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We develop a model that reduces quantum electrodynamics (QED) in time-plus-three-spatial
dimensions to time plus a single spatial dimension, making it is possible to numerically calculate
the dynamic behavior of simple QED systems. The dimensionality is restricted in such a way as
to preserve the influence of spin and angular momentum. In contrast to the S-matrix scattering
approach, these calculations are not perturbative within the zero- and one-photon sector of the
relevant Hilbert space. The model restricts the electron occupation number to one and the photon
occupation number to zero or one. We use this model to calculate the dynamics of a “bare” electron
that dresses itself by a photon field.

PACS numbers: 42.50.Pq, 03.70.+k

I. INTRODUCTION

Quantum electrodynamics (QED) provides the most
accurate model of one of the most fundamental of physi-
cal processes: the interaction between photons and elec-
trons. Particle scattering calculations made using QED
agree with beam experiments to a high degree of accu-
racy. Traditionally, these scattering processes are studied
using the perturbative S-matrix approach [1], typically
depicted using Feymann diagrams. This approach has
proven very successful in calculating time-independent
quantities such as energies of atomic sublevels and scat-
tering cross sections. However, it provides little insight
into the dynamics of intermediate processes that occur
between input and output states. For example, bare
electrons cannot exist without “self-dressing” (binding to
virtual photons), but producing visualization of the full
dynamics of this process is currently intractable with full
QED. It is worth exploring how the dynamics of these
types of processes unfold.

In the past decade, the group of Grobe and Su et. al
have made remarkable strides in qualitatively visualizing
time-resolved particle dynamics in these kinds of pro-
cesses [2–5]. Wagner et. al from this group looked at the
time evolution of a one-dimensional simplified Hamilto-
nian based on a Yukawa interaction [4]. These models use
a massive boson as an analog to the photon, and neglect
spin and polarization. Using this simpler interaction in
place of the full Dirac-Maxwell QED Hamiltonian makes
numerical simulation in one spatial dimension accessi-
ble. They produced animations of a bare fermion being
dressed by a boson field as well as scattering processes
analogous to Compton scattering.

In this paper, we embark on a similar and compli-
mentary agenda to that taken by Grobe and Su et. al

∗Electronic address: ware@byu.edu

[2]. In their work, they use simpler models in place of
QED, and then restrict their second quantized Hamilto-
nian’s action to one spatial dimensional when calculating.
These simpler models must make some concessions, such
as “photons” with mass and particles without spin. In
our approach, we begin with full QED based on Dirac
and Maxwell, but then restrict our analysis to only the
simplest of fundamental processes, namely that of a bare
electron of a given spin interacting with a massless po-
larized photon.

Note that our approach is not equivalent to writing
down a U(1) gauge theory in 1+1 dimensions, which is
known as 1+1 QED or the Schwinger model [6]. The
Schwinger model may be solved exactly, but has very
different phenomenology than 3+1 QED. Instead, we
are projecting the Hilbert space of 3+1 QED onto a re-
stricted subspace of states and then solving the projected
Hamiltonian. The goal is to create a description that
can model phenomenology more analogous to 3+1 QED,
such as a bare electron dressing itself with a photon field.
We do not expect the projected Hamiltonian to be the
Hamiltonian of a local quantum field theory (for exam-
ple, it does not have anti-particle states). However, we
are satisfied as long as it is causal and can reproduce
phenomenology analogous to 3+1 QED.

Using our model, we compute the “physical fermion”
or “dressed electron,” of our reduced model. This dressed
state is a quantum superposition of bare electron states
(without correlated photons) and correlated electron-
photon states (in which the bare electron is accompanied
by one photon). Using our reduced model and similar
to the result in [4], we find that the mass of the phys-
ical fermion is reduced from its bare counterpart by its
attachment to a correlated photon. In analogy to the
results in [7], we find that an initially bare, unphysi-
cal fermion (electron) rapidly dresses itself with a bo-
son (photon) field to become the physical fermion. The
formation of the physical fermion is accompanied by ra-
diation of unneeded photon probability into the ambient
space surrounding the dressed fermion.
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In contrast with the S-matrix scattering approach,
these calculations are not perturbative. Our approach
can be done in such a way as to preserve the influence
of the intrinsic properties of spin, angular momentum,
and the polarization properties of a massless photon. We
calculate the eigenstates of the reduced Hamiltonian for
this model in order to construct a dynamical evolution
of a bare electron dressing itself.

