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We show that a quantum-limited phase-preserving amplifier can act as a which-path information
eraser when followed by heterodyne detection. This ‘beam splitter with gain’ implements a continuous
joint measurement on the signal sources. As an application, we propose heralded concurrent remote
entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar
qubit-cavity pairs can be made indistinguishable by simple engineering of the cavity driving fields
providing further experimental flexibility and the prospect for scalability. Additionally, we find an
analytic solution for the stochastic master equation—a quantum filter—yielding a thorough physical
understanding of the nonlinear measurement process leading to an entangled state of the qubits.
We determine the concurrence of the entangled states and analyze its dependence on losses and
measurement inefficiencies.

I. INTRODUCTION

Spatially separated objects can be entangled by the
measurement backaction [1–3] of a joint measurement. In
the process of concurrent remote entanglement generation,
two remote stationary qubits are first entangled with sep-
arate flying qubits and which-path information is erased
from them by interference effects [4, 5]. A subsequent
measurement of the flying qubits can then implement a
joint measurement with a backaction that projects the
stationary sources to an entangled state, demonstrated
in various atomic and solid state systems [6–12] through
coincidence detection of photons [13]. In this concurrent
scheme, entanglement generation occurs purely by mea-
surement backaction; the entangled qubits exchange no
information, not even unidirectionally. There need be no
causal connection between the qubits. This represents an
important conceptual difference from consecutive remote
entangling configurations [3, 14] with unidirectional ex-
change of information due to both qubits seeing the same
photon field.

Generating entanglement is a necessity for quantum
communication, cryptography and computation [15–17].
The concurrent configuration promotes scalability and
modularity of a quantum network, allowing entangling
operations between arbitrary nodes through routing inde-
pendently generated parallel signals to a quantum eraser.
Compared to consecutive configurations, high entangle-
ment fidelity is harder to achieve since the single-qubit
information is more exposed to losses. However, the
concurrent method provides better on-off ratio for the
effective entanglement since, with use of directional ele-
ments, no parasitic signal could in principle propagate
from one qubit to the other.

We show that a quantum-limited phase-preserving am-
plifier can be used as a quantum eraser for the which-path
information for concurrent microwave signals (Sec. II).
When followed by detection of both quadratures of the
amplified output signal, this novel ‘beam splitter with
gain’ can implement continuous joint measurement on
the remote signal sources. The quantum eraser config-
uration is general for systems involving continuous vari-

ables [18, 19]. For concreteness, in Sec. III we propose
and analyze remote entangling for superconducting qubits
coupled to traveling continuous microwave signals (see
also Ref. [20]). Analogously to the spatiotemporal mode
shapes, the single-qubit information from dissimilar cavity-
qubit pairs (unequal dispersive coupling or decay rates)
is carried by the unequal temporal measurement ampli-
tudes. However, because the measurement amplitudes
depend on the cavity dynamics, they can be made indistin-
guishable through simple engineering of the cavity driving
amplitudes, reinforcing the scalability and experimental
flexibility of the entangling scheme. In Sec. IV we derive
an analytic solution for the qubits’ stochastic measure-
ment dynamics and analyze the fidelity of the resulting
entanglement with realistic estimates before concluding
in Sec. V.

II. PHASE-PRESERVING AMPLIFIER AS
A WHICH-PATH INFORMATION ERASER

Quantum-limited phase-preserving amplification can
be implemented through non-degenerate parametric am-
plification. In this process two distinct incoming modes,
denoted here as the signal and the idler at the frequencies
ωsi and ωid, are coupled to a strong pump mode by a
nonlinear three-wave mixing element yielding amplified
outgoing modes. We will first summarize the derivation of
the amplifier input-output relations [21] before analyzing
the erasure of the which-path information.

A. Input-output relations

We consider now a device with two ports and for each
port we separate the incoming and outgoing modes. The
device is operated in reflection but in the visualizations
(see Figs. 1-2) we draw it in transmission for conceptual
simplicity. For a reflective device, the signal input âsi,in(t)
and output âsi,out(t) are related to the internal mode of
the device âsi(t) through the coupling strength κsi [22]:

âsi,out(t)− âsi,in(t) =
√
κsiâsi(t). (1)
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Because the internal mode is coupled to the external
modes, it becomes damped at the rate κsi and driven
with √κsiâsi,in(t):

˙̂asi(t) = − i
~

[âsi(t), Ĥa]− κsi

2 âsi(t)−
√
κsiâsi,in(t). (2)

Similar equations hold for the idler mode âid(t). To solve
for the outputs as a function of the inputs in Eqs. (1)-(2),
we need to know the internal dynamics. For that pur-
pose and for concreteness, we take the quantum-limited
phase-preserving amplifier to be realized with a Joseph-
son parametric converter amplifier (JPC) [23–25], whose
Hamiltonian is a three-wave mixer,

Ĥa/~ =
∑

k=p,id,si
ωkâ

†
kâk − iλ̃â†siâ

†
idâp + iλ̃∗âsiâidâ

†
p. (3)

To operate the device as an amplifier, the pump mode
âp is driven strongly at the frequency Ω = ωsi + ωid such
that it reaches a steady state âp(t) = αpeiΩt + â′p(t). The
pump mode provides the energy for the amplification. By
ignoring the remaining quantum fluctuations in âp(t) and
going into the frame rotating at the eigenfrequencies of
the signal and the idler modes, the resulting dynamics is
set by the Hamiltonian

Ĥ ′a/~ = −iλâ†siâ
†
id + iλ∗âsiâid, (4)

where λ = |λ|eiϕ = αpλ̃ is the effective amplification
strength. Using this Hamiltonian in Eq (2), the input-
output relations (1) can be expressed in the frequency
domain as (see Ref. [21] for details):

âsi,out(ω) = g(ω)âsi,in(ω) + eiϕ
√
|g(ω)|2 − 1â†id,in(ω),

(5a)

âid,out(ω) = g(ω)âid,in(ω) + eiϕ
√
|g(ω)|2 − 1â†si,in(ω).

