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The maximally entangled state can be in a mixed state as well as the well-known pure state. Taking the

negativity as a measure of entanglement, we study the entanglement dynamics of bipartite, mixed, maximally

entangled states (MMESs) in multipartite cavity-reservoir systems. It is found that the MMES can exhibit the

phenomenon of entanglement sudden death, which is quite different from the asymptotic decay of the pure

Bell state case. We also find that maximal entanglement cannot guarantee maximal nonlocality and the MMES

does not correspond to the state with maximal measurement-induced nonlocality (MIN). In fact, the value and

dynamic behavior of the MIN for the MMESs are dependent on the mixed state probability. In addition, we in-

vestigate the distributions of negativity and the MIN in a multipartite system, where the two types of correlation

have different monogamous properties.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Mn

I. INTRODUCTION

The maximally entangled state plays an important role in

quantum information processing [1–3], including quantum

teleportation [4], quantum cryptographic protocols [5] and

quantum dense coding [6]. In bipartite d ⊗ d systems, Caval-

canti et al proved that all maximally entangled states are pure

states [7]. For example, in the simplest 2 ⊗ 2 systems, the

pure maximally entangled state is the Bell state which can be

written as

|ψ〉 = (|00〉+ |11〉)/
√
2 (1)

up to local unitary transformations. Recently, it was fur-

ther shown that there exist mixed maximally entangled states

(MMESs) in bipartite d ⊗ d′ systems with d′ ≥ 2d, which

can be used as a resource for faithful teleportation [8, 9]. The

MMES in 2⊗ 4 systems has the form [8]

ρ = p|ψ1〉〈ψ1|+ (1 − p)|ψ2〉〈ψ2|, (2)

where the mixed state probability p lies in the range (0, 1), and

the two pure state components are |ψ1〉 = (|00〉 + |11〉)/
√
2

and |ψ2〉 = (|02〉+ |13〉)/
√
2.

The dynamic behavior of entanglement is a fundamental

property of quantum systems. This is because unavoidable in-

teractions with the environment may lead the entanglement of

quantum systems to be degraded and, in certain cases, disap-

peared in a finite time (i.e., the so-called entanglement sud-

den death, ESD) [10–15]. López et al analyzed the dynamic

behavior of entangled cavity photons being affected by two
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dissipative reservoirs [16], and found that the entanglement

of cavity photons initially being in the two-qubit Bell state

decays in an asymptotic manner. However, for the newly in-

troduced MMES, its entanglement dynamic property is still

an open problem, especially for a real quantum system. Since

the MMES is a perfect physical resource in quantum infor-

mation processing [8, 9], it is desirable to investigate its dy-

namical property in a quantum system. This is because that,

once the entanglement evolution experiences the ESD, we are

no longer able to concentrate the entanglement of MMES,

which results some entanglement-based quantum communi-

cation protocols lose their efficacy. In this sense, the study of

entanglement dynamic property of the MMES can provide not

only the useful knowledge for practical quantum operations

but also the necessary information to cope with the decay of

entanglement.

Nonlocality is also a kind of resource in quantum informa-

tion processing [17], and has close relationship with quan-

tum entanglement [18]. The measurement-induced nonlocal-

ity (MIN) [19] is the maximum global effect caused by lo-

cally invariant measurement, which is different from the con-

ventionally mentioned quantum nonlocality related to the vi-

olation of Bell’s inequalities [20, 21]. Moreover, the MIN

can quantify the nonlocal resource in quantum communica-

tion protocols involving local measurement and comparison

between the pre- and post-measurement states [19]. Luo and

Fu proved that, for the pure Bell state, the MIN achieves the

maximal value [19]. But it is not clear whether or not the

MMES also has the maximal nonlocality. In particular, can

the maximal entanglement guarantee the maximal nonlocal-

ity? Furthermore, in order to obtain a deep understanding of

the dynamic properties of MMESs, it is helpful to analyze the

entanglement and nonlocality distributions in an enlarged sys-

tem including its environment.

In this paper, as quantified by entanglement negativity [22]
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and the MIN [19], we study the dynamic properties of the

MMES in the dissipative procedure of multipartite cavity-

reservoir systems. It is found that the MMES can disentangle

in a finite time which is quite different from the asymptoti-

cal decay of pure Bell state. We also find that the MIN of

the MMES is not maximal, which means that the maximal

entanglement cannot guarantee the maximal nonlocality. In

addition, the evolution of the MIN is dependent on the mixed

probabilty of the MMES. Finally, we investigate the distribu-

tions of the negativity and the MIN in the multipartite system,

where the squared negativity is monogamous but the MIN is

not monogamous.

II. DYNAMIC PROPERTIES OF ENTANGLEMENT AND

NONLOCALITY FOR THE MMES

We first recall the definition of the MMES before analyzing

its dynamic properties. In d ⊗ d′ systems, a mixed state is an

MMES if and only if it has the form [8, 9]

ρ =

K
∑

m=1

pm|ψm〉〈ψm|, (3)

where the mixed state probabilities satisfy
∑K

m=1 pm = 1
with K ≤ floor(d′/d), and the pure state component is

|ψm〉 = 1√
d

d−1
∑

i=0

|i〉 ⊗ |i+ (m− 1)d〉 (4)

being the maximally entangled pure state. In the following,

we will study the dynamic properties of MMESs in bipartite

2⊗ 4 systems.

We consider a practical dynamic system of two cavities in-

teracting with two independent reservoirs. The initial state of

the four-partite system is

ρc1c2r1r2(0) = ρc1c2(0)⊗ |00〉〈00|r1r2 (5)

where the two reservoirs are in the vacuum state, and the two

cavities in an MMES

ρc1c2(0) = p|ψ1〉〈ψ1|+ (1− p)|ψ2〉〈ψ2| (6)

with |ψ1〉 = (|00〉+|11〉)/
√
2 and |ψ2〉 = (|02〉+|13〉)/

√
2. It

should be noted that, although ρc1c2 is written as a probability

mix of |ψ1〉 and |ψ2〉, its pure state component has the generic

form
√
q|ψ1〉+ eiφ

√
1− q|ψ2〉 with the parameters q ∈ [0, 1]

and φ ∈ [0, 2π]. The interaction of a single cavity and an N -

mode reservoir is described by the Hamiltonian [16, 23–25]