This article is outlined as follows. In Section II, we
introduce the well-known full QED Hamiltonian for de-
scribing the interactions between charged matter and
light fields. In Section III, we introduce a new reduced
Hamiltonion that acts in the same way as the full Hamil-
tonion on a reduced Hilbert space that represents a sys-
tem with at most one electron, and a single photon. We
further manipulate the interaction portion of this Hamil-
tonian into a form that explicitly shows its behavior when
electron and photon momenta are restricted to a single
dimension. We then construct a reduced Hamiltonian
using this interaction term along with reduced versions
of the other terms in the Hamiltonian. In Section IV we
discuss the eigenvalues and eigenvectors of this reduced
Hamiltonian. Finally, in Section V we illustrate how this
reduced Hamiltonian can be used to study the dynamics
of a bare electron dressing itself with a photon field.

II. COULOMB GAUGE HAMILTONIAN

Following Cohen-Tannoudji [8], the QED Hamiltonian
for the radiation-matter field in the Coulomb gauge can
be written as

H = HD +HR +HI + VCoul. (1)

The Dirac term HD acts on the matter field, and is given
by

HD =

∫
d3r : Ψ†(r)

(
α0m0c

2 +
~c
i
α · ∇

)
Ψ(r) : . (2)

The colons indicate that creation and annihilation oper-
ators (introduced below) must be normal ordered. The
parameter m0 is the bare mass of an electron and the α0

and α = (α1, α2, α3) matrices are given by

α0 =

[
I2×2 02×2
02×2 −I2×2

]
, αj =

[
02×2 σj
σj 02×2

]
, (3)

with 02×2 representing a 2× 2 matrix of zeros, I2×2 rep-
resenting the 2 × 2 identity matrix, and σj representing
the usual Pauli matrices, given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (4)

The 4-component matter field Ψ can be written in terms
of momentum components as

Ψ(r) =

∫
d3p

ei
p·r
~

(2π~)3/2
U(p)χ(p). (5)

The vector χ is given by

χ(p) =


c↑(p)
c↓(p)

d†↑(p)

d†↓(p)

 , (6)

where c↑(p) and c↓(p) are the Fermionic annihilation op-
erators for bare spin up and down electrons with momen-

tum p, and d†↑(p) and d†↓(p) are the creation operators
for bare spin up and down positrons with momentum p.
These operators satisfy the usual Fermionic anticommu-
tation relations

{c↑(p), c†↑(q)} = {c↓(p), c†↓(q)}

= {d↑(p), d†↑(q)}

= {d↓(p), d†↓(q)}
= δ(p− q)1,

(7)

with all other anticommutators vanishing. The matrix
U(p) is chosen to diagonalize the momentum representa-
tion of the operator in parentheses in (2), such that we
can write

U†(p) (α0p0 + p ·α)U(p) = α0

√
p20 + p2, (8)

where p = ‖p‖ and p0 = m0c. Using U(p), the anticom-
mutators in (7), and normal ordering, we rewrite (2) in
the useful form

HD = cp0

∫
d3p

√
1 +

p2

p20

[
c†↑(p)c↑(p) + c†↓(p)c↓(p)

+ d†↑(p)d↑(p) + d†↓(p)d↓(p)
].
(9)

The radiation term HR in (1) describes the light field,
and is given by

HR =

∫
d3k ~ωk

(
a†1(k)a1(k) + a†2(k)a2(k)

