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There are several inequalities in physics which limit how well we can process physical systems
to achieve some intended goal, including the second law of thermodynamics, entropy bounds in
quantum information theory, and the uncertainty principle of quantum mechanics. Recent results
provide physically meaningful enhancements of these limiting statements, determining how well one
can attempt to reverse an irreversible process. In this paper, we apply and extend these results to
give strong enhancements to several entropy inequalities, having to do with entropy gain, information
gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first
result is a remainder term for the entropy gain of a quantum channel. This result implies that a small
increase in entropy under the action of a subunital channel is a witness to the fact that the channel’s
adjoint can be used as a recovery map to undo the action of the original channel. We apply this result
to pure-loss, quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing
how a quantum-limited amplifier can serve as a recovery from a pure-loss channel and vice versa.
Our second result regards the information gain of a quantum measurement, both without and with
quantum side information. We find here that a small information gain implies that it is possible
to undo the action of the original measurement if it is efficient. The result also has operational
ramifications for the information-theoretic tasks known as measurement compression without and
with quantum side information. Our third result shows that the loss of Holevo information caused
by the action of a noisy channel on an input ensemble of quantum states is small if and only if the
noise can be approximately corrected on average. We finally establish that the reduced dynamics
of a system-environment interaction are approximately completely positive and trace-preserving if
and only if the data processing inequality holds approximately.
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I. INTRODUCTION

The second law of thermodynamics constitutes a fun-
damental limitation on our ability to extract energy from
physical systems B, , @] The data processing inequal-
ity represents a limitation on our ability to process infor-
mation, being the basis for most of the important capac-
ity theorems in quantum information theory HQ] The en-
tropic uncertainty principle of quantum mechanics places
a limitation on how well we can measure incompatible ob-
servables ﬂE, @] These seemingly disparate statements
have a common mathematical foundation in an entropy
inequality known as the monotonicity of quantum rel-
ative entropy @, @], which states that the quantum
relative entropy cannot increase under the action of a
quantum channel. More precisely, the quantum relative
entropy between two density operators p and o is defined
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as M]
D(pllo) = Tr{p llog p — logol}, 1)

and the monotonicity of quantum relative entropy states

that [32, 43
D(pllo) = DN (p)|IN(2)), (2)

where N is a quantum channel.

Recently, researchers have explored refinements of
these statements in various contexts, with the common
theme being to understand how well one can attempt to
reverse an irreversible process. One of the main technical
developments which has allowed for these refined state-
ments is a strengthening of the monotonicity of quantum
relative entropy of the following form @]

D(pllo) = DN (p)IN(0)) —log F(p, (R o N)(p)), (3)

where F(w,T) = ||\/c_u\/F||f is the quantum fidelity [42]
between two density operators w and 7, and R is a re-
covery channel with the property that it perfectly re-
covers the o state, in the sense that ¢ = (R o N)(0)
(see also [30, 0] for later developments and [19] for an
important earlier development with conditional mutual
information).
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Several applications follow as a consequence. Ref. HE]
gave an application in thermodynamics, proving that if
the free energies of two states are close and if it is pos-
sible to transition from one state to another via a ther-
mal operation such that there is an energy gain in the
process, then one can approximately reverse this ther-
modynamic transition without using any energy at all.
Ref. ﬂﬂ] showed how to tighten the uncertainty princi-
ple in the presence of quantum memory ﬂﬂ] with another
term related to how much disturbance a given measure-
ment causes, thus unifying several aspects of quantum
physics, including measurement incompatibility, entan-
glement, and measurement disturbance, in a single en-
tropic uncertainty relation. Finally, Ref. ] has given
an increased understanding of many well known entropy
inequalities in quantum information, such as the joint
convexity of quantum relative entropy, the non-negativity
of quantum discord, the Holevo bound, and multipartite
information inequalities.

In this paper, we continue with this theme and derive
several new results:

1. First, we give a strong improvement of the well
known statement that the quantum entropy can-
not decrease under the action of a unital quantum
channel (a channel which preserves the identity op-
erator). The bound that we derive has a rather
simple proof, following from the operator concav-
ity of the logarithm (related to the method used in
ﬂﬁ]) The main physical implication of this result
is that if the entropy gain under the action of a
unital channel is not too large, then it is possible
to reverse the action of this channel by applying its
adjoint (which is a quantum channel in this case).

2. Next, we consider the information gain of a quan-
tum measurement, a concept introduced in ﬂﬂ] and
subsequently refined in ﬂa, , ,@] The informa-
tion gain of a quantum measurement quantifies how
much data we can gather by performing a quantum
measurement on a given state. It has an opera-
tional interpretation as the rate at which a sender
needs to transmit classical information to a receiver
in order for them to simulate a quantum measure-
ment on a given state |[50]. Here, we prove that if
the information gain is not too large, then it is pos-
sible to reverse the action of the measurement and,
in the operational context, one can also simulate
the measurement well on average without sending
any classical data at all. The result also applies
if the measurement is performed on one share of a
bipartite state.

3. Third, we provide a clear operational meaning for
the notion of entropic disturbance, defined in ﬂﬁ] as
the loss of the Holevo information due to the action
of a noisy channel on an initial ensemble of quan-
tum states. We accomplish this by showing that
a small loss of Holevo information implies that the

action of the noisy channel on the input ensemble
can be approximately undone, on average. This
result answers a question left open from [12].