(5b)

The gain factor g(ω) and the amplification bandwidth D
are

g(ω) =
√
G− idκ ωD + 2Dκ

ω2

D2

−1− i ωD + 2Dκ
ω2

D2

, (6a)

D = 1√
G+ 1

κidκsi

κid + κsi
, (6b)

where the total coupling rate κ = κsi + κid, the coupling
asymmetry dκ = (κid − κsi)/κ and the power gain

√
G =

|g(0)| = (κsiκid + 4|λ|2)/(κsiκid − 4|λ|2).
In the limit of a wide amplification bandwidth D, i.e.,

when the input signals are slowly changing with respect to
the time scaleD−1, the gain factor g(ω) (6a) is a frequency
independent constant to leading order (the zeroth order)
in ω/D. This implies time-local input-output relations:

âsi,out(t) =
√
Gâsi,in(t) +

√
G− 1â†id,in(t), (7a)

âid,out(t) =
√
Gâid,in(t) +

√
G− 1â†si,in(t), (7b)

Figure 1. (a) Schematic of a quantum-limited phase-preserving
amplifier (large triangle) and subsequent heterodyne detection
of both quadratures; (b) An equivalent, high-gain representa-
tion using a 50-50 beam-splitter (BS) and two phase-sensitive
amplifiers (triangles).

expressed in the frame rotating at the resonance frequen-
cies; see Fig. 1(a). For simplicity we have ignored the
phase between the idler and the signal ports. The next-
to-leading order contribution is to ignore the second order
terms ω2/D2 but keep the first order terms in Eq. (6a),
resulting in temporally non-local but causal responses
with a delay kernel of the type

∫∞
0 e−Dτ âsi/id,in(t− τ)dτ

in Eqs. (7).

B. Erasure of the which-path information

We see from the input-output relations (7), that when
the idler input is the vacuum, both quadratures of the
signal input are amplified along with an added extra half
a quantum of noise originating from the idler. When
both input ports contain signals, they are coherently
superposed in the outputs and the which-path information
of the signals is erased in the frequency domain.

To further analyze the erasure of the which-path infor-
mation, we specify that the signal output is measured by
heterodyne detection [26, 27]: equal sampling of quadra-
tures I ∝ Re 〈âsi,out〉 and Q ∝ Im 〈âsi,out〉, see Fig. 1(a).
For simplicity we scale the signal with 1/

√
G and consider

the high gain limit G � 1. The outcomes of a weak
continuous measurement of infinitesimal duration dt are,

dIr(t) =
√

2Re 〈âsi,in + âid,in〉dt+ dWI(t), (8a)
dQr(t) =

√
2Im 〈âsi,in − âid,in〉dt+ dWQ(t). (8b)

They consist of two parts: the part expected based on the
prior knowledge of the system and the unexpected part
(the ‘innovation’) dWI,Q. Alternatively, dWI,Q represent
the quantum noise of the channels and are modeled by
independent Wiener processes with variance dt [26, 27].

From Eq. (8), we see that the amplification-detection
scheme is equivalent to a 50-50 beam-splitter followed
by phase-sensitive amplifiers in both of the output arms
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implementing two single-quadrature (homodyne) mea-
surements in the I and Q directions, see Fig. 1. This
interpretation also illustrates the nature of which-path
erasure: observers of the output ports cannot know where
the signals came from. In the high gain limit, the idler
output is fully entangled with the signal output [28] con-
taining no extra information. This can be understood as
two-mode squeezing by the amplifier having effectively
erased two of the four incoming quadratures.

The input-output relations (7) of the amplifier are ex-
pressed with the Hermitian conjugated input operators,
â†id,in and â†si,in. But notice that they can be interpreted as
complex conjugation in Eq. (8) when the amplifier is fol-
lowed by the quadrature measurements. This is consistent
with the physical picture of unidirectional information
flow from the signal sources. The observer of the unidi-
rectionally traveling signals can only make measurements
whose measurement backaction to the system is expressed
by the operators âj , that is, e.g., observations of discrete
photon emissions or continuous leaking of the cavity field.
The interpretation of the amplification-detection stage
through beam-splitters and quadrature measurements
gives practical means to handle components of cascaded
quantum network with Bogoliubov transformations in
their input-output relations [29–31].

III. CONCURRENT GENERATION OF
REMOTE ENTANGLEMENT

We now study a phase-preserving amplifier as a which-
path information eraser to concurrently generate re-
mote entanglement. The considered configuration con-
sists of two transmon qubits inside separate, remote
superconducting cavities, see Fig. 2. The cavities are
driven through weakly-coupled input ports and monitored
through separate strongly-coupled transmission lines that
form the signal and idler ports of a Josephson parametric
converter amplifier. In the frame rotating at the cavity
driving ωjd = ωj −∆j and the qubit frequencies ωjq, the
Hamiltonian for a dispersively coupled qubit-cavity pair
is

Ĥj(t)/~ =
(

∆j + χj
2 σ̂jz

)
â†j âj + εj(t)â†j + ε∗j (t)âj , (9)

where χj denotes the dispersive coupling strength. When
the cavities are driven at their resonance frequencies ∆j =
0, they build up symmetric qubit-state dependent phase
responses. In the ideal case these responses are identical
and when they are amplified with a high-gain quantum-
limited phase-preserving amplifier according to Eq. (7)
there is no which-qubit information left in the outgoing
modes. This allows pure joint measurements of the signal
sources, here the transmon qubits, with measurement
back-action that projects to an entangled subspace.

Figure 2. Schematic of a concurrent remote entangling experi-
ment showing two dispersively coupled qubits inside separate,
driven and monitored cavities. The left I-Q planes show the
qubit state dependent coherent states. The right I-Q plane
shows the structure of the signal output, Eq. (7), where no
which-qubit information is available leading to the joint mea-
surement σ̂1

z + σ̂2
z .

A. Stochastic master equation of the joint
measurement process

To analyze the configuration and the entanglement gen-
eration in detail, it is modeled with a stochastic master
equation [26, 27] (SME) for the density matrix ρ̂ of both
qubit-cavity pairs. We derive it by using input-output the-
ory for cascaded quantum systems [22, 29, 30] (essentially
âsi,in = √κ1â1 and âid,in = √κ2â2) and representing the
amplification-detection stage as a beam-splitter followed
by two quadrature measurements as in Eq. (8). See de-
tails of the derivation in Appendix A. The resulting Itō
stochastic master equation for the monitored qubit-cavity
pairs becomes

dρ̂ =
2∑
j=1

{
1
i~ [Ĥj(t), ρ̂] +D

(√
κj âj

)
ρ̂

}
dt

+
2∑
j=1

{
D
(√

Γj σ̂j−
)
ρ̂+ 1

2D
(√

Γjφσ̂
j
z

)
ρ̂

}
dt

+ 1√
2
H (√η1κ1â1 +√η2κ2â2) ρ̂dWI

+ 1√
2
H (i√η1κ1â1 − i√η2κ2â2) ρ̂dWQ, (10)

where dρ̂ = ρ̂(t+dt)−ρ̂(t). The first two rows describe the
open quantum system dynamics. The dissipator terms
D (ĉ) ρ̂ = ĉρ̂ĉ† − 1

2
{
ĉ†ĉ, ρ̂

}
model the coupling of the

cavity fields âj to the transmission lines with loss rates
κj . The dissipators for the qubits describe relaxation and
pure dephasing with the rates Γj = 1/T j1 and Γjφ.