)
, (10)

where a1(k) and a2(k) annihilate photons of wave num-
ber k (with momentum ~k and frequency ωk = c‖k‖),
while a†1(k) and a†2(k) create those same photons. The
subscripts 1 and 2 refer to two orthogonal polarizations
which are also orthogonal to k. These operators satisfy
the usual commutation relations, namely

[a1(k), a†1(k′)] = [a2(k), a†2(k′)] = δ(k− k′)1,

with all other commutators vanishing. Importantly the
bosonic and fermionic operators commute with each
other: for example

[a1(k), c†↓(p)] = 0

for all wave numbers k and momenta p.
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The term HI in (1) describes the interaction of light
and matter, and is given by

HI = −ec
∫
d3r : Ψ†(r)α ·A⊥(r)Ψ(r) : , (11)

where e is a free parameter with units of charge, and the
transverse, three-component vector potential A⊥ is the
photon field given by

A⊥(r) =

∫
d3k

2∑
j=1

aj(k)eik·r + a†j(k)e−ik·r√
2ε0ωk(2π)3/~

εj(k). (12)

The photon polarizations ε1(k) and ε2(k) are transverse
to the direction k of photon propagation and are or-
thonormal:

ε1(k) · k = ε2(k) · k = ε1(k) · ε2(k) = 0

and

ε1(k) · ε1(k) = ε2(k) · ε2(k) = 1.

The Coulomb term VCoul in (1) describes the self-
interaction of the charged matter field, and is given by

VCoul =
1

8πε0

∫∫
d3r d3r′

: ρ(r)ρ(r′) :

‖r− r′‖

=
1

2ε0

∫
d3k

: ρ̂†(k)ρ̂(k) :

‖k‖2
,

(13)

where the charge density operator ρ in real and reciprocal
space is given by

ρ(r) = eΨ†(r)Ψ(r) (14)

and

ρ̂(k) =
1

(2π)
3
2

∫
d3ke−ik·rρ(r)

=
e

(2π)
3
2

∫
d3pχ†(p)U†(p)U(p + ~k)χ(p + ~k).

(15)

III. DERIVATION OF REDUCED
HAMILTONIAN

Diagonalizing the full QED Hamiltonian is intractable
both computationally and analytically. The interaction
term HI is required to describe non-trivial situations in-
cluding both matter and light, and VCoul is required to
describe interactions between charged particles. But HI

contains 16 individual terms, while VCoul contains an ad-
ditional 256 terms. This profusion of terms makes it
impractical to solve the system, even numerically. In
this section, we develop a simplified model for which dy-
namics can easily be computed using readily available
resources by introducing several restrictions and approx-
imations.

Our first simplification is to restrict our model to con-
sider only states with exactly one electron, and at most
one photon. For this system, the interaction term HI

from (11) can be written in momentum space as

HI = bI

∫∫
d3p′d3p

O(p′,p)√
‖p′ − p‖

(16)

where

bI = − e

~2
√

c

2ε0(2π)
3 (17)

and

O(p′,p) = : χ†(p′)B(p′,p)χ(p) : (18)

with

B(p′,p) = U†(p′)α · a⊥(k)U(p) (19)

where k = (p′ − p)/~ and

a⊥(k) = a1(k)ε1(k) + a2(k)ε2(k)

+ a†1(−k)ε1(−k) + a†2(−k)ε2(−k).
(20)

We denote a state with no photons and a single bare spin-
up electron of momentum q as |q〉 = c↑

†(q) | 〉, where | 〉
denotes the bare vacuum. Acting on this state with HI ,
we have

HI |q〉 = HIc↑
†(q) | 〉

= bI

∫∫
d3p′d3p

O(p′,p)c↑
†(q) | 〉√

‖p′ − p‖
.