4. Finally, we give a refinement of the recent link be-
tween the data processing inequality and complete
positivity of open quantum systems dynamics E]
In E], it was shown that the data processing in-
equality holds if and only if the reduced dynamics
of an evolution can be described by a completely
positive trace-preserving map. Here, we show how
this result holds approximately, which should al-
low for experimental tests if desired. That is, we
show that the data processing inequality holds ap-
proximately if and only if the reduced dynamics
of an evolution are approximately completely posi-
tive and trace-preserving (see Section [VI] for precise
statements).

The rest of the paper is devoted to giving more details
and explanations of these results. We begin in the next
section by setting notation, definitions, and reviewing the
prior literature in more detail. We then follow with each
of the aforementioned results and conclude in Section [VII]
with a summary.

II. PRELIMINARIES

This section reviews background material on quantum
information, all of which is available in [47]. Let £(H)
denote the algebra of bounded linear operators acting
on a Hilbert space H. Let L£4(H) denote the subset of
positive semi-definite operators. We also write X > 0 if
X € Li(H). An operator p is in the set D(H) of den-
sity operators (or states) if p € £ (H) and Tr{p} = 1.
The tensor product of two Hilbert spaces Ha and Hp
is denoted by Ha ® Hp or Hap. Given a multipartite
density operator pap € D(Ha®@Hp), we unambiguously
write pa = Trp {pap} for the reduced density operator
on system A. We use pap, 0ap, TaB, waB, etc. to denote
general density operators in D(Ha ® Hp), while ¥ ap,
vAB, ®AB, etc. denote rank-one density operators (pure
states) in D(Ha ® Hp) (with it implicit, clear from the
context, and the above convention implying that 14, ¢4,
¢4 may be mixed if Yap, vap, ¢ap are pure). A purifi-
cation |p*)ra € Hr @ Ha of a state pa € D(H4) is such
that pa = Trr{|¢”)(¢”|ra}. An isometry U : H — H'
is a linear map such that UTU = I;;. Often, an identity
operator is implicit if we do not write it explicitly (and
should be clear from the context).

Throughout this paper, we take the usual conven-
tion that f(A) = 3., o f(a;)|i)(i] when given a
function f and a Hermitian operator A with spec-
tral decomposition A = . a;li)(i|. In particular,
A~! is interpreted as a generalized inverse, so that
A_l = Zi:aﬁéo a:1|2><z|, log (A) = Zi:ai>0 log (ai) |Z><Z|7
exp (A) = >2,.4,20 €xP (a;) [i)(i], etc. Throughout the pa-
per, we interpret log as the binary logarithm. We employ



the shorthand supp(A) and ker(A) to refer to the support
and kernel of an operator A, respectively.

A linear map Nap : L(Ha) — L(Hp) is posi-
tive if Nap (ca) € L(Hp)+ whenever o4 € L(Ha)+-
Let id4 denote the identity map acting on a system A.
A linear map Na_.p is completely positive if the map
idr ® Na_.p is positive for a reference system R of ar-
bitrary size. A linear map AN4_.p is trace-preserving if
Tr{Na—p (14a)} = Tr{7a} for all input operators 74 €
L(Ha4). It is trace non-increasing if Tr{Na_p (74)} <
Tr{ra} for all 74 € L;(Ha). A quantum channel is
a linear map which is completely positive and trace-
preserving (CPTP). A positive operator-valued measure
(POVM) is a set {A™} of positive semi-definite oper-
ators such that >, A™ = I. For X,Y € L(H), let
(X)) = Tr{X TY} denote the Hilbert Schmidt inner

product. The adjoint (MAHB)T of a linear map M_,p
is the unique linear map satisfying

(Yo, Massp(Xa)) = (Mase) (Vs), Xa),  (4)

for all X4 € L(Ha) and Yp € L(Hp). A linear
map M 4_,p is unital if it preserves the identity, i.e.,
Map(Ia) = Ip. Tt then follows that a linear map is
unital if and only if its adjoint is trace preserving. A
linear map M, p is subunital if My_5(I14) < Ip,
and this is equivalent to the adjoint of M 4,5 being
trace non-increasing. A quantum channel U : L(H4) —
L(Hp) is an isometric channel if it has the action
U(X4) = UXAUT, where X4 € L(Ha) and U : Ha —
Hp is an isometry.

A quantum instrument is a quantum channel that ac-
cepts a quantum system as input and outputs two sys-
tems: a classical one and a quantum one. More formally,
a quantum instrument is a collection {N*} of completely
positive trace non-increasing maps, such that the sum
map ». N7* is a quantum channel. We can write the
action of a quantum instrument on an input operator P
as the following quantum channel:

P—>ZNm(P)®|3:><:17|, (5)

where {|z)} is an orthonormal basis labeling the classical
output of the instrument.