Ĥ = ~ωâ†â+ ~

N
∑

k=1

ωkb̂
†
k b̂k + ~

N
∑

k=1

gk(âb̂
†
k + b̂kâ

†). (7)

At later times, in the limit N → ∞ for the reservoirs with a

flat spectrum [16], the state is given by

ρc1r1c2r2(t) =
p

2
[(|φ0〉c1r1 |φ0〉c2r2 + |φt1〉c1r1 |φt1〉c2r2)

·(〈φ0|c1r1〈φ0|c2r2 + 〈φt1|c1r1〈φt1|c2r2)]

+
1− p

2
[(|φ0〉c1r1 |φt2〉c2r2 + |φt1〉c1r1 |φt3〉c2r2)

·(〈φ0|c1r1〈φt2|c2r2 + 〈φt1|c1r1〈φt3|c2r2)], (8)

where the components can be written as

|φ0〉 = |00〉
|φt1〉 = ξ|10〉+ χ|01〉
|φt2〉 = ξ2|20〉+

√
2ξχ|11〉+ χ2|02〉

|φt3〉 = ξ3|30〉+
√
3ξ2χ|21〉+

√
3ξχ2|12〉+ χ3|03〉 (9)

in which the amplitudes are ξ(t) = e−κt/2 and χ(t) = (1 −
e−κt)1/2 with the parameter κ being the dissipative constant

[26].

In this section, we focus on the dynamic properties of two

cavities which are initially in an MMES. As the cavities and

reservoirs interact, the state of two cavities is ρc1c2(t) =
Trr1r2 [ρc1r1c2r2(t)], which has the matrix form

ρc1c2(t) =























a11 0 0 0 0 a16 0 0
0 a22 0 0 0 0 a27 0
0 0 a33 0 0 0 0 a38
0 0 0 a44 0 0 0 0
0 0 0 0 a55 0 0 0
a61 0 0 0 0 a66 0 0
0 a72 0 0 0 0 a77 0
0 0 a83 0 0 0 0 a88























(10)

with the basis in the order

{|00〉, |01〉, |02〉, |03〉, |10〉, |11〉, |12〉, |13〉} and the ma-

trix elements

a11 = (p+ χ4 + χ8 − pχ8)/2,

a22 = ξ2χ2[2− p+ 3(1− p)χ4]/2,

a33 = (1− p)ξ4(1 + 3χ4)/2,

a44 = (1− p)ξ6χ2/2,

a55 = ξ2χ2(p+ χ4 − pχ4)/2,

a66 = ξ4[p+ 3(1− p)χ4]/2,

a77 = 3(1− p)ξ6χ2/2,

a88 = (1− p)ξ8/2,

a16 = a61 = ξ2[p+
√
3(1− p)χ4]/2,

a27 = a72 =
√

3/2(1 − p)ξ4χ2,

a38 = a83 = (1− p)ξ6/2. (11)

In order to characterize the dynamic entanglement proper-

ties of two cavities, we need to choose a suitable measure of

entanglement. Here, we use the negativity [22] to quantify the

entanglement of two cavities, due to its computability for any

state of an arbitrary bipartite system. For the quantum state

ρc1c2(t), its negativity is

Nc1c2(t) =
||ρTc1

c1c2(t)|| − 1

2
=

∑8
i=1 |λi| − 1

2
, (12)
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FIG. 1: (Color online) Evolution of entanglement of the MMES in

two cavities, where the negativity is shown as a function of the time

κt and the probability p, and the red line indicates the entanglement

sudden death of the two cavities.

where ||·|| is the trace norm and equal to the sum of the moduli

of the eigenvalues for the Hermitian matrix ρ
Tc1
c1c2(t) which is

the partial transpose with respect to the subsystem c1 [22].

After some derivation, we can obtain the eigenvalues

λ1 = (1 − p)ξ8/2

λ2 = (p+ χ4 + χ8 − pχ8)/2

λ3 = ξ4{[1 + (6 − 6p)χ4]−
√
A}/4

λ4 = ξ4{[1 + (6 − 6p)χ4] +
√
A}/4

λ5 = [2(1− p)ξ6χ2 −
√
B]/2

λ6 = [2(1− p)ξ6χ2 +
√
B]/2

λ7 = ξ2{χ2[1 + 2(1− p)χ4]−
√
C}/2

λ8 = ξ2{χ2[1 + 2(1− p)χ4] +
√
C}/2 (13)

where the parameters are A = (1 − 2p)2 + 24(1 − p)2χ4,

B = (1− p)ξ12(1 + χ4), and C = p2 + (1− p)[1 + (2
√
3−

1)p]χ4 + 5(1− p)2χ2 + (1− p)2χ12.

In Fig.1, we plot the negativityNc1c2(t) as a function of the

time κt and the probability p. As seen from the figure, when

κt = 0, the quantum state ρc1c2 is the MMES and its nega-

tivity has the maximal value 0.5 regardless of the choice of

probability p. For a given value of the probability, p, the nega-

tivity decreases as the time, κt, increases. It should be pointed

out that as time increases, the entanglement of the MMES de-

cays through sudden death rather than asymptotically like the

two-qubit Bell state. The red line in Fig.1 indicates the time of

the ESD for the negativityNc1c2(t), and satisfies the equation

p =
1−

√
3 + 3χ4 − 3χ8 +

√
D

1− 2
√
3 + χ−4 + 5χ4 − 3χ8

(14)

where the parameterD = 3− 2
√
3+ 4(2−

√
3)χ4 +χ8 with

χ =
√
1− e−κt (the derivation of the ESD line is presented

in Appendix A). When the probability p = 0, the initial state

of the two cavities is |ψ2〉 = (|02〉 + |13〉)/
√
2 being a two-

qubit pure maximal entangled state with qubit c1 involving

states 0 and 1 and qubit c2 involving states 2 and 3. As the

system evolves, the quantum state of two cavities becomes a

2 ⊗ 4 system and has the matrix form shown in Eq.(10) with

the parameter p = 0. Its entanglement evolution appears the

ESD phenomenon and the negativity becomes zero at the time

κt = ln[(3 +
√
3)/2] ≈ 0.8612. When the probability p ∈

(0, 1), the initial state ρc1c2(0) is the MMES. The ESD time

of the two cavities is determined by Eq.(14), and increases

as a function of the probability p. In the p = 1 case, the

initial state is the two-qubit Bell state |ψ1〉 = (|00〉+|11〉)/
√
2

and its entanglement disappears at the time κt → ∞, which

coincides with the result for asymptotic decay presented by

López et al [16].