The last two rows describe the measurement backac-
tion, which updates the best estimate of the quantum
state based on the new information dWI,Q in the het-
erodyne measurement of the signal output. It is repre-
sented by innovation terms [27] H (ĉ) ρ̂ = [ĉ− Tr (ρ̂ĉ)] ρ̂+
ρ̂
[
ĉ† − Tr

(
ρ̂ĉ†
)]

that are linear in the measurement op-
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erators ĉ but nonlinear in the density matrix ρ̂. The effi-
ciencies ηj , appearing in the innovation terms, describe
the fraction of the information measured by the observer.
The remaining fraction of the information is lost to the
environments and averaging over it leads to dephasing.
Here the efficiencies are η1 = ηη̄1 and η2 = ηgηη̄2. They
consist of the transmission coefficients η̄j and the mea-
surement efficiency η of the amplification-readout chain.
With a finite amplification gain G, there is an asymmetry
between the idler and signal outputs in Eq. (7). When
measuring only the signal output, the associated loss of in-
formation is represented with the inefficiency 1−ηg = 1/G
(in practice, G ∼ 10− 20 dB [1, 25]).

B. Stochastic master equation for the monitored
qubits

Given that we consider driven and damped disper-
sively coupled qubit-cavity systems, the cavity states
can be assumed as a superpositions of the qubit depen-
dent coherent states [32] {|αjg〉 |gj〉 , |αje〉 |ej〉}, see Fig. 2.
The coordinates follow the classical equations of motion,
α̇je,g(t) = −iεj(t)− i

(
∆j ± χj

2 − iκj2
)
αje,g(t), see Fig. 3(c)-

(d). With modern superconducting technology, one can
achieve typical values of T1 ∼ 100 µs [33, 34] for the
decay times of the qubit. In this regime, the probability
for a T1 relaxation event in either of the qubits can be
assumed negligible small during the measurement time
Tm ∼ κ−1 ∼ 1 µs. Then the qubits’ dynamics can be seen
as frozen out, except for the measurement backaction. In
this case, the cavity dynamics can be integrated out from
the full SME (10) by using these time-dependent coher-
ent states as an Ansatz [32, 35]. Reduction of the full
SME (10) is very helpful since we are primarily interested
in the qubits and the full SME is rather inconvenient to
deal with due to its large Hilbert space.

We approach here the integration of the cavity dynam-
ics from a simple point of view. First, by exploiting the
linearity of the innovation terms with respect to the mea-
surement operators, we notice that the qubit-cavity pairs
in Eq. (10) can be organized so that the two blocks look
superficially decorrelated, except for the same stochas-
tic ‘driving fields’ dWI,Q. In practice, Eq. (10) encapsu-
lates a technical source of correlation through the terms
〈âj〉 ρ̂dWI,Q and 〈â†j〉 ρ̂dWI,Q of the innovation operators.
However, as these terms stem from the normalization
condition, we can first uncorrelate the two blocks by sacri-
ficing the normalization. Then, we make use of the single
qubit-cavity results of Ref. [32] for integrating out the
cavity individually on both qubit-cavity pairs, and finally
add the normalization. We have verified these heuristic
arguments with a numerical comparison and with an an-
alytic calculation where we explicitly integrate out the
cavity dynamics from the full SME (10) using a positive
P representation [35, 36].

The resulting SME for the qubits’ density matrix ρ̂q =

Trc1,2 ρ̂ is

dρ̂q =
2∑
j=1

{
1
2i
[
Ωj(t)σ̂jz, ρ̂q

]
+ 1

2D
(√

Γjd(t)σ̂jz
)
ρ̂q

}
dt

+
2∑
j=1

{
D
(√

Γj σ̂j−
)
ρ̂q + 1

2D
(√

Γjφσ̂
j
z

)
ρ̂q

}
dt

+ 1
2
√

2
H
(
S1(t)σ̂1

z + S2(t)σ̂2
z

)
ρ̂qdWI

+ 1
2
√

2
H
(
iS1(t)σ̂1

z − iS2(t)σ̂2
z

)
ρ̂qdWQ, (11)

where Ωj(t) = χjRe
{
αjg(t)[αje(t)]?

}
is the ac Stark effect

induced by the photons in the cavities. The photons
leaking out from the cavity carry information about the
qubits’ population [35] causing measurement induced de-
phasing at the rates Γjd(t) = χjIm

{
αjg(t)[αje(t)]?

}
. The

information is encoded into the distinguishability of the
pointer states |αje,g〉, see Fig. 2-3. Therefore we define the
complex measurement amplitude Sj(t) of the operator σ̂jz
as,

Sj(t) ≡
√
κjηj[αje(t)− αjg(t)], (12)

whose real and imaginary parts are related to the mea-
surements in the I and Q directions, respectively. The
measurement rate is Γjm(t) = |Sj(t)|2.

The outcomes of a weak continuous measurement of
infinitesimal duration of both I and Q quadratures (het-
erodyne) of the amplified signal, from Eq. (8), can be
expressed as

dIr(t) = 1√
2
〈
ReS1(t)σ̂1

z + ReS2(t)σ̂2
z

〉
dt+ dWI

+ 1√
2

ReU1(t)dt+ 1√
2

ReU2(t)dt, (13a)

dQr(t) = 1√
2
〈
ImS1(t)σ̂1

z − ImS2(t)σ̂2
z

〉
dt+ dWQ

+ 1√
2

ImU1(t)dt− 1√
2

ImU2(t)dt, (13b)

where the expectation values, for example
〈
ReS1(t)σ̂1

z

〉
,

are taken for the instantaneous qubits’ density ma-
trix ρ̂q(t). Additionally, the terms involving Uj(t) =√
ηjκj [αje(t) + αjg(t)] are not informationally meaningful

since they only deterministically offset the signals, and
will be ignored in what follows. Importantly, SME (11)
and the measurement outcomes (13) show that hetero-
dyne measurement of the output of a quantum-limited
phase-preserving amplifier implements a pair of two-qubit
measurements corresponding to the operators

ÂI(t) = ReS1(t)σ̂1
z + ReS2(t)σ̂2

z , (14a)
ÂQ(t) = ImS1(t)σ̂1

z − ImS2(t)σ̂2
z . (14b)

The complex phase and the magnitude of the measurement
amplitudes Sj(t) are tunable in situ by the cavity driv-
ing. Thus, the measurement operators can be changed
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continuously from a simultaneous separate readout of
ÂI ∝ σ̂1

z and ÂQ ∝ σ̂2
z into a joint entangling readout

ÂI ∝ σ̂1
z ± σ̂2

z .