The trace distance between two quantum states p,o €
D(H) is equal to |[p —o||;. It has a direct operational
interpretation in terms of the distinguishability of these
states. That is, if p or o are prepared with equal proba-
bility and the task is to distinguish them via some quan-
tum measurement, then the optimal success probability
in doing so is equal to (14 |lp— 0’|| /2) /2. The fidelity

is defined as F(p,0) = H\/_\/_H1
erally we can use the same formula to define F'(P

P,Q € L (H). Uhlmann’s theorem states that ]

- mgx|<¢U|RAUR ® 1al¢*)ral®,  (6)

|, and more gen-
Q) if
F(pA7 UA)

where |¢”) ra and |¢7)ra are purifications of p4 and o4,
respectively, and the optimization is with respect to all

isometries Ur. The same statement holds more gener-
ally for P,Q € L4(H). We will also use the notation
VF(p,0) = H\/ﬁ\/Eul to denote the “root fidelity” when

convenient. The direct-sum property of the fidelity is
that
VF(wxs, Txs

) = Z VpX(x)QX(x)\/F(wg'ng)v (7)
for classical-quantum states

wxs = ZPX
TXS = ZQX

The quantum relative entropy D(P]|Q) between P, Q €
L (H), with P # 0, is defined as |44]

D(P||Q) log QJ} (10)

if supp(P) C supp(Q) and as +oo otherwise. The relative
entropy D(P||@Q) is non-negative if Tr{P} > Tr{Q}, a
result known as Klein’s inequality ﬂﬂ Thus, for density
operators p and o, the relative entropy is non-negative,
and furthermore, it is equal to zero if and only if p =
o. The quantum relative entropy obeys the following

property:

(z]x ®ws, (8)

{z]x @75 9)

= Tr{P[log P —

D(P||Q) = D(P|Q), (11)

for P,Q,Q" € Li(H) such that Q < Q'. The follow-
ing relationship between fidelity and quantum relative
entropy is well known (see, e.g., [34]):

D(P||Q) =

The quantum entropy H (p) of a density operator p is
H(p) = —Tr{plogp}. We often write this as H(A), if
pa is the density operator for system A. The conditional
entropy of a bipartite density operator pap is equal to
H(A|B), = H(AB), — H(B),. The mutual information
is equal to I(A;B), = H(A), — H(A|B),. The condi-
tional mutual information of a tripartite state papc is

—log F(P,Q). (12)

equal to I(A; B|C), = H(B|C), — H(BJAC),. The fol-
lowing identities are well known (see, e.g., ])

H(A)p = =D(pa|la), (13)

H(A|B), = =D(pasl1a © pp), (14)

I(A;B), = D(pagllpa ® pB). (15)

The following “recoverability theorem” is an enhance-
ment of the monotonicity of quantum relative entropy
(mentioned in (B)) and was proved recently in [30], by an
extension of the methods from |4§]:

D(pllo) = DN (p)IN (o)) —log F(p, (R o N)(p)), (16)

where p € D(H), 0 € LL(H), N : L(H) — L(H) is a
quantum channel, and R is a recovery quantum channel



of the following form:

R(Q) = Tre{(I = Ty (o

Q)
+ [ den RG@. (7

— 0o

where Iy () is the projection onto the support of N (o),

T € D(H), p(t) = = [cosh(t) +1] 7" (18)

0ol

is a probability distribution on t € R,

Uy (X)) =0 X (19)

for w positive semi-definite,

Pon(@) = o 2N (N(0) 2QN (0)1/2) 2 (20)

is a completely positive, trace non-increasing map known
as the Petz recovery map m, @], and Rta w is a rotated
or “swiveled” Petz recovery map, defined as

Rt N = Z/{ 7tOPgNOZ/{N( )t (21)

In fact, the following stronger statement holds [3(]
D(pllo) = DN (p)IN(0))
- [ dtpeog PG (R 0 M), (22

— 00

which will be useful for our purposes here. The inequality
in ([8) implies the following one:

I(A; B|C), > —log F(papc, Rc—ac(ppc)),  (23)

where Re—ac¢ is defined from ([IT), by taking o = pac
and N' = Tra. This follows from the definition we gave
for I(A; B|C),, the equality in ([I4]), and the inequality
in ([I6). Similarly, the following holds as well:

I(4;B|C), > — / dt p(t)log F(panc, RY2 1 (p5c),
(24)
by taking o = pac and N = Trs. Explicitly, the action

of the recovery map R
as follows:

pac Tra O AN Operator we is given

lfit

t/2 1—at _ 14t 1+it
RPAC Tra (wc) - pAC

[IA®p5 Y wope | Pac -
(25)

III.  ENTROPY GAIN

It is well known that the quantum entropy cannot
decrease under the action of a subunital, positive, and
trace-preserving map ﬂ, E]

H(N(p)) > H(p), (26)

where p € D(H) and N : L(H) — L(H') is a subuni-
tal, positive, and trace-preserving map. This entropy
inequality follows as a simple consequence of the mono-
tonicity of quantum relative entropy (now shown to hold
for positive, trace-preserving maps Né]) That is, (26])
follows by picking ¢ = I in (@) and applying () and
that N is subunital, whereby

—H(p) = D(pllI) (27)
> DN (p)IN(D)) (28)
= DN (p)IIT) (29)
= —H(N(p)). (30)

This entropy inequality has a number of applications in
quantum information and other contexts.
The following theorem leads to an enhancement of

246):
Theorem 1 Let p € D(H) and let N : L(H) — L(H)

be a positive and trace-preserving map. Then
H(N(p)) = H(p) = D(p|NT o N)(p)).  (31)
Proof. This follows because

H(N(p)) — H(p)

= Tr{plogp} — Tr{N(p)log N (p)} (32)
=Tr{plogp} — Tf{pNT(IOgN( ki (33)
> Tr{plog p} — Tr{plog(N" o N)(p)} (34)
= DT o M), (35)

The second equality is from the definition of the adjoint.
The inequality follows from operator concavity of the log-
arithm and the operator Jensen inequality for positive
unital maps [16] (see also [40, Lemma 3.10]). m

If AV is additionally subunital @ then Theorem [II
implies that AT is trace non-increasing, which in turn
implies that D(p||[(NToN)(p)) > 0 by Klein’s inequality.
Thus, in this case, we obtain a significant strengthening
of the well known fact that the entropy increases under
the action of a subunital, positive, trace-preserving map.