Here, we have shown that, unlike the asymptotic entan-

glement decay of the Bell state, the MMES of two cavities

experiences the ESD in the dissipative procedure of cavity-

reservoir systems. It is argued that the high-dimensional com-

ponent |ψ2〉 = |02〉 + |13〉)/
√
2 plays the dominated role.

Although the initial state |ψ2〉 is a logic two-qubit state, it will

evolve to a 2 ⊗ 4 system along with the cavity-reservoir in-

teraction, which results in the ESD phenomenon of two cav-

ities. In the evolution of two cavities, the ESD time is post-

poned when the mixed probability of the component |ψ1〉 (the

Bell state) increases. In the case of p = 1 for the MMES,

the component |ψ2〉 disappears and there is no the ESD phe-

nomenon, which is just the evolution of the pure Bell state

|ψ1〉 = (|00〉+ |11〉)/
√
2.

In addition to quantum entanglement, nonlocality is also

a useful resource in quantum secure communication. It is

worthwhile to further investigate whether maximally entan-

gled states like the MMES also result in maximal nonlocal-

ity and how the nonlocality of the MMES evolves with time.

The measurement-induced nonlocality (MIN) [19] is a com-

putable nonlocality measure, which is the maximum global

effect caused by locally invariant measurement. The MIN is

defined as [19]

MIN(ρAB) = maxΠA ||ρ− ΠA(ρAB)||2, (15)

where the max runs over all the von Neumann measurements

ΠA = {ΠA
k } which do not disturb the reduced density matrix

ρA (i.e.,
∑

k Π
A
k ρAΠ

A
k = ρA), and the Hilbert-Schmidt norm

is ||X ||2 = trX†X . The state of the two cavities ρc1c2(t) in

Eq. (10) can be rewritten in a generalized Bloch form

ρc1c2(t) =
1

2
√
2

I2√
2
⊗ I4

2
+

3
∑

i=1

xiXi ⊗
I4
2

+
I2√
2

⊗
15
∑

j=1

yjYj +

3
∑

i=1

15
∑

j=1

TijXi ⊗ Yj , (16)
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where I2 and I4 are identity matrices of the subsystems,

Xi = σi/
√
2 and Yj = (σj′ ⊗ σj′′ )/2 are operator bases

with j′, j′′ ∈ {0, 1, 2, 3} except for the case j′ = j′′ = 0
(here, σ0 = I2 and {σ1, σ2, σ3} are the Pauli matrices). In the

Bloch expression, Eq. (16), the matrix elements are

xi = tr(ρc1c2Xi ⊗ I4/2),

yj = tr(ρc1c2I2/
√
2⊗ Yj),

Tij = tr(ρc1c2Xi ⊗ Yj). (17)

Luo and Fu derived an analytical formula for the MIN in an

arbitrary 2⊗ d system [19]

MINc1c2 =







trTT t − 1

‖ x ‖2 xtTT tx if x 6= 0

trTT t − λ3 if x = 0 (18)

where λ3 is the minimum eigenvalue of the 3× 3 matrix TT t

with T = (Tij), and x = (x1, x2, x3)
t is the local Bloch

vector with the norm ||x||2 =
∑

i x
2
i (here t represents the

transposition). After some derivation, we can obtain the ex-

pression for the MIN of two dissipative cavities, which can be

written as

MINc1c2(t) =
1

2
ξ4[F −2p(F −G)+p2(1−2G+F )], (19)

where the two parameters are F = ξ8 + 6ξ4χ4 + 3χ8 and

G =
√
3χ4 with ξ = e−κt/2 and χ =

√
1− e−κt. The details

of the calculation and the continuity analysis of the MIN are

presented in Appendix B.

In Fig.2, we plot the MIN as a function of the time κt and

the probability p. When κt = 0, ρc1c2(0) is the MMES, its

nonlocality is

MINc1c2(0) =

(

p− 1

2

)2

+
1

4
, (20)

which is symmetric to the probability p = 1/2. As shown in

the figure, the MIN has the maximum value 0.5 for the cases

of p = 0 and p = 1 which correspond to the pure maximally

entangled states |ψ2〉 and |ψ1〉. When p ∈ (0, 1), the MIN

has less than the maximum value, and reaches the minimum

value 0.25 at p = 0.5. Therefore, we can get the conclu-

sion that the nonlocality of the MMES is not maximal, al-

though its entanglement is maximal for any value of the prob-

ability p. According to Eq. (20), we find that the MIN is

directly proportional to the purity Tr(ρ2) of the MMES, i.e.,

MINc1c2(0) =
1
2Tr[ρ2c1c2(0)]. When the mixed state probabil-

ity of the MMES changes from 0 to 1/2, its purity decreases,

which results in the MIN changing from the maximum 0.5
to the minimum 0.25. When the probability p changes from

1/2 to 1, the purity of the MMES also increases and the MIN

changes from the minimum 0.25 to the maximum 0.5. As two

cavities evolve, the MINc1c2(t) decays in an asymptotic man-

ner and disappears in the limit κt → ∞. This is different

from the sudden death evolution of the negativity of two cavi-

ties, since the nonlocality described by the MIN contains both

quantum and classical correlations. The inset of Fig.2 shows

the difference MINp=1 − MINp=0, which indicates that the

nonlocality is no longer symmetric as the system evolves.
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FIG. 2: (Color online) Evolution of the MIN of the MMES in two

cavities, where the nonlocality is shown as a function of the time κt

and the probability p. The inset is the difference MINp=1−MINp=0

as a function of κt.