C. Balanced driving for perfect erasure of the
which-path information from dissimilar sources

To utilize the readout for remote heralded entangling,
we drive the cavities at resonance ∆j = 0 implying
ImSj(t) = 0. For the most efficient entangling read-
out, we would like make both measurement amplitudes
equal S(t) = S1(t) = S2(t) throughout the measurement—
including cavity transients and unequal cavity-qubit pa-
rameters. In an entangling readout, one does not want
to gather any single-qubit information. Remarkably, the
matching of the measurement amplitudes can be achieved
by simple engineering of the drive amplitudes. This result
improves the flexibility and scalability of the concurrent
remote entangling scheme. We get the balanced driving
amplitude,

ε
(bal)
2 (t) =

√
χ2

2η2κ2

4

[
κ2Ṡ1(t)− S̈1(t)− κ2

2 + χ2
2

4 S1(t)
]

(15)
as a result of solving the input of the cavity 2 for a given
output S2(t) = S1(t), visualized in Fig. 3. Cavity re-
sponses in the Q direction are left unmatched because they
carry no information about the qubits’ population, see
Figs. 2-3. However, the noise dWQ needs to be recorded
because it encodes the stochastic relative phase shift be-
tween the qubits due to the unequal photon shot noise in
each cavity [1].

As the erasure of the which-qubit information in the am-
plifier output is made perfect with the balanced driving,
the subsequent heterodyne measurement realizes a mea-
surement of the joint operator σ̂1

z+σ̂2
z . For the initial state

ρ̂i = |++〉 〈++|, where σ̂x |+〉 = |+〉, the measurement
backaction projects the system into a heralded entangled
state with the success probability ps = 1/2.

IV. THE QUANTUM FILTER

In the quantum filtering, one assumes that the mea-
surement records dIr(t) and dQr(t) are known from the
initialization up to a time t and then one would like to
know the best estimate of the state of the open quantum
system conditioned on this particular measurement record
and the initial condition. The stochastic master equation
gives the incremental update dρ̂q from ρ̂q(t) to ρ̂q(t+ dt)
given the new information dWI,Q(t) in the measurement
records and knowledge of the system ρ̂q(t). Naturally,
a way to obtain the quantum filter is to solve the SME
numerically for each measurement trajectory individually.
However, this may generally be a computationally ex-
pensive and slow task. Thus, an analytic quantum filter
would be much more appealing.

Figure 3. Dynamics of two dissimilar cavities in the
frame rotating at the cavity frequencies; (a) Driving am-
plitudes: unbalanced ε1 = ε2 (black), balanced ε

(bal)
1 (yel-

low) and ε
(bal)
2 (green); (b) Measurement amplitudes S1 (yel-

low) and S2 (green) where dashed lines refer to driving by
the balanced amplitudes; Cavity dynamics for the unbal-
anced (c) and balanced (d) driving amplitudes: √κ1α

1
e (red),√

κ1α
1
g (blue), √κ2α

2
g (light blue) and √κ2α

2
e (orange). The

parameters are κ1/2π = 8 MHz, εm/2π = 1 MHz, and
κ1/χ1 = χ2/κ2 = κ1/κ2 = 2. The dynamics in the Q direction
(Imα) are left unmatched as informationally insignificant.

We now consider SME (11) with the balanced real
measurement amplitudes S(t) = S1(t) = S2(t),

dρ̂q =
2∑
j=1

1
2i
[
Ωj(t)σ̂jz, ρ̂q

]
dt+ iS(t)

2
√

2
[σ̂1
z − σ̂2

z , ρ̂q]dWQ

+
2∑
j=1

{
D
(√

Γj σ̂j−
)
ρ̂q + 1

2D
(√

Γjφ + Γjd(t)σ̂jz
)
ρ̂q

}
dt

+S(t)
2
√

2
H
(
σ̂1
z + σ̂2

z

)
ρ̂qdWI, (16)

where we have explicitly written the backaction of the
Q-measurement in the form of stochastic phase rotation
(the second term). The measurement currents are

dIr(t) = S(t)√
2
〈
σ̂1
z + σ̂2

z

〉
dt+ dWI, (17a)

dQr(t) = dWQ. (17b)

In the following we take into account only the increased
dephasing rate of the qubits by the T1 relaxation processes,
Γj2 = Γj

2 + Γjφ, but ignore its effect on evolution of the
qubits’ population. This is justified by long typical T1
times, T1 ∼ 100 µs, with respect to typical measurement
time Tm ∼ 1 µs.

To derive the quantum filter, one needs to apply the Itō
rule for changing variables in stochastic calculus [26, 27];
If dX = ν(t)dt+ σ(t)dW and F (X, t), then

dF =
(
∂F

∂t
+ ν(t) ∂F

∂X
+ σ2(t)

2
∂2F

∂X2

)
dt+ σ(t) ∂F

∂X
dW.