The resulting entropy inequality also leads to an inter-
pretation in terms of recoverability, in the sense discussed
in HE] That is, we can take the recovery map to be

R(Y)=NI(Y) + Te{(id -NT)(Y)}7, (36)
where 7 is any state in D(H), and we get that, for all p,
H(N(p)) = H(p) = D(pl(R o N)(p)) (37)

by applying (), because (R o N)(p) > (NT o N)(p).
Note that R is a positive map if N is. We also note
that if A is subunital the quantity D(p||(R o N)(p)) can
be viewed as a measure of how much N deviates from
being an isometry, being equal to zero if A is an isomet-
ric channel and non-zero otherwise (here we could also
maximize the quantity with respect to input states p and
output states 7).



Thus, what we find is an improvement over what we
would get by applying (IG) or the main result of @]
First, there is a mathematical advantage in the sense
that A is not required to be a channel, but it suffices for
it to be a positive map. This addresses an open question
from [33] for a very special case. Some might also con-
sider this to be a physical advantage as well, given that
in some situations the description of quantum dynamical
evolutions is not given by a completely positive map (see,
e.g., [d] and references therein). Second, the remainder
term in (B7) features the quantum relative entropy and
thus is stronger than the — log F' bound in (I6]) (cf. (I2))
and the “measured relative entropy” term from HE] Fi-
nally, note that Theorem [[ represents an improvement of

some of the results from [15, 52].

A. Application to bosonic channels

Theorem[lfinds application for practical bosonic chan-
nels that have a long history in quantum information
theory, in particular, the pure-loss and quantum-limited
amplifier channels, and even all phase insensitive Gaus-
sian channels ] A pure-loss channel is defined from
the following input-output Heisenberg-picture relation:

b= yna++/1-né, (38)

where a, I;, and é are the field-mode annihilation oper-
ators representing the sender’s input, the receiver’s out-
put, and the environmental input of the channel. The
parameter 1 € [0, 1] represents the average fraction of
photons that make it from the sender to receiver. For
the pure-loss channel, the environment is prepared in the
vacuum state. Let B, denote the CPTP map correspond-
ing to this channel. A quantum-limited amplifier channel
is defined from the following input-output Heisenberg-
picture relation:

b=VGa+ VG- 1ét, (39)

where a, I;, and é have the same physical meaning as given
for the pure-loss channel. The parameter G € [1, 00) rep-
resents the gain or amplification factor of the channel.
For the quantum-limited amplifier channel, the environ-
ment is prepared in the vacuum state. Let Ag denote
the CPTP map corresponding to this channel.

One of the critical insights of @] is that these channels
are “almost unital,” in the sense that

B,(I) =n"'1, Ac(I) = G, (40)

and that their adjoints are strongly related, in the sense
that

Bj7 - 7771-'41/1;7 (41)
Al =GBy 6. (42)

Observe that the pure-loss channel is superunital and the
amplifier channel is subunital. These facts allow us to

apply Theorem [Mland the fact that D(p||co) = D(p||o) —
log ¢ for ¢ > 0 to find that

H(By(p)) = H(p) = D(p|(AL © By)(p)) +logn, (43)
H(Ac(p)) — H(p) = D(pl|(By, o Ac)(p)) +log G. (44)
These bounds demonstrate that a quantum-limited am-
plifier suffices as a reversal channel for a pure-loss chan-
nel and vice versa. Note that the above reversal is only
good for weak losses and weak amplifiers (i.e., if n &~ 1 or
G ~ 1). We can also conclude that
H((Ag o By)(p)) — H(p) =
D(pl[(Arjy © Bijg © Ac o By)(p)) +log[nG], (45)

because

(Ag o B, = [nG] ™" Ay, 0 By . (46)

The above bound applies to any phase insensitive quan-
tum Gaussian channel, given that any such channel can
be written as a serial concatenation of a pure-loss channel
and a quantum-limited amplifier channel m, |2_1|]

B. Optimized entropy gain

In B], the minimal entropy gain of a quantum channel
was defined as

GN) = inf [H(N(p)) — H(p)], (47)

p

and the following bounds were established for a channel
with the same input and output Hilbert space H:

—logdim(H) < G(N) < 0. (48)

(See also [25-127] for related work.) Applying Theorem [I
gives the following alternate lower bound for the entropy
gain of a quantum channel:

GWN) > ilf,ng(pH(/\fT o N)(p))- (49)

C. Entropy gain in the presence of quantum side
information

A generalization of the entropy inequality in (1) holds
for the case of the conditional quantum entropy, found
by applying the same method:

Corollary 2 Let pap € D(HAa®HEB) and Na_, 4 ®idp :
L(Hap) — L(Ha ) be a positive and trace-preserving
map. Then

H(A'|B), — H(A|B),
> D(pasll(Nasa) o Nassa)(pag)), (50)

where cap = (Nasar @idg)(pas)-



Proof. This follows by applying Theorem [Il and defini-
tions. From Theorem [Il we can conclude that

H(A'B), — H(AB),
> D(pasl|(Nassa)T o Nassar)(pag)).  (51)
Consider also that
H(A'B), — H(AB),
=H(A'B), — H(B), — [H(AB), — H(B),]  (52)
— H(A'|B), — H(AB),, (53)

where we have used that H(B), = H(B),-.
these gives (B0). m

Combining

Remark 3 In the above corollary, note that we need
not necessarily take the map Na_sa to be completely
positive—we merely require that Na_. 4 ®idg be a pos-
itive map. For example, if system B is a qubit, then we
only require N'a_,ar to be two-positive in order for the
corollary to apply.