III. ENTANGLEMENT AND NONLOCALITY

DISTRIBUTIONS OF THE MMES IN MULTIPARTITE

DYNAMICS

Entanglement monogamy is an important property of mul-

tipartite systems, and means that quantum entanglement can-

not be freely shared among many parties [27–32]. It has

been proved that the squared negativity obeys the monogamy

inequality in pure states of qubit systems, N2
A1|A2···An

−
N2

A1A2
− · · · − N2

A1An
≥ 0 [33]. However, for mixed states

or multi-level pure state systems, whether or not a similar

monogamy relation holds is still an open problem. Recently,

a numerical analysis was carried out for tripartite multi-level

pure states [34], which supported the monogamy relations for

squared negativity. However, it is still unknown whether or

not the monogamous relation holds for the four-partite case,

especially in a real quantum system with dissipative reser-

voirs. With this in mind, we next analyze the negativity distri-

bution of the MMES in the four-partite 2 ⊗ 2 ⊗ 4 ⊗ 4 cavity-

reservoir systems. On the one hand, this analysis can verify

the monogamy inequality for the squared negativity, and, on

the other hand, it can provide a deep understanding of the dy-

namics of the MMES.

The residual entanglement in monogamy inequalities can

be used as a multipartite entanglement measure or indicator

to characterize the structure of multipartite entanglement [35–

39]. For composite cavity-reservoir systems, we analyze the

entanglement distribution in the partition c1r1|c2r2, and eval-
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FIG. 3: (Color online) The distribution of negativity in the dissipa-

tion of multipartite 2 ⊗ 2 ⊗ 4 ⊗ 4 cavity-reservoir systems, where

the non-negative values ofMc1r1|c2r2 indicate multipartite entangle-

ment.

uate the multipartite entanglement indicator

Mc1r1|c2r2(t) = N2
c1r1|c2r2

(t)−N2
c1c2(t)−N2

c1r2(t)

−N2
r1c2(t)−N2

r1r2(t). (21)

As the system evolves, the four-partite negativity is invariant

and satisfies the relation Nc1r1|c2r2(t) = Nc1r1|c2r2(0) =
Nc1c2(0) = 0.5, since the local dissipation is unitary and

the two reservoirs are in the vacuum state initially. At later

time, the state of the two reservoirs has a form similar to

that of the two cavities, and we get the relation ρr1r2(t) =
Sξ↔χ[ρc1c2(t)] in which Sξ↔χ is an operation exchanging

two parameters (i.e., ξ → χ and χ → ξ). Thus the negativity

of the reservoirs is

Nr1r2(t) = Sξ↔χ[Nc1c2(t)]. (22)

We can also derive the relationship ρr1c2(t) = Sξ↔χ[ρc1r2(t)]
and the negativities

Nr1c2(t) = Sξ↔χ[Nc1r2(t)] (23)

for subsystems c1r2 and r1c2. A more detailed description of

the density matrix ρc1r2(t) and its negativity Nc1r2(t) can be

found in Appendix C.

In Fig.3, we plot the negativity distribution as a function

of the time κt for the cases where the probability p of the

MMES is chosen to be 0, 0.5, 0.75, and 1. As time increases,

the two reservoirs exhibit the phenomenon of entanglement

sudden birth (ESB) [16], which corresponds to the ESD of the

two cavities. As the probability p increases, the ESB time is

advanced and the ESD time is delayed as shown in Fig.3(a)-

(c). When the probability is p = 1, both the ESB and ESD

phenomena disappear as shown in Fig. 3(d), since the initial

state becomes the two-qubit Bell state. For the subsystems

c1r2 and r1c2, the negativities have two peak values when the

probability is p = 0 and p = 0.5 (see Fig.3(a) and Fig.3(b)

where we multiply Nc1r2 and Nr1c2 by a factor 2 for clar-

ity). As the probability p increases, the number of peaks in the

negativity changes from two to one as shown in Fig.3(c) and

Fig.3(d). We further calculated the entanglement distribution

in Eq.(21), and found that the squared negativity is monog-

amous in the composite cavity-reservoir systems. Therefore,

the quantity Mc1r1|c2r2(t) can serve as a multipartite entan-

glement indicator as time evolves, as plotted (solid, blue line)

in Fig.3 for different probabilities.

Next, we analyze the MIN distribution of the MMES in the

multipartite cavity-reservoir system. It has been proved that

the MIN is not monogamous in multiqubit systems [40, 41].

However, whether the MIN is monogamous in multipartite

multi-level systems needs to be further investigated, especially

for the newly introduced MMES. Using the relationships of

the density matrices ρc1c2 , ρc1r2 , ρr1c2 , and ρr1r2 , we can get

MINr1r2(t) = Sξ↔χ[MINc1c2(t)]

MINr1c2(t) = Sξ↔χ[MINc1r2(t)] (24)

where Sξ↔χ is the exchanging operation acting on the param-

eters ξ andχ. After a derivation similar to that for MINc1c2(t),
we can obtain the MIN of the subsystem c1r2

MINc1r2(t) =
1

2
ξ2χ2[p2 + 2

√
3p(1− p)ξ4 + F1] (25)

with the parameter F1 = (3ξ8 + 6ξ4χ4 + χ8)(1 − p)2. In

addition, for the MIN of multipartite cavity-reservoir systems

in the partition c1r1|c2r2, we can obtain the expression

MINc1r1|c2r2(t) = MINc1r1|c2r2(0) =
1

2
(1−2p+2p2), (26)

where the MIN is invariant as the time increases because

the evolution operation Uc1r1(Ĥ, t) ⊗ Uc2r2(Ĥ, t) is lo-

cally unitary. In addition, we calculate the MIN distri-

bution M ′
c1r1|c2r2

(t) = MINc1r1|c2r2(t) − MINc1c2(t) −
MINc1r2(t)− MINr1c2(t)− MINr1r2(t), which is written as

M ′
c1r1|c2r2

(t) = (1− p)ξ2χ2(G1 −
√
3p) (27)

with the parameter G1 = (1− p)(1− χ2 + χ4).
In Fig.4, we plot the distribution of the MIN as a function

of time κt with different probabilities p for the MMES. As

time increases, the MIN of two cavities decreases asymptoti-

cally, and the MIN of the two reservoirs increases asymptot-

ically. When the time κt → ∞, the MIN of the two cavi-

ties transfers completely to the reservoirs. For the subsystems

c1r2 and r1c2, the MINs first increase to their maximums and

then decay asymptotically. As the probability increases, the

distance between the two peaks of MINc1r2 and MINr1c2 be-

comes smaller. When the probability is p = 1, the distance

goes to zero and the two MINs coincide completely as shown

in Fig.4(d). Unlike the distribution of entanglement negativ-

ity, the MIN in the multipartite systems is not always monog-

amous. When the mixed state probability is p = 0, the MIN is

monogamous and the indicator M ′
c1r1|c2r2

(t) (the solid blue
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FIG. 4: (Color online) The MIN distribution of the MMES in mul-

tipartite 2 ⊗ 2 ⊗ 4 ⊗ 4 cavity-reservoir systems, where the residual

nonlocalityM ′
c1r1|c2r2

can be positive, zero or negative as a function

of the time parameter κt.

line) is nonnegative as shown in Fig.4(a). However, when the

probabilities are p = 0.5 and p = 0.75, the MINs are polyga-

mous andM ′
c1r1|c2r2

(t) is no longer positive (see Fig.4(b) and

Fig.4(c)). When the probability is p = 1, the MMES becomes

the two-qubit Bell state and the indicatorM ′
c1r1|c2r2

(t) is zero

at all times for cavity-reservoir systems as shown in Fig.4(d).