(18)
Based on this Itō calculus, we have found the analytic
solution for SME (11) that expresses the two-qubit state
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ρ̂q(t) conditioned on an actual stochastic measurement
record [Im(t), Qm(t)] and the initial state ρ̂i = |++〉 〈++|.
The time-dependent full solutions for the most important
two-qubit Bloch coordinates are (the rest are shown in
Appendix B)

〈ZZ〉 (t) =e−Λ(t) cosh Im(t)− 1
e−Λ(t) cosh Im(t) + 1

, (19a)

〈ZI〉 (t) = 〈IZ〉 (t) = e−Λ(t) sinh Im(t)
e−Λ(t) cosh Im(t) + 1

, (19b)

〈XX〉 (t) =e−
(

Γm(t)
2ηsκs + 1−ηt

ηt
Λ(t)

2 +
∑2

j=1
Γj2t
)

(19c)

× e−Λ(t) cos Θ+(t) + cos [Qm(t)−Θ−(t)]
e−Λ(t) cosh Im(t) + 1

,

〈XY 〉 (t) =e−
(

Γm(t)
2ηsκs + 1−ηt

ηt
Λ(t)

2 +
∑2

j=1
Γj2t
)

(19d)

× e−Λ(t) sin Θ+(t) + sin [Qm(t)−Θ−(t)]
e−Λ(t) cosh Im(t) + 1

,

〈XI〉 (t) =2e−
(

Γm(t)
2η1κ1

+ 1−η1
η1

Λ(t)
2 +Γ1

2t
)

(19e)

×
e−

Λ(t)
2 cosh Im(t)

2 cos
(
Qm(t)

2 −Θ1(t)
)

e−Λ(t) cosh Im(t) + 1
.

The ac Stark effect induced rotation angles are denoted
with Θj(t) =

∫ t
0 Ωj(τ)dτ and Θ±(t) = Θ1(t) ± Θ2(t).

We have used the notation of (ηsκs)−1 =
∑2
j=1(ηjκj)−1

and defined the combined measurement efficiency ηt =
η1η2/(η1 + η2 − η1η2) that has an important role in the
analysis of the entanglement fidelity.

We define Λ(t) =
∫ t

0 Γm(τ)dτ =
∫ t

0 |S(τ)|2dτ as the ap-
parent total information content recorded by the observer
up to time t. The stochastic measurement records Im(t)
and Qm(t) are weighted integrals of the measurement
outcomes (17),

Im(t) + iQm(t) =
√

2
∫ t

0
S(τ) [dIr(τ) + idQr(τ)] . (20)

The measurement amplitude S(t) is the correct relative
weighting function—a matched filter—between the dif-
ferent time instances of the measurement. The analytic
solutions of Eqs. (19) and (B1) have been verified by com-
paring them to the numerical solution of the stochastic
master equation with perfect overlap within the accuracy
of the numerical methods.

Quite surprisingly, even for a lossless system, the co-
herence of a two-qubit state is reduced by the factor
exp(−Γm(t)/2ηsκs) [3, 37–39] during the measurement
[see Fig. 4(b)], where

Γm(t)
2ηsκs

=
2∑
j=1

Γjm(t)
2ηjκj

=
2∑
j=1

∫ t

0

[
Γjd(τ)− Γjm(τ)

2

]
dτ .

(21)
This reduction is due to an accumulated temporal mis-
match between the acts that cause the qubit dephasing
and the measurement backaction, at the rates Γjd(t) and

Figure 4. The panels (a)-(b) show a quantum trajectory
given by the quantum filter (19) corresponding to a sam-
ple measurement record: 〈XX〉 (t) (blue), 〈ZI〉 (t) (ma-
genta), 〈ZZ〉 (t) (red), purity Tr ρ̂2

q(t) (gray) and concur-
rence C(t) (green). The analytic and numeric (not shown)
solutions overlap perfectly. The most probable quantum tra-
jectory [41] from the initial ρ̂i to the final state ρ̂f is shown as
a dashed line; see Appendix C. Noise in the Im measurement
carries information about the qubits’ populations and thus
the measurement backaction affects all two-qubit Bloch co-
ordinates. Noise in the Qm measurement carries information
only about the relative phase between the qubits, causing
fluctuations, e.g., in the 〈XX〉 coordinate without affect-
ing to the populations or concurrence. (c) The two-qubit
state of Eq. (19) shown as as a function of the measurement
outcomes (Im, Qm). The parameters are κ1/2π = 5 MHz,
κ1/χ1 = 1, κ2/κ1 = χ2/χ1 = 1.1, Γj = Γjφ = 0 and
ηj = 1. The cavity driving ε1(t) is on from ts = 0.03 µs
to te = 0.5 µs [vertical lines in (b)] with the amplitude
εm = κ1/

√
6 and a temporal shape similar to Fig. 3(a) re-

sulting in Λm = Λ(Tm) ≈ 3π. The cavity 2 is driven with the
balanced driving amplitude ε

(bal)
2 (t) of Eq. (15).

Γjm(t)/2, respectively. Physically, each qubit is entangled
with cavity photons and the entanglement is not removed
by the measurement backaction until the photons have
leaked out. At the end of a measurement t = Tm, when
the cavities have been brought back to the vacuum and
all the available information has been recorded, the pu-
rity revives. Interestingly, during cavity transients the
dephasing rate Γjd(t) can have negative values, which
implies revival of qubit coherence. This non-Markovian
dynamics originates from coupling the qubits to Marko-
vian reservoirs indirectly through the cavities. The so-
lutions (19)-(20) generalize and go beyond the previous
results [1, 3, 32, 37–39] by deriving the quantum filter for
a concurrent entangling two-qubit readout and verifying
the purity reduction directly from stochastic calculus.

The solution (19)-(20) is an analytic quantum filter
without need for stochastic numerical solutions that would
be limited by time step approximations [3, 40]. The
quantum filter can be interpreted in two ways. First,
given an actual measurement record [Im(t), Qm(t)] it
draws the stochastic quantum trajectories of the two-
qubit state, see Fig. 4(a)-(b). In another interpretation,
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the quantum filter gives the two-qubit state as function of
measurement outcomes (Im, Qm) representing the effect
of the measurement backaction, visualized in Fig. 4(c).
The measurement outcomes Qm are normally distributed
with zero mean and variance σ2 = 2Λ(t). For a strong
measurement, the distribution of the measurement out-
comes Im is a 1 : 2 : 1 mixture of three normal dis-
tributions, each with variance σ2 = 2Λ(t), centered at
Īm = −2Λ(t), 0, 2Λ(t). This gives a definition of the
measurement strength ∆Īm/σ =

√
2Λ(t) as the distin-

guishability of the parity subspaces.

A. Concurrence

To examine the fidelity of the entanglement, we calcu-
late the concurrence C [42] from the quantum filter solu-
tions [see Fig. 4(b)]. In the limit of strong measurement
∆Īm/σ � 1, the state has collapsed with high probability
either to an entangled state with 〈ZZ〉 = −1 or to a
product state with 〈ZZ〉 = 1. In this limit, the concur-
rence can be accurately approximated from the simplified
expression [43]: C(t) = 2 max

{
0, |ρge,eg| −

√
pgg,ggpee,ee

}
.