IV. INFORMATION GAIN

Groenewold originally defined the information gain of
a quantum instrument {A/*}, when performed on a quan-
tum state py, as follows [22]:

Ic({N"}, pa) = H(pa) = > px(@)H(p%),  (54)
where

xT
o = MoaPa) ) TN o) (59)
px(x)

This definition was based on the physical intuition that
information gain should be identified with the entropy
reduction of the measurement. However, it was later re-
alized that the entropy reduction can be negative, and
that this happens if and only if the instrument is not an
efficient measurement (an efficient measurement is such
that each N'* consists of a single Kraus operator m, @])
Apparently without realizing the connection to Groe-
newold’s information gain of a measurement, Winter con-
sidered the operational, information-theoretic task @]
of determining the rate at which classical information
would need to be communicated from a sender to a re-
ceiver in order to simulate the action of the measurement
on a given state (if shared randomness is allowed for free
between sender and receiver). He called this task “mea-
surement compression,” given that the goal is to send the
classical output of the measurement at the smallest rate
possible, in such a way that a third party would not be
able to distinguish the output of the protocol performed
on many copies of ¢4, from the same number of copies

of the following state:

orx = Y Tra{(idr @NG_ 4)(9ha)} @ ) (2]x, (56)

x

where ¢/, , is a purification of p and {|z)} is an orthonor-
mal basis for the classical output X of the measurement.
He found that the optimal rate of measurement compres-
sion is equal to the mutual information of the measure-
ment [(R; X),.

After Winter’s development, Ref. ﬂﬂ] suggested that
the information gain of the measurement should be de-
fined as its mutual information. The advantage of such
an approach is that the mutual information I(R; X), is
non-negative and has a clear operational interpretation.
Furthermore, it is equal to the entropy reduction in (G4)
for efficient measurements ] and thus connects with
Groenewold’s original intuition.

Winter’s result was later extended in two different di-
rections. First, Ref. @] allowed for a correlated initial
state pap, shared between the sender and receiver before
communication begins. In this case, the optimal rate
at which the sender needs to transmit classical informa-
tion in order to simulate the measurement is equal to
the conditional mutual information I(R; X|B)., where
the conditional mutual information is with respect to the
following state:

wrpx = Y Tra{(idr QN5 4)(hap)} @ [2)(z]x,

(57)
and ¢, ,5 is a purification of pap. We can thus call
I(R; X|B),, the information gain in the presence of quan-
tum side information (IG-QSI), and the information-
processing task is known as measurement compression
with quantum side information [49]. In general, the IG-
QST is smaller than I(RB; X )., which is the rate at which
classical communication would need to be transmitted if
the receiver does not make use of the B system. The
other extension of Winter’s result was to determine the
rate required to simulate the instrument on an arbitrary
input state, and the optimal rate was proved to be equal
to the optimized information gain

max [ (R; X),, (58)
p

where the optimization is with respect to all input states
pa leading to a purification ¢% , 6.

A. General bounds on the information gain

Let us consider now the channel N associated to a
quantum instrument {N*}, as defined in (@]). By defining
the state o4/ x as

oax =Nasax(pa) (59)
SN ® el (60)

=> px(x)ph @ |2)(2]x, (61)



Theorem [l in this case gives
H(A'X), — H(A),
= H(X)o + Y px(@)H(ph) — H(pa)  (62)

=H(X)o —Ic({N"}, pa) (63)
> D(pall(NT o N)(pa)), (64)

namely,
Ic({N"}, pa) < H(X)g — D(pal[(NT o N)(pa)). (65)

The above upper bound on Groenewold’s information
gain is valid for any quantum instrument {N*} and any
state p.

A much tighter bound can be given if the instru-
ment is efficient. In this case, it is easy to prove
that the channel A/ defined in (B]) is always subunital.
This a consequence of the fact that, if N5_, ,,(Ca) =
Vi aVAGCa/AG (VS 4)T, where A% are POVM el-
ements and V¥, ,, are isometries, then N5, ,, (14) =
Vi A5 (VS 4)T < 14, for all . Moreover, for effi-
cient measurements Groenewold’s information gain and
the mutual information of the measurement I(R; X ), are
equal [11].

Thus, for efficient quantum instruments, Theorem [I]
leads to the following bound:

H(X), = I(R; X), = H(X|R), (66)
> D(pall(RoN)(pa). (67

where R is a recovery channel independent of p. In
other words, whenever the reference R and the clas-
sical outcome X are almost perfectly correlated, i.e.,
H(X|R), =~ 0, then the action of the instrument on the
input state p can be almost perfectly corrected on aver-
age, i.e., D(pal|(RoN)(pa)) =~ 0.

We notice here that the quantity in (66) has been
given an interesting thermodynamical interpretation in
Ref. @], so that the above bound can be seen as a
strengthening of the second law for efficient quantum
measurements.