The different distribution property from that of entanglement

negativity manifests that the MIN and entanglement are two

inequivalent types of resources for quantum information pro-

cessing.

Although the MIN itself is not monogamous in multipartite

multi-level systems, its functions may possess this property.

For example, the quantum discord [42, 43] is not monoga-

mous even in three-qubit pure states [44–47], but the squared

quantum discord is monogamous in an arbitrary three-qubit

pure state [48, 49]. Recently, similar situations for the entan-

glement of formation have also been discussed [31, 50–54].

For the MIN in multipartite cavity-reservoir systems, we cal-

culated the square of the MIN, and the numerical result sup-

ports the monogamy relation. However, in the general case,

an analytical proof for the monogamy property of the squared

MIN is still an open problem.

IV. DISCUSSION AND CONCLUSION

We have studied the dynamic behavior of the MMES over

the course of the dissipative evolution of multipartite multi-

level cavity-reservoir systems. It has been found that, un-

like the two-qubit Bell state |ψ1〉 = (|00〉+ |11〉)/
√
2 whose

negativity decays in an asymptotic manner [16], the entangle-

ment dynamics of the MMES exhibits the ESD phenomenon

as shown in Fig.1. Therefore, as an entanglement resource,

the MMES is not superior to the pure two-qubit Bell state in

this dissipative system. We think that the high-dimensional

component |ψ2〉 = (|02〉+ |13〉)/
√
2 in the MMES gives rise

to the ESD of two cavities evolution. Moreover, we further

study the MMESs in 2⊗ 6 and 2⊗ 8 systems where the com-

ponent |ψ2〉 is replaced by the higher dimensional components

|ψ3〉 = (|04〉 + |15〉)/
√
2 and |ψ4〉 = (|06〉 + |17〉)/

√
2, re-

spectively. The analytical results show that the new MMESs

still experience the ESD in the dynamical evolution (the de-

tails for the calculation can be seen from Appendix D), which

further supports our viewpoint.

The MIN has a close relation with quantum communica-

tion protocols involving local measurement and comparison

between the pre- and post-measurement states [19]. We find

that maximal entanglement cannot guarantee maximal nonlo-

cality. As shown in Fig.2, the MIN of the MMES is not max-

imal and its value is directly proportional to the purity Tr(ρ2)
of the MMES, which is quite different from the situation of

the Bell state exhibiting maximal nonlocality. For the MMESs

with higher-dimensional components, their MINs are also de-

pendent on the mixed state probability p and the nonlocality

evolutions are asymptotical (the details are given in Appendix

E). We explain that the decrease of the MIN of the MMESs is

due to the decrease of their purify, and the MIN evolution of

the MMESs is asymptotic since this kind of nonlocality con-

tains both quantum and classical correlations [19]. For the

quantum nonlocality related to the violation of Bell inequali-

ties [55–60], its relation to maximal entangled state is still an

open problem yet to be addressed.

In order to obtain a deep understanding of the dynamic

properties of the MMES, we have investigated its entangle-

ment and nonlocality distributions in multipartite systems.

The numerical results have shown that the squared negativ-

ity is monogamous in multipartite cavity-reservoir systems

(beyond the four values of probability p shown in Fig.3, we

further calculated the distribution for p ranging across [0, 1]).
Moreover, for the MMESs of 2 ⊗ 6 and 2 ⊗ 8 systems, our

numerical calculation still show that the squared negativity is

monogamous in the multipartite dissipative systems. These

results support the conjecture of He and Vidal [34] that the

squared negativity is monogamous in multipartite multi-level

systems. On the other hand, the MIN distribution of the

MMES is not monogamous in the multipartite cavity-reservoir

system as shown in Fig.4, which indicates that the MIN is a

different type of resource from entanglement in quantum in-

formation processing. We further investigate the MIN distri-

butions for the MMESs with higher dimensional components

and find that the MIN is still not monogamous (the details are

shown in Appendix E).

In conclusion, we have studied the dynamic behavior of the

MMES in multipartite cavity-reservoir systems. It has been

found that the evolution of the negativity of the MMES ex-

hibits the ESD phenomenon, and is not superior to the two-

qubit Bell state as an entanglement resource in a dissipative

system. We also find that maximal entanglement cannot guar-

antee maximal nonlocality. The MIN of the MMES is not

maximal and its evolution is dependent on the mixed state

probability of the MMES. In addition, we have investigated

the distributions of the negativity and the MIN of the MMESs
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in the multipartite cavity-reservoir systems, where two types

of correlation exhibit different monogamous properties.
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Appendix A: The derivation of the ESD line for negativity Nc1c2

In Eq. (12) of the main text, the negativityNc1c2(t) is deter-

mined via the sum of absolute values of the negative eigenval-

ues. After some analysis, we can obtain that the eigenvalues

{λ1, λ2, λ4, λ6, λ8} are always nonnegative, while the other

eigenvalues {λ3, λ5, λ7} can be positive, zero or negative.

Therefore, as the two cavities evolves, the negativityNc1c2(t)
becomes zero when the three eigenvalues {λ3, λ5, λ7} be-

come nonnegative.

Using the expressions for λ3, λ5 and λ7 in Eq. (13), we can

derive the p ∼ κt relations when these eigenvalues are zero.