Expressing this with the quantum filter solutions results
in

C(t) = max

0,
exp

(
3ηt−1
ηt

Λ(t)
2 −

Γm(t)
2ηsκs

− Γs
2t
)
− 1

cosh Im(t) + exp Λ(t)

 ,

(22)
where Γs

2 = Γ1
2 + Γ2

2 is the sum of qubits’ dephasing rates.
Let us now consider the case of where the measurement

has ended such that Γm(t = Tm) = 0. Curiously, there
exists an important bound for the total measurement
efficiency ηt since the numerator of Eq. (22) needs to
be positive for an entangled state with concurrence C >
0. Even for ideal qubits (Γt

2 = 0), there is a threshold
ηt > 1/3 for forming a entangled state. For symmetric
transmission this corresponds to η1 = η2 > 1/2. In the
presence of decoherence the bound naturally becomes
stricter:

ηt >
1

3− 2 Γs
2Tm

Λ(Tm) .
(23)

Above the threshold, the purification by the measurement
backaction dominates over the measurement induced and
qubits’ natural dephasing. In addition one can see from
Eq. (22) that given a fixed measurement time Tm and
non-ideal efficiencies ηj < 1, there exists an optimal mea-
surement strength Λo that maximizes the concurrence.
Physically this can be understood as follows: with the op-
timal Λo, the purification by the measurement backaction
is in balance with the measurement induced and qubits’
natural dephasing.

V. DISCUSSION AND CONCLUSIONS

Compared to corresponding photon-counting based con-
current remote entangling schemes [12, 13] whose entan-
glement fidelity is more robust to losses and inefficien-
cies, the proposed continuous variable scheme achieves
very high generation rate ∼ 105 s−1 of entangled qubit
pairs (Trep ∼ 5 µs). Experimental values (1/Γj2 = 15 µs,
Tm = 1 µs, ηj = 0.7) reachable in near-future supercon-
ducting circuit experiments result in concurrence C ∼ 20%.
The current experimental capabilities are such that the
cavity-qubit asymmetries can be reduced through our
pulse engineering scheme to the point that they will not
be a limiting factor—rather it is the overall efficiency of
transmission and measurement, where future technical
improvements will lead to considerably better concurren-
cies.

In conclusion, we considered a readout chain of a
quantum-limited phase-preserving amplifier followed by
heterodyne detection and developed a physically intu-
itive description compatible with the theory of cascaded
quantum systems. Based on a stochastic master equa-
tion approach, we theoretically demonstrated that the
amplifier can be utilized as an eraser for the which-qubit
information, even from dissimilar sources, and an element
in a promising protocol for concurrent entanglement gen-
eration between remote superconducting qubits. This
protocol is feasible with existing technologies and can be
expected to demonstrate formation of entangled remote
qubits, primitive constituents of quantum communication
and distributed quantum computation.

ACKNOWLEDGMENTS

We are very grateful for R. T. Brierley and Shyam
Shankar for many useful discussions. We acknowledge sup-
port from ARO W911NF-14-1-0011, W911NF-14-1-0563,
NSF DMR-1301798 and the Yale Center for Research
Computing.

Appendix A: Cascaded quantum systems with a
quantum-limited phase-preserving amplifier and

heterodyne detection

To rigorously derive the stochastic master equation
of a cascaded quantum system [29], an effective method
is to construct the unidirectional quantum network by
using the input-output triplets G = (S, L̂, Ĥ) of the net-
work elements [30]. The G-triplet contains the scattering
matrix S for the input-output ports of the element, the
vector L̂ that specifies the coupling to input-output ports
and the internal Hamiltonian Ĥ. For compiling a net-
work, one needs to know the rules for the cascade (series)
G2 C G1 and concatenation (parallel) G1 � G2 prod-
ucts. Let us consider two systems G1 = (S1, L̂1, Ĥ1) and
G2 = (S2, L̂1, Ĥ2), then the cascade and concatenation
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products are, respectively,

G2 C G1 =
(
S2S1, S2L̂1 + L̂2, ĤC

)
, (A1a)

G1 �G2 =
((

S1 0
0 S2

)
,

(
L̂1
L̂2

)
, Ĥ1 + Ĥ2

)
. (A1b)

In the cascade product, the outputs of the system G1 are
connected to inputs of the system G2, and the cascaded
Hamiltonian has a corresponding driving term ĤC =
Ĥ1 + Ĥ2 − i~

2 (L̂†2S2L̂1 − L̂†1S
†
2L̂2).

The unidirectional quantum network of the concurrent
remote entanglement setup of Figs. 1 and 2 is shown in
Fig. 5. The G-triplets of the individual elements are:

Gjε =
(

1, εj(t)/
√
κin
j , 0

)
, (A2a)

Gj =
(
I2,

(√
κin
j âj√
κj âj

)
, Ĥj

)
, (A2b)

Gjη̄ =
(( √

η̄j ,
√

1− η̄j
−
√

1− η̄j
√
η̄j

)
, 0, 0

)
, (A2c)

Gηg =

 √
ηg, 0

√
1− ηg

0 1 0
−
√

1− ηg 0 √
ηg

 , 0, 0

 , (A2d)

GBS =




1/
√

2 0 0 1/
√

2
0 1 0 0
0 0 1 0

−1/
√

2 0 0 1/
√

2

 , 0, 0

 , (A2e)

where Gjε denotes the semi-classical driving of the j:th cav-
ity, Gj represents the internal dynamics of the j:th qubit-
cavity pair with the Hamiltonian Ĥj = ~(∆j + χj

2 σ̂
j
z)â†j âj ,

Gjη̄ models the losses of the transmission line, Gηg de-
notes the effective losses of the amplification-detection
stage with ηg = (G − 1)/G, and GBS denotes the effec-
tive beam-splitter of the amplification-detection stage
shown in Fig. 1. We write the identity (pass-through)
element of a single GI = (1, 0, 0) and several parallel
ports G(n)

I = (In, 0, 0). The non-monitored channels are
denoted with a termination by a gray box in Fig. 5.