The above bound also provides a way to quantify, in an
information-theoretic way, “how close” a given POVM is
to the ideal measurement of an observable: one just need
to prepare a state p that commutes with that observable
(for example, the maximally mixed state 1/d) and feed
it through an efficient measurement of the given POVM.
The entropy difference in (G0 is then a good indicator of
such a “closeness,” being null whenever the POVM cor-
responds to a sharp measurement along the diagonalizing
basis. This method is somewhat similar to the approach
introduced in Ref. [10].

B. Information gain without quantum side
information

In what follows, we demonstrate how the refined en-
tropy inequalities in (22)) and ([24) have implications for

the information gain of a quantum measurement, both
without and with quantum side information. We begin
with the simpler case of information gain without quan-
tum side information, a scenario considered in ﬂﬂ] The
theorem below gives a lower bound on the information
gain in terms of how well one can recover from the action
of an efficient measurement. It can be viewed as a corol-
lary of the more general statement given in Theorem
in the next section.

Theorem 4 Let p € D(Ha) and {N*} be a quantum
instrument, where each N* : L(Ha) — L(Har). Then
the following inequality holds

I(R;X)UZ—1OgF(URx,UR®Ux). (68)

If the quantum instrument is efficient, then the above
inequality implies that

I(R; X)y > —2log | > px(x)VF UL L 4($5.), Oha) |

(69)
for some collection {U%,_, 4}, where each U%,_, 4 is an
isometric quantum channel, ¢34, is a purification of p%,

defined in [B3), and px(x) is defined in (BH).

Proof. The inequality in (68) is a simple consequence of
([@3@) and [@2). The inequality in (@) follows because

VF(orx,0r®0x) = pr(x)\/f( 7> 9R)- (70)

Applying Uhlmann’s theorem (see (@), we can conclude
that there exist isometric channels U%,_, , such that
F(oF, d%) = FUZ _ 4(dFa), Pra) for allz. m

The implication of the inequality in (69) is that if the
information gain of the measurement is small, so that

I(R; X), =~ 0, (71)

then it is possible to reverse the action of the measure-
ment approximately, in such a way as to restore the post-
measurement state to the original state with a fidelity

Y px(@VEUS S A($Fa), 0ha) = 1. (T2)

We can thus view this result as a one-sided information-
disturbance trade-off. Note that ﬂl_lL Theorem 1] contains
an observation related to this. The observation above is
also related to the general one from @], but the result
above is stronger: an inability to find correction isome-
tries, which leads to a small fidelity, is a witness to having
a large information gain I(R; X),, due to the presence
of the negative logarithm in (69]).

The inequality in (E9) also has an operational implica-
tion for Winter’s measurement compression task. If the
information gain is small, so that (ZI) holds, then the
sender and receiver can simulate the measurement with
a high fidelity per copy of the source state, in such a way



that the sender does not need to transmit any classical
information at all. The receiver can just prepare many
copies of p4 locally, perform the measurements, and de-
liver the outputs of the measurements as the classical
data. This situation occurs because the reference system
R is approximately decoupled from the classical output,
in the sense that F(orx,0p @ ox) ~ 1 if I(R; X), = 0.

C. Information gain with quantum side information

We can readily extend the above results to the case of
quantum side information, by employing the inequality
in ([23). This leads to the following theorem:

Theorem 5 Let pap € D(Ha ® Hp) and {N*} be a
quantum instrument, where each N* : L(Ha) — L(Ha/).
Then the following inequality holds

I(R;X|B), >

-2 [ "t p(t) log [me)ﬁ(wz]gﬁz”?(w%)) ,

(73)
where
WRBX = ZTFA'{NZ_)A/ (Prap)} @ lz)(zlx,  (T4)
S ap 15 a purification of pap,
Nf&—m&’ (le})%AB)
wt o, = NAA\PRrAR) 75
RBA px (I) ( )
px(x) = Tr{Ni_, 4 (dRap)} (76)
{px(z)RE t/2} is a quantum instrument defined by
. 2 1—it _ 11—t _ 1+t 2 1+4it
Ry (wnp) = (wh) 7 wp * (wrp)wp © (wh) *_,
(77)

and p(t) is defined in [AR). If the instrument {N®} is
efficient, then the following inequality holds as well:

I(R; X|B)., > 2/ dt p(t longpX ) Fot

3

(78)
for some collection {U%", .}, where
T x,t/2
Fry = F(@hpa (RE 0 UL 1) (0hpa))  (79)

t . . .
and each Uy", ,, is an isometric quantum channel.

Proof. We begin by proving the inequality in ([73]). Con-
sider that

I(R;X|B), >

- / dt p(t)log F(wrpx, R, 5y (WrB)),

— 0o

(80)

where

t/2 1—2“ _1—2“ _1+2it 1+2n
Ry px(WrB) = wpk wp WRBWp wWpx >

(81)

which is a direct consequence of ([24]). By a direct calcu-
lation, we find that

ZPX

with Rgtﬂ defined in ([77). This then leads to the in-
equality in ([73), by applying the direct sum property
of fidelity. The inequality in (Z8) is an application
of Uhlmann’s theorem, after observing that the rank-
one operator R5"/?( g a) purifies RB ¥2(wrp) and the
rank-one operator wfp 4, purifies wip. The aforemen-
tioned operators are rank-one if the measurement is effi-
cient (which is what we assumed in the statement of the
theorem). m

The implications of Theorem [0 are similar to those
of Theorem Ml except they apply to a setting in which
quantum side information is available. If the information
gain of the measurement is small, so that

RB/iBX WRB |£L' $|X®R /(wRB) (82)

I(R; X|B)., = 0, (83)
then it is possible to reverse the action of the measure-
ment approximately, in such a way as to restore the post-
measurement state of systems RA’ to the original state
on systems RA with a fidelity larger than

[ dt p(t ZPX

This follows from the concavity of the fidelity. The rever-
sal operation consists of two steps. First, Bob performs

the instrument {px ()R 1/ *}. He then forwards the out-
comes to Alice, who performs a channel corresponding
to the inverse of the isometric quantum channel Zx[ﬁi A
Then, the average fidelity is high if the information gain is
small. We can view this result as a one-sided information-
disturbance trade-off which extends the aforementioned
one without quantum side information.