When λ3 = 0, we have the relation

p =
3(eκt − 1)2(3− 6eκt + 2e2κt)

9− 36eκt + 48e2κt − 24e3κt + 2e4κt
. (A1)

For the case λ5 = 0, we have

κt = ln[(3 +
√
3)/2] (A2)

for an arbitrary value of parameter p. When λ7 = 0, we can

derive the p ∼ κt relation as shown in Eq. (14) of the main

text. In Fig.5, we plot the three relations in the plane of pa-

rameters p and κt, where the dashed green line is for λ3 = 0,

the dot-dashed blue line for λ5 = 0, and the solid red line

for λ7 = 0. The three lines divide the whole area into four

parts. In regions I, II and III, the signs of the eigenvalues

(λ3, λ5, λ7) are (−,−,−), (+,−,−), and (+,+,−), which

result in nonzero negativity for the two cavities. In region IV,

all the eigenvalues are positive leading to the negativity being

Nc1c2(t) = 0. Thus, as seen from the figure, the red line for

λ7 = 0 determines the ESD time of the two cavities, which is

described by Eq. (14) of the main text.

Appendix B: Calculation and continuity analysis for the MIN of

two cavities

Before evaluating the nonlocality MINc1c2(t) given in Eq.

(18), we first calculate the local Bloch vector x and correlation

matrix T . According to Eq. (17), the local Bloch vector of

subsystem c1 is

x =

(

0, 0,
χ2

2
√
2

)t

(B1)
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FIG. 5: (Color online) Four regions in the entanglement evolution of

two cavities, where, in region IV, all three eigenvalues (λ3, λ5, λ7)
are positive and the negativity Nc1c2 becomes zero.

which leads to the norm being ||x||2 = χ4/8 with χ =√
1− e−κt. The correlation matrix T = T ′/2

√
2 is a 3 × 15

matrix, in which the nonzero elements of T ′ are

T ′
1,1 = −T2,2 = ξ2[p+ (1− p)ξ4 +

√
3(1− p)χ4],

T ′
3,3 = (1 − 2χ2 + 2χ4)[1− 4(1− p)ξ2χ2],

T ′
1,5 = T ′

1,10 = T ′
3,6 = −T ′

2,9 =
√
6(1− p)ξ4χ2,

T ′
1,13 = ξ2[p− (1− p)ξ4 +

√
3(1− p)χ4],

T ′
2,14 = −ξ2[p− (1− p)ξ4 +

√
3(1− p)χ4],

T ′
3,12 = χ2 − 4(1− p)ξ2χ4,

T ′
3,15 = 2p− 1 + (6p− 4)χ2 − (8− 10p)χ4,

+6(1− p)χ6, (B2)

with ξ = e−κt/2. When κt > 0, we have the local Bloch

vector x 6= 0. After substituting the three terms x, ||x||2, and T
into the first formula in Eq. (18), we can obtain the expression

for MINc1c2(t > 0) in Eq. (19). When κt = 0, the quantum

state ρc1c2(0) is the MMES for which the local Bloch vector

is x = 0. In this case, we need to calculate the eigenvalues of

matrix TT t which are λ1 = λ2 = λ3 = (1 − 2p + 2p2)/4.

According to the second formula in Eq. (18), we can derive

MINc1c2(0) = (1− 2p+ 2p2)/2.

Next, we prove the continuity of MINc1c2(t). Based on the

previous analysis, we know that the two formulae in Eq. (18)

are used for the cases x 6= 0 and x = 0 which correspond to

the time evolutions κt > 0 and κt = 0, respectively. If the

MINc1c2 is continuous, the limit of MINc1c2(κt→ 0+) in the

first formula should coincide with the value of MINc1c2(κt =
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0). After some calculation, we can get

lim
κt→0+

xtTT tx

‖ x ‖2 = lim
κt→0+

d(xtTT tx)
d(κt)

d(‖x‖2)
d(κt)

= lim
κt→0+

d2(xtTT tx)
d(κt)2

d2(‖x‖2)
d(κt)2

=
1
16 (1− 2p+ 2p2)

1
4

= λ3 (B3)

where we have used L’Hospital’s rule, and λ3 is the minimal

eigenvalue of matrix TT t. Then, in the limit κt → 0+, the

two formulae in Eq. (18) are continuous and we have

lim
κt→0+

MINc1c2(κt) = MINc1c2(0)

=
1

2
(1− 2p+ 2p2). (B4)

As a result, the nonlocality MINc1c2(t) can be described by

Eq. (19) of the main text throughout the entire period of the

dynamic evolution.

Appendix C: The density matrix ρc1r2 and its negativity Nc1r2

Throughout the dynamic evolution of multipartite cavity-

reservoir systems, the quantum state of subsystem c1r2 is

ρc1r2(t) = trr1c2 [ρc1r1c2r2(t)], which can be written as

ρc1r2(t) =























b11 0 0 0 0 b16 0 0
0 b22 0 0 0 0 b27 0
0 0 b33 0 0 0 0 b38
0 0 0 b44 0 0 0 0
0 0 0 0 b55 0 0 0
b61 0 0 0 0 b66 0 0
0 b72 0 0 0 0 b77 0
0 0 b83 0 0 0 0 b88























(C1)

where the nonzero matrix elements are

b11 = [p+ (1 − p)ξ4](1 + ξ2χ2)/2,

b22 = {2(1− p)ξ2χ2 + [p+ 3(1− p)ξ4]χ4}/2,
b33 = (1− p)χ4(1 + 3ξ2χ2)/2,

b44 = (1− p)χ8/2,

b55 = [ξ8 + p(ξ4 − ξ8)]/2,

b66 = ξ2χ2[p+ 3(1− p)ξ4]/2,

b77 = 3(1− p)ξ4χ4/2,

b88 = (1− p)ξ2χ6/2,

b16 = b61 = ξχ[p+
√
3(1− p)ξ4]/2,

b27 = b72 =
√

3/2(1− p)ξ3χ3,

b38 = b83 = (1− p)ξχ5/2. (C2)