Compilation of the network elements, in accordance
with the subparts denoted with dashed boxes in Fig. 5,
results in

G1
T =

(
G1
η̄ �GI

)
C
(
GI �G

1) C (G(2)
I �G

1
ε

)
, (A3a)

G2
T =

(
GI �G

2
η̄ �GI

)
C
(
G2 �G(2)

I

)
C
(
G2
ε �G

(3)
I

)
,

(A3b)

Ga = (GI �GBS �GI) C
(
G

(4)
I �Gηg

)
, (A3c)

where GjT denotes a driven qubit-cavity pair connected
into lossy transmission lines and Ga is the effective
amplification-detection stage by the quantum-limited
phase-preserving amplifier and heterodyne detection of
one of the output ports. The full compilation of these
subparts gives the total network triplet

GT = Ga C
(
G1

T �G
2
T
)

=
(
ST , L̂T , ĤT

)
. (A4)

Figure 5. The concurrent remote entanglement configuration
of Fig. 2 in terms of the cascaded triplets G =

(
S, L̂, Ĥ

)
.

From left to right, the dashed boxes denote the compiled
subparts G1

T, G2
T, and Ga. The non-monitored channels are

denoted with a termination by a gray box.

To form the stochastic master equation of the full
quantum network, we need to know the Hamiltonian
ĤT =

∑
j Ĥj + ~εj(t)â†j + ~ε∗j (t)âj =

∑
j Ĥj(t), which

equals to Eq. (9), and the coupling vector

L̂T =



√
κ1(1− η̄1)â1

1√
2

(√
κ1η̄1â1 +

√
κ2η̄2ηgâ2

)√
κin

1 â1√
κin

2 â2
1√
2

(√
κ1η̄1â1 −

√
κ2η̄2ηgâ2

)√
κ2(1− η̄2)â2√
κ2(1− ηg)â2


, (A5)

which have been simplified by absorbing the driving terms
into the Hamiltonians. Finally, the stochastic master equa-
tion corresponding to homodyne detection of the channels
2 and 4, see Fig. 5, with the measurement efficiency η can
be written as

dρ̂ = 1
i~ [ĤT, ρ̂]dt+

7∑
k=1
D(L̂k)ρ̂dt

+H(√ηL̂2)ρ̂dWI +H(i√ηL̂4)ρ̂dWQ

=
2∑
j=1

{
1
i~ [Ĥj(t), ρ̂] +D

(√
κj + κin

j âj

)
ρ̂

}
dt

+ 1√
2
H (√η1κ1â1 +√η2κ2â2) ρ̂dWI

+ 1√
2
H (i√η1κ1â1 − i√η2κ2â2) ρ̂dWQ. (A6)

In the main text, the small difference between κj and
κj+κin

j is omitted for simplicity (or absorbed into the loss
coefficients of the transmission lines η̄j) and the qubits’
relaxation and pure dephasing terms have been added.
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Appendix B: The quantum filter

Here we list the rest of the two-qubit Bloch coordinates
of the analytic quantum filter solution of Eq. (19) for
SME (16):

〈Y X〉 (t) =e−
(

Γm(t)
2ηsκs + 1−ηt

ηt
Λ(t)

2 +
∑2

j=1
Γj2t
)

(B1a)

× e−Λ(t) sin Θ+(t)− sin [Qm(t)−Θ−(t)]
e−Λ(t) cosh Im(t) + 1

,

〈Y Y 〉 (t) =e−
(

Γm(t)
2ηsκs + 1−ηt

ηt
Λ(t)

2 +
∑2

j=1
Γj2t
)

(B1b)

× −e−Λ(t) cos Θ+(t) + cos [Qm(t)−Θ−(t)]
e−Λ(t) cosh Im(t) + 1

,

〈XZ〉 (t) =2e−
(

Γm(t)
2η1κ1

+ 1−η1
η1

Λ(t)
2 +Γ1

2t
)

(B1c)

×
e−

Λ(t)
2 sinh Im(t)

2 cos
(
Qm(t)

2 −Θ1(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈ZX〉 (t) =2e−
(

Γm(t)
2η2κ2

+ 1−η2
η2

Λ(t)
2 +Γ2

2t
)

(B1d)

×
e−

Λ(t)
2 sinh Im(t)

2 cos
(
Qm(t)

2 + Θ2(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈Y Z〉 (t) =− 2e−
(

Γm(t)
2η1κ1

+ 1−η1
η1

Λ(t)
2 +Γ1

2t
)

(B1e)

×
e−

Λ(t)
2 sinh Im(t)

2 sin
(
Qm(t)

2 −Θ1(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈ZY 〉 (t) =2e−
(

Γm(t)
2η2κ2

+ 1−η2
η2

Λ(t)
2 +Γ2

2t
)

(B1f)

×
e−

Λ(t)
2 sinh Im(t)

2 sin
(
Qm(t)

2 + Θ2(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈Y I〉 (t) =− 2e−
(

Γm(t)
2η1κ1

+ 1−η1
η1

Λ(t)
2 +Γ2

1t
)

(B1g)

×
e−

Λ(t)
2 cosh Im(t)

2 sin
(
Qm(t)

2 −Θ1(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈IX〉 (t) =2e−
(

Γm(t)
2η2κ2

+ 1−η2
η2

Λ(t)
2 +Γ2

2t
)

(B1h)

×
e−

Λ(t)
2 cosh Im(t)

2 cos
(
Qm(t)

2 + Θ2(t)
)

e−Λ(t) cosh Im(t) + 1
,

〈IY 〉 (t) =2e−
(

Γm(t)
2η2κ2

+ 1−η2
η2

Λ(t)
2 +Γ2

2t
)

(B1i)

×
e−

Λ(t)
2 cosh Im(t)

2 sin
(
Qm(t)

2 + Θ2(t)
)

e−Λ(t) cosh Im(t) + 1
.

The notation is the same as introduced in Sec. III.

Appendix C: The most probable trajectory to an
entangled state

Given the initial ρ̂i = |++〉 〈++| and final state
ρ̂(Tm) = ρ̂f , as well as the time evolution in between
described by SME (16), one may ask which are all the

measurement trajectories {Ir, Qr} that connect the bound-
ary conditions ρ̂i and ρ̂f , and what is the most probable of
these trajectories, denoted here {Ĩr, Q̃r}. First, the inver-
sion of the quantum filter of Eqs. (19) and (B1) gives the
pair of values (Im, Qm) corresponding to the final state ρ̂f .
Then Eq. (20) shows that the initial and final values are
connected by all those trajectories {Ir, Qr} that produce
the pair (Im, Qm) via importance weighting (20). How-
ever, this does not answer to the question what is the most
probable trajectory. For that purpose, one needs to resort
to more advanced methods in general. A possibility is to
formulate a probability distribution of the measurement
trajectories and apply the SME to make the connection
between the time evolution of the quantum state and the
measurement trajectories and, finally, by extremizing the
distribution one finds the most likely trajectory [41].