The inequality in (78] also has an operational implica-
tion for measurement compression with quantum side in-
formation [49]. If the IG-QSI is small, so that (&3) holds,
then the sender and receiver can simulate the measure-
ment with a high fidelity per copy of the source state,
in such a way that the sender does not need to transmit
any classical information at all. The receiver can just

(84)

ztwl

perform the instrument {px(:v)R%’t/ *} with probability
p(t) on the individual B systems of many copies of pap
and deliver the classical outputs of the measurements
as the classical data. This situation occurs because the
X system of wrpx is approximately recoverable from B
alone, in the sense that [~ dt p(t) >, px(x)y/Foy ~ 1
if I(R; X|B)., ~ 0. This latter result might have implica-
tions for quantum communication complexity (cf. M])



V. ENTROPIC DISTURBANCE

Ref. [12] (see in particular Section 5 therein) consid-
ered the possibility of introducing an entropic measure
of average disturbance as follows. Imagine that an ini-
tial ensemble of quantum states £ = {px (z); p% }» is fed
through a quantum channel N : L(H ) — L(H /). Con-
sider the Holevo information of the initial ensemble &:

X(E) = H(p%) = > px(x)H(ph), (85)

where pi denotes the average quantum state
> .px(x)p%. By the monotonicity of the Holevo
information, the following inequality holds

Ax(&) = x(&) = x(N(£)) = 0, (86)

where by N(&)
{px (@); N(p%)}a-

It is known that the condition Ay(£) = 0 implies the
existence of a recovery CPTP linear map R : L(H /) —
L(H.4) such that

we mean the output ensemble

RoN(pi) = pi, (87)

for all  [23]. In Ref. [12] the question was considered,
whether a similar conclusion would hold also in the ap-
proximate case, but an answer was given only in the case
in which the input ensemble consists of two mutually
unbiased bases distributed with uniform prior, as done
in [17].

Recent results about approximate recoverability give a
solution to this problem, by demonstrating that there ex-
ists a recovery channel that can approximately recover if
the loss of Holevo information is small. In fact, a special
case of this problem was already solved in , Corol-
lary 16] when A is a measurement channel. Here we
establish the following more general theorem:

Theorem 6 Let £ = {px(x),p%} be an ensemble of
states in D(Ha) and N : L(Ha) — L(Ha) a quan-
tum channel. Then there exists a recovery channel R :
L(Ha) = L(Ha) such that

X(E) = XN (€)
> —210g 3 px (@)VE(ph, (RoN)(p%)).  (88)

Proof. Introduce an auxiliary system X and the bipar-
tite classical-quantum state

pxa =y px(@)|z){zlx @, (89)

where the vectors {|x)} are orthonormal in the Hilbert
space Hx. In an analogous way, we also write

oxar =Y px(@)le)(zlx © Nassa (ph)- (90)

Then,

X(€) = x(N(€))

= I(X; A), — I(X; A"), (91)
= —H(X|A), + H(X|A"), (92)

= D(pxalllx ®pa)

— D((idx ®@Naar)(pxa)ll(idx @Naa)(Ix ® P(x))j
93

We now invoke (], noticing that, in this case, the op-
erator o has the special form Ix ® p4 and the noise acts
only locally, i.e., it has the form idx ®/Na_, 4-. These two
facts together imply that (I6]) can be written in this case
as follows:

X(€) =x(N(€))
> —log F(pxa, (idx ®Rar—a)(oxar)), (94)

where R : L(Ha') — L(Ha) is a suitable recovery chan-
nel. Finally, we make use of the direct sum property of
the fidelity in () to establish (8Y). =

VI. COMPLETELY POSITIVE
TRACE-PRESERVING MAPS AND QUANTUM
DATA PROCESSING

and the Alicki-Fannes—Winter inequality ,@] lead to a
robust version of the main conclusion of |9], which links
the data processing inequality to complete positivity of
open quantum systems dynamics.

There, the problem of open quantum systems evolution
in the presence of initial system-environment correlations
was considered. In fact, if the system and its surrounding
environment are correlated already before the interaction
governing their joint evolution is turned on, then in gen-
eral there does not necessarily exist a linear (let alone
positive or even completely positive) map describing the
reduced dynamics of the system [§]. Ref. [9] proposed to
use the quantum data-processing inequality as a criterion
to establish whether the system’s reduced dynamics are
compatible with a CPTP linear map or not.

The operational framework considered in ﬂg] can be
summarized as follows:

This section demonstrates how the ineEuality in (23)

1. It is assumed that possible joint system-
environment states belong to a known family
of states that constitutes the promise to the
problem. It is also assumed that such a family is
“steerable,” namely, that there exists a tripartite
density operator prgr such that the reference
R is able to steer all possible bipartite system-
environment states in the family. Such a condition
encompasses essentially all cases considered in
the literature.  We therefore assume that, at
some initial time ¢ = 7, the system-environment
correlations can be described by means of one
given tripartite state pror.