For this quantum state, the negativity is

Nc1r2(t) =

∑8
i=1 |λi| − 1

2
(C3)

where the λis are the eigenvalues of the partial transpose ma-

trix ρ
Tc1
c1r2 and have the form

λ1 = (1− p)ξ2χ6/2,

λ2 = (1 + ξ2χ2)[p+ (1 − p)ξ4]/2,

λ3 = [1− 2χ2 +B1 −
√

1− (1− p)χ2B2]/4,

λ4 = [1− 2χ2 +B1 +
√

1− (1− p)χ2B2]/4,

λ5 = [(3− 2p)χ2 +B3 −
√

χ4B4]/4,

λ6 = [(3− 2p)χ2 +B3 +
√

χ4B4]/4,

λ7 = [(1− p)χ4(3ξ4 + χ4)−
√

(1− p)2B5]/4,

λ8 = [(1− p)χ4(3ξ4 + χ4) +
√

(1− p)2B5]/4, (C4)

with the parameters

B1 = (7− 5p)χ4 − 10(1− p)χ6 + (4 − 4p)χ8,

B2 = (16− 8
√
3)p+ [14− 24(2−

√
3)p]χ2

−8[8− (10− 3
√
3)p]χ4 + [123− (111− 8

√
3)p]χ6

−(104− 96p)χ8 + 28(1− p)χ10 + (8 − 8p)χ12

−4(1− p)χ14,

B3 = −(8− 7p)χ4 + 12(1− p)χ6 − 6(1− p)χ8,

B4 = (3− 2p)2 − [36− 2(23− 6p)p]χ2

+(64− 96p+ 33p2)χ4 − 12(1− p)(4− 3p)χ6

−12(1− p)2χ8,

B5 = χ8(9ξ8 + 4ξ2χ2 − 6ξ4χ4 + χ8). (C5)

Appendix D: The ESD for the MMESs with higher dimensional

components

In the multipartite cavity-reservoir systems, we first con-

sider that the two cavities are initially in the MMES

ρ(1)c1c2(0) = p|ψ1〉〈ψ1|+ (1 − p)|ψ3〉〈ψ3|, (D1)

where |ψ1〉 = (|00〉 + |11〉)/
√
2 is the two-qubit Bell state

and |ψ3〉 = (|04〉 + |15〉)/
√
2 is the high dimensional com-

ponent. Along with the evolution of cavity-reservoir systems,

the output state is

ρ(1)c1r1c2r2(t) =
p

2
[(|φ0〉c1r1 |φ0〉c2r2 + |φt1〉c1r1 |φt1〉c2r2)

·(〈φ0|c1r1〈φ0|c2r2 + 〈φt1|c1r1〈φt1|c2r2)]

+
1− p

2
[(|φ0〉c1r1 |φt4〉c2r2 + |φt1〉c1r1 |φt5〉c2r2)

·(〈φ0|c1r1〈φt4|c2r2 + 〈φt1|c1r1〈φt5|c2r2)],(D2)

where the components have the forms

|φt0〉 = |00〉
|φt1〉 = ξ|10〉+ χ|01〉
|φt4〉 = ξ4|40〉+ 2ξ3χ|31〉+

√
6ξ2χ2|22〉

+2ξχ3|13〉+ χ4|04〉
|φt5〉 = ξ5|50〉+

√
5ξ4χ|41〉+

√
10ξ3χ2|32〉√

10ξ2χ3|23〉+
√
5ξχ4|14〉+ χ5|05〉 (D3)
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FIG. 6: (Color online) The ESD lines in the evolution of two cavities

which are initially in the MMESs: (a) ρ
(1)
c1c2 in Eq. (D1), (b) ρ

(2)
c1c2 in

Eq. (D6).

with the parameters ξ(t) = e−κt/2 and χ(t) = (1− e−κt)1/2,

respectively. By tracing the subsystems of two reservoirs,

we can get the output state of two cavities ρ
(1)
c1c2(t) =

Trr1r2 [ρ
(1)
c1r1c2r2(t)], which is a 12×12 matrix. In order to ob-

tain the entanglement negativity of ρ
(1)
c1c2(t), we calculate the

eigenvalues of the partial transpose matrix ρ
(1)Tc1
c1c2 (t). After

some derivation, we get that there are four eigenvalues which

can be negative

λ2 = (1− p)ξ10(3χ2 −
√

1 + 4χ4)/2

λ6 = (1− p)ξ8(1 + 15χ4 −
√

1 + 70χ4 + 25χ8)/4

λ7 = (1− p)ξ6χ2(1 + 5χ4 −
√

1 + 15χ4)

λ11 = ξ2χ2[χ4(2 + 3χ4) + p(1− 2χ4 − 3χ8)]/2

−
√

H1/2 (D4)

where the parameter is H1 = ξ4[p2 + 2
√
5(1 − p)pχ8 +

(1 − p)2(4χ12 + 13χ16 + 4χ20)]. Similar to the analysis

in Appendix A, we can derive the ESD time for the MMES

ρ
(1)
c1c2(t) according to the four eigenvalues. When the mixed

state probability p changes in the region [0, p1] with p1 =

(347 − 125
√
5)/1922 ≈ 0.03512, the ESD time for the

MMES is κt = ln[(5 +
√
5)/4] ≈ 0.5928. When the proba-

bility p ∈ [p1, 1), the ESD time is determined by the p ∼ κt
relation

p =

√
2χ8

√
J1 + χ8J2

1− χ4 + 2(2−
√
5)χ8 + 6χ12 + χ16 − 5χ20

(D5)

where the two parameters are J1 = 4−2
√
5+3(3−

√
5)χ4+

2χ8 and J2 = 2 −
√
5 + 3χ4 + χ8 − 5χ12. In Fig.6(a),

we plot the ESD line (red line) as a function p(κt), which

divides the entanglement evolution into entangled region and

disentangled region.

Next, we consider the two cavities which are initially in the

MMES

ρ(2)c1c2(0) = p|ψ1〉〈ψ1|+ (1− p)|ψ4〉〈ψ4|, (D6)

where |ψ4〉 = (|06〉+ |17〉)/
√
2 is the high dimensional com-

ponent. As the systems evolves, the output state ρ
(2)
c1r1c2r2(t)

has the same form to that in Eq. (D2) but the components

|φt4〉 and |φt5〉 are replaced by the new components |φt6〉 and

|φt7〉 which can be written as

|φt6〉 = ξ6|60〉+
√
6ξ5χ|51〉+

√
15ξ4χ2|42〉

+
√
20ξ3χ3 +

√
15ξ2χ4 +

√
6ξχ5|15〉

+χ6|06〉
|φt7〉 = ξ7|70〉+

√
7ξ6χ|61〉+

√
21ξ5χ2|52〉

+
√
35ξ4χ3|43〉+

√
35ξ3χ4|34〉+

√
21ξ2χ5|25〉

+
√
7ξχ6|16〉+ χ7|07〉. (D7)