Given the quantum filter of Eqs. (19) and (B1), some of
the most probable paths can be found by simple probabilis-
tic arguments. Let us concentrate on the measurement
in the I direction and consider the trajectories Ir(t) that
end up in an entangled state for which 〈ZZ〉 = −1. In the
strong measurement limit, the end points of the weighted
trajectories Im(t) are normally distributed around three
means −2Λ(t), 0, 2Λ(t). All the trajectories Im(t), whose
endpoint Im(Tm) is around the origin, correspond to an
entangled state 〈ZZ〉 = −1, see Fig. 4(c). Then the
most probable end point producing an entangled state
is Im(Tm) = 0. To see what is the most probable of all
the trajectories Ir(t) that give rise to Im(Tm) = 0 we
remember that the initial state is 〈ZI〉 (t = 0) = 0 and
the weighting equation is,

dIm(t) =
√

2S(t)
(√

2S(t) 〈ZI〉 (t)dt+ dWI(t)
)

=
√

2S(t)dIr(t). (C1)

This shows that, in general, the probability cost of gener-
ating an update of the quantum trajectory is minimized
by choosing identically dWI(t) = 0. For this update and
the initial state |++〉 〈++|, SME (16) keeps 〈ZI〉 (t) = 0
and gradually updates 〈ZZ〉 towards 〈ZZ〉 = −1. Thus
by taking this update dWI(t) = 0 at every time step, the
trajectory is Ir(t) = 0 and it results in the most probable
end point Im(Tm) = 0. Based on this, the most prob-
able trajectory to the most probable entangled state is
identically zero Ĩr(t) = 0.

For the measurement in the Q direction, the end point
Qm(Tm) corresponding to the final state is solved again
from the quantum filter of Eqs. (19) and (B1). Then from
the weighting equation,

dQm(t) =
√

2S(t)dWQ(t) =
√

2S(t)dQr(t), (C2)

we see that the probability cost to reach the final value
is minimized by updating the trajectory by dQr(t) =
Q′mS(t)dt/σ2, where Q′m = Qm(Tm) mod 2π and σ2 =√

2
∫ Tm

0 S2(τ)dτ . This gives rise to the most probable
trajectory Q̃r(t) = Q′m

∫ t
0 S(τ)dτ/σ2. In Fig. 4(a)-(b), we
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have shown the Bloch coordinates corresponding the most probable measurement trajectory as a dashed lines.
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T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quan-
tum information, Rev. Mod. Phys. 84, 621 (2012).

[20] A. Roy, L. Jiang, A. D. Stone, and M. Devoret, Remote
entanglement by coherent multiplication of concurrent
quantum signals, Phys. Rev. Lett. 115, 150503 (2015).

[21] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt,
and R. J. Schoelkopf, Introduction to quantum noise,
measurement, and amplification, Rev. Mod. Phys. 82,
1155 (2010).

[22] C. W. Gardiner & M. J. Collett, Input and output in
damped quantum systems: Quantum stochastic differen-
tial equations and the master equation, Phys. Rev. A 31,
3761 (1985).

[23] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay,
V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J.
Schoelkopf, S. M. Girvin, and M. H. Devoret, Phase-
preserving amplification near the quantum limit with a
Josephson ring modulator, Nature 465, 64 (2010).

[24] N. Bergeal, R. Vijay, V. E. Manucharyan, I. Siddiqi,
R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, Ana-
log information processing at the quantum limit with a
Josephson ring modulator, Nature Phys. 6, 296 (2010).

[25] B. Abdo, F. Schackert, M. Hatridge, C. Rigetti, and
M. Devoret, Josephson amplifier for qubit readout, App.
Phys. Lett. 99, 162506 (2011).

[26] H. W. Wiseman & G. J. Milburn, Quantum Measurement
and Control, (Cambridge University Press, New York,
2010).

[27] D. A. Steck, Quantum and Atom Optics, available on-
line at http://steck.us/teaching (revision 0.10.1, 30 April
2015).

[28] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, and
B. Huard, Generating entangled microwave radiation over
two transmission lines, Phys. Rev. Lett. 109, 183901
(2012).

[29] H. J. Carmichael, Quantum trajectory theory for cas-
caded open systems, Phys. Rev. Lett. 70, 2273 (1993);
C. W. Gardiner, Driving a quantum system with the out-
put field from another driven quantum system, ibid. 70,
2269 (1993).

[30] J. E. Gough & M. R. James, Quantum feedback networks:
Hamiltonian formulation, Commun. Math. Phys. 287,
1109 (2009); The series product and its application to
quantum feedforward and feedback networks, IEEE Trans.
Autom. Control 54, 2530 (2009).

[31] J. E. Gough, M. R. James, and H. I. Nurdin, Squeez-
ing components in linear quantum feedback networks,
Phys. Rev. A 81, 023804 (2010).

[32] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck,
D. I. Schuster, and S. M. Girvin, Quantum trajectory
approach to circuit QED: Quantum jumps and the Zeno

http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1103/PhysRevA.81.040301
http://dx.doi.org/10.1103/PhysRevLett.112.170501
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.80.3891
http://dx.doi.org/10.1103/PhysRevLett.80.3891
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1126/science.1221856
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://arxiv.org/abs/1603.03742
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.79.024305
http://dx.doi.org/10.1103/PhysRevA.79.024305
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/PhysRevLett.115.150503
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1038/nature09035
http://dx.doi.org/10.1038/nphys1516
http://dx.doi.org/10.1063/1.3653473
http://dx.doi.org/10.1063/1.3653473
http://steck.us/teaching
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1007/s00220-008-0698-8
http://dx.doi.org/10.1007/s00220-008-0698-8
http://dx.doi.org/10.1109/TAC.2009.2031205 
http://dx.doi.org/10.1109/TAC.2009.2031205 
http://dx.doi.org/10.1103/PhysRevA.81.023804


11

effect, Phys. Rev. A 77, 012112 (2008).
[33] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair,

G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor,
L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. De-
voret, and R. J. Schoelkopf, Observation of High Co-
herence in Josephson Junction Qubits Measured in a
Three-Dimensional Circuit QED Architecture, Phys. Rev.
Lett. 107, 240501 (2011).

[34] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde,
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