2. Moving to the next instant in time, t = 7 + A, the
system-environment pair has evolved according to
some isometry V : QF — Q'E’, while the reference
R remains unchanged. The tripartite configuration
PrQE has correspondingly evolved to the tripartite
configuration ogg g = (Ir®VoE)prOE (IR®VQTE).

3. Only at this point we focus on the reduced
reference-system dynamics (i.e., the transformation
mapping prg to orq), checking whether these are
compatible with the application of a CPTP lin-

ear map on the system Q) alone. More explicitly,
we check whether there exists a CPTP linear map

£ : @ — @' such that ORQ = (idR ®8Q)(/)RQ).

The following theorem generalizes to the approximate
scenario the insight provided in Ref. [d].

Theorem 7 Fizx a tripartite configuration pror. Sup-
pose that the data processing inequality holds approx-
imately for all joint system-environment evolutions
VQE—)Q’E’; i'e'i

I(R;Q")e < I(R;Q), + e, (95)
where € > 0 and
ORQ'E' = VQE—»Q’E’pRQEVgE_)QIE/' (96)

Then the conditional mutual information is nearly equal
to zero:

I(R; E|Q), <&, (97)

and the reduced dynamics are approzimately CPTP, i.e.,
to every unitary interaction Vor_q g/, there exists a
CPTP map Eg_q' such that

—log F(orq; E@-q (PRQ)) < €. (98)

Proof. We begin by proving ([@7) with the same ap-
proach used in @] Consider the particular evolution in
which Q' = QF and system E’ is trivial. The assumption
that data processing holds approximately gives that

I(RQQ)/) +e> I(R§ Q/)a = I(R§ QE)p' (99)

We can rewrite this inequality using the chain rule for

conditional mutual information as
e > I(R;QF), — I(R;Q), = I(R; E|Q),, (100)

which proves ([@7). Now, from the inequality in [23]), we
know that there exists a recovery map Rg_.qr such that

I(R; E|Q), > —log F (prqoE; Ro—qE (Pr@))  (101)

Since the fidelity is invariant with respect to unitaries,
we find (abbreviating Vor_q g as V) that

F(proE; Ro-qE (PRQ))

= F (VproeV',VRq-qE (pro) V1) (102)
= F (0rq'e':VRa-qE (PrQ) V') (103)
< F (O'RQ/,TI"E/ {V'R,QQQE (pRQ) VT}) , (104)
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where the inequality follows from monotonicity of fidelity
under the discarding of subsystems. By defining the

channel
Eqoq () =Trp {VQE—>Q’E’RQ—>QE () VQTE—>Q’E’} ;
(105)
we find that
e > —logF'(orq, Eq—q (PRQ)) (106)

establishing (O8)). m
The following theorem provides a converse.

Theorem 8 Suppose that the reduced dynamics are ap-
prozimately CPTP, i.e., that to every unitary interaction
Vor—q e leading to

org = Trp {VQE*Q’E’pRQEVQ];EﬂQ’E’}v (107)
there exists a CPTP map Eg_q such that
1
llone —£ana (ora)l, <5 (108)

where € € [0,1]. Then the quantum data processing in-
equality is satisfied approximately, in the sense that

I(R;Q")s <I(R;Q),

+2elog|R|+ (1+¢)ha(e/ (1 +¢)), (109)

and the conditional mutual information is nearly equal to
zero as well:

I(R; E|Q), < 2clog|R| + (1 +¢) ha(e/ (1 4+¢)). (110)

Proof. This follows directly from the assumption in
(I08), the Alicki-Fannes-Winter inequality, and the
quantum data processing inequality:

I(R;Q')o

= H(R), — H(R|Q'), (111)
= H(R)e(p) — H(RIQ)o (112)
< H(R)g(p) — H(R|Q )e(p)
+2elog |R|+ (1 +¢) ha(e/ (14 ¢)) (113)
=I(R;Q")e(p)
+2¢clog |R|+ (1 +¢) ha(e/ (14 ¢)) (114)

<I(R;Q), +2clog|R|+ (1 4+¢)ha(e/ (1 4+¢)). (115)

The inequality for conditional mutual information follows
the same reasoning we used to arrive at (I00). m

VII. CONCLUSION

We have shown how recent results regarding recover-
ability give enhancements to several entropy inequalities,



having to do with entropy gain, information gain, dis-
turbance, and complete positivity of open quantum sys-
tems dynamics. Our first result is a remainder term for
the entropy gain of a quantum channel, which for uni-
tal channels is stronger than that which is obtained by
directly applying the results of @, ] This result im-
plies that a small increase in entropy under a subunital
channel is a witness to the fact that the channel’s ad-
joint can be used as a recovery channel to undo the ac-
tion of the original channel. Our second result regards
the information gain of a quantum measurement, both
without and with quantum side information. We find
here that a small information gain implies that it is pos-
sible to undo the action of the original measurement (if
it is efficient). The result also has operational ramifica-
tions for the information-theoretic tasks known as mea-
surement compression without and with quantum side
information. Our third result provides an information-
theoretic measure of disturbance, introduced in ﬂﬁ], a
strong operational meaning. We finally provide a robust
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extension of the main result of [J], establishing that the
reduced dynamics of a system-environment interaction
are approximately CPTP if and only if the data process-
ing inequality holds approximately.
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