After tracing the subsystems r1r2, we can get the output state

of two cavities ρ
(2)
c1c2(t). Furthermore, by doing the partial

transposition, we can obtain the matrix ρ
(2)Tc1
c1c2 (t) and calcu-

late its eigenvalues. The ESD line is determined by the neg-

ative eigenvalues of ρ
(2)Tc1
c1c2 (t). When the mixed state prob-

ability p ∈ [0, p2] with p2 = (8669 − 2401
√
7)/370191 ≈

0.006258, the ESD occurs at the time κt = ln[(7 +
√
7)/6] ≈

0.4748. When p ∈ [p2, 1), the ESD time is determined by the

following p ∼ κt relation

p =
χ12(K1 +

√
K2)

1− χ4 + 2(3−
√
7)χ12 + 8χ16 + χ24 − 7χ28

(D8)

where the two parameters areK1 = 3−
√
7+4χ4+χ12−7χ16

and K2 = 15− 6
√
7 + 8(4 −

√
7)χ4 + 9χ8. In Fig.6(b), we

plot the ESD line (blue line) as a function p(κt), which cut the

entanglement evolution region into two parts, i.e., entangled

region and disentangled region.

Appendix E: The MIN of the MMES with higher dimensional

components and its distribution

We first consider the MMES ρ
(1)
c1c2(0) with the high dimen-

sional component |ψ3〉 = (|04〉 + |15〉)/
√
2 as shown in Eq.

(D1). According to the formula in Eq. (18) of the main text,

we can derive the nonlocality

MIN[ρ(1)c1c2(0)] = (p− 1/2)2 + 1/4, (E1)

which is dependent on the mixed state probability p and di-

rectly proportional to the purity of the MMES. In the calcu-

lation of the MIN, the matrix basis for the subsystem c2 is

chosen to be the generalized Gell-Mann matrices (GGM) [61],

which are the higher-dimensional extension of the Pauli matri-

ces. The GGM basis for a d-dimensional system is composed

of three types of matrices [61]: (i) d(d−1)/2 symmetric GGM

Λjk
s = |j〉〈k|+ |k〉〈j|, 1 ≤ j < k ≤ d; (E2)

(ii) d(d− 1)/2 antisymmetric GGM

Λjk
a = −i|j〉〈k|+ i|k〉〈j|, 1 ≤ j < k ≤ d; (E3)

(iii) (d− 1) diagonal GGM

Λl =
√

2/(l2 − l)(

l
∑

j=1

|j〉〈j| − l|l+ 1〉〈l + 1|) (E4)
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FIG. 7: (Color online) The MIN distributions of the MMESs in mul-

tipartite 2⊗2⊗6⊗6 and 2⊗2⊗8⊗8 cavity-reservoir systems are

plotted as a function of κt, where the negative values indicate that

the MIN is not monogamous.

with 1 ≤ l ≤ d− 1. It should be noted that the GGM needs to

be normalized in the generalized Bloch form of ρ
(1)
c1c2 . Along

with the interaction between the cavities and reservoirs, the

MMES will evolve into a 2⊗6 systems. After some derivation,

we can obtain

MIN[ρ(1)c1c2(t)] =
ξ4

2
{ξ16+p[p−(2−p)ξ16]+L1+L2} (E5)

where the two parameters are L1 = 2(1 − p)[
√
5p + 30(1 −

p)ξ8]χ8 and L2 = (1 − p)2(20ξ12χ4 + 40ξ4χ12 + 5χ16). In

the dissipative procedure of cavity-reservoir systems, the non-

locality of two cavities decays in an asymptotical way, which

is similar to the case of MMES in 2⊗ 4 systems.

Next, we analyze the MMES of a 2⊗ 8 system in Eq. (D6)

which has the high dimensional component |ψ4〉 = (|06〉 +

|17〉)/
√
2. It is found that the MIN for this MMES ρ

(2)
c1c2(0)

has the same expression as that in Eq. (E1), which is also

dependent on the mixed state probability p. As the system

evolves, the MIN for two cavities decays asymptotically and

can be expressed as

MIN[ρ(2)c1c2(t)] =
ξ4

2
[ξ24 + L3 + (1− p)2L4] (E6)

where the parameters are L3 = p[p − (2 − p)ξ24] + 2(1 −
p)[

√
7p+350(1−p)ξ12]χ12 andL4 = 42ξ20χ4+315ξ16χ8+

525ξ8χ16 + 126ξ4χ20 + 7χ24.

For the MMESs ρ
(1)
c1c2(0) and ρ

(2)
c1c2(0) with the high dimen-

sional components, we further calculate the distribution

M ′
c1r1|c2r2

(t) = MINc1r1|c2r2(t)− MINc1c2(t)

−MINc1r2(t)− MINr1c2(t)

−MINr1r2(t) (E7)

in the multipartite cavity-reservoir systems. We find that the

MIN distributions are still not monogamous. As examples,

we choose the mixed state probability p = 0.8 for the two

MMESs and calculate their MIN distributions. In Fig.7, the

MIN distributions in the multipartite systems are plotted ,

where two cavities are initially in the MMESs ρ
(1)
c1c2(0) and

ρ
(2)
c1c2(0). As shown in the figure, the negative values for the

distributions indicate that the MIN is not monogamous.

However, for the squared negativity of the MMESs in 2⊗ 6
and 2⊗ 8 systems, we calculate the entanglement distribution

in the multipartite 2⊗2⊗6⊗6 and 2⊗2⊗8⊗8 cavity-reservoir

systems, where the mixed state probability p ranges across

[0, 1]. The numerical results still support that the negativity is

monogamous.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).

[2] C. Eltschka and J. Siewert, J. Phys. A 47, 424005 (2014).

[3] J. Cui, M. Gu, L. C. Kwek, M. F. Santos, H. Fan, and V. Vedral,

Nature Commun. 3, 812 (2012).

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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[58] T. Vértesi and N. Brunner, Phys. Rev. Lett. 108, 030403 (2012).

[59] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012).

[60] Y.-C. Liang, F. J. Curchod, J. Bowles, and N. Gisin, Phys. Rev.

Lett. 113, 130401 (2014).

[61] R. A. Bertlmann and P. Krammer, J. Phys. A: Math. Theor. 41,

235303 (2008).


