice as many steps to implement each single-mode
gate (four, as compared to the usual two). This results
in poorer noise performance than the QRL protocol.
Thus, our protocol shares the strengths of the oth-

ers. It has relatively good noise performance (similar to
the canonical CV cluster state), compactness (similar to
the BSL) and scalability (similar to projected QRL and
the BSL). In addition, it is the only protocol that allows
highly flexible quantum circuit design: the extra degrees
of freedom per site allow for the quantum wires to be
more flexibly directed and even to criss-cross and inter-
sect one another, thus simplifying two-mode interactions
between initially distant wires. In addition, the broad
class of two-mode gates that can be implemented with a
single macronode measurement include two-mode squeez-
ing and a variable beamsplitter. Thus, the QRL protocol
is especially well suited to quantum-optics applications.

VI. CONCLUSION

In this Article we generalized CV measurement-based
protocols to a scalable cluster state known as the quad-
rail lattice. This came with several advantages. In par-
ticular, we found that quantum wires can be threaded
through the lattice sites, allowing for greater flexibility
in implementing quantum circuits on the cluster. Un-
like single-rail CV cluster-state wires [15], these wires are
embedded versions of the CV dual-rail wire (discussed in
Ref. [17]), and thus, they are more compact and do not
introduce excessive levels of noise due to finite squeez-
ing [17]. Our protocol is also well suited to implementing
a variety of two-mode gates at the intersection points of
these wires—such as two-mode squeezing and beamsplit-
ter gates. Thus, we have generalized the one-dimensional
macronode protocols introduced in Ref. [17] to the two-
dimensional case.
Several novel features that our protocol exhibits—

including nonlocal input states and the ability to re-
route wires—are similar to those found in generaliza-
tions of measurement-based quantum computing based
on tensor networks [30, 31]. These similarities likely stem
from their shared use of entangled pairs as basic build-
ing blocks. It is curious that these extra features are
naturally exhibited in experimentally favorable schemes
for implementing CV cluster state computations. It is
worth considering the possibility that macronode-based
qubit resource states might show similar advantages.
This work highlights the importance of focusing on

macronode-based construction methods of CV resource
states for quantum computing [10–14], which also have
the advantage of being the most scalable methods avail-
able to date. Adapting the measurement-protocol to the
quad-rail lattice—rather than converting it to the stan-
dard square-lattice resource—yields a richer, more dy-
namic mode of computation and opens further research
avenues towards closing the gap between theoretical mod-
els and experimental implementations.
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