(21)

Using (6) and (18) we can write the numerator of the
integrand in (21) as

O(p′,p)c†↑(q) | 〉 =

:


c↑
†(p′)

c↓
†(p′)

���d↑(p
′)

���d↓(p
′)


T

B(p′,p)


c↑(p)

���c↓(p)

d↑
†(p)

d↓
†(p)

 : c↑
†(q) | 〉 . (22)

The elements that have a slash through them vanish in
the computation. The element c↓ annihilates the input
state, as do the elements d↑ and d↓ when the indicated
normal-ordering is applied. After these algebraic sim-
plifications, we restrict our system to a subspace with
no electron-positron pairs, so that terms of the form

c†↑d
†
↑c
†
↑ | 〉 are neglected. In this low-energy approxima-

tion, we can algebraically manipulate (22) to become

O(p′,p)c†↑(q) | 〉 =

δ(p− q)
(
B11(p′,q)c†↑(p

′) +B21(p′,q)c†↓(p
′)
)
| 〉

(23)
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where we have also used the anticommutation rule (7).
The subscripts on B11 and B21 indicate the row/column
component of the matrix B.

Our next step is to study how the full interaction
Hamiltonian HI interacts with states with exactly one
electron, and at most one photon. We will eventually
reduce this description to one dimension, so we consider
photon wavevectors that are in the ±ẑ directions, with
polarizations ε1(±ẑ) = x̂, and ε2(±ẑ) = ±ŷ. Under this
convention, when an electron of initial momentum q = qẑ
interacts with a photon and ends up with a final momen-
tum p = pẑ, we have

B11(p,q) = 0. (24)

It immediately follows that

c↑(p)HIc↑
†(q) | 〉 = 0. (25)

This result indicates that, due to conservation of angular
momentum, an electron cannot interact with a photon in
one dimension without changing its spin since the pho-
ton carries angular momentum. On the other hand, for
an electron that does change spin on interacting with a
photon, we have

B21(p,q) = (s(q/p0)c(p/p0)− s(p/p0)c(q/p0))

×
(
a†1(∆kẑ) + isign(∆k)a†2(∆kẑ)

) (26)

with ∆k = (q − p)/~ and

c(ξ) =

√
1

2

(
1 +

1√
1 + ξ · ξ

)
, (27)

s(ξ) = η(ξ)

√
1

2

(
1− 1√

1 + ξ · ξ

)
. (28)

The function η specifies the sign of the z-component of
its argument via

η(ξ) = ξ · ẑ /‖ξ‖ . (29)

From (26) it immediately follows that

c↓(p)HIc
†
↑(q) | 〉 =

bI
sqcp − spcq√
|q − p|

(
a†1(∆kẑ) + isign(∆k)a†2(∆kẑ)

)
| 〉 .

(30)

where sp = s(pẑ) and cp = c(pẑ).
Now we are in a position to introduce a reduced in-

teraction Hamiltonian hI that acts the same way as the
full HI (16) on the our subset of states. We consider
states |p〉 that have an electron with momentum p and
no photon, and states |p,p′ − p〉 that have an electron
with momentum p and a photon with momentum p′−p.

Using this notation, we can write our reduced interaction
Hamiltonian as

hI = ~
3
2 bI

∫∫
d3p′d3p

[
s(p)c(p′)− s(p′)c(p)√

|p− p′|

× (|p,p′ − p〉 〈p′|+ |p′〉 〈p,p′ − p|)

] (31)

where

|p〉 = c†↑(p) | 〉 , (32)

|p,q〉 = −a
†
1(kq) + iη(q)a†2(kq)√

2~3
c†↓(p) | 〉 . (33)

The wavevector is related to the photon momentum as
usual: kq = q/~. The definitions (32) and (33) yield the
orthonormality conditions

〈q |p〉 = δ(q− p) (34)

〈p′,q′ |p,q〉 = δ(q− q′)δ(p− p′) (35)

〈p′ |p,q〉 = 0. (36)

In preparation for restricting the reduced Hamiltonian
(31) to one dimension, we now introduce dimensionless
momentum

ξ = p/p0 (37)

In terms of this dimensionless momentum, our basis
states can now be written as

|ξ〉 = p
3/2
0 |p〉 (38)

|ξ, ξ′〉 = p30 |p,p′〉 , (39)

so that the inner products

〈ξ| ξ′〉 = δ(ξ − ξ′) (40)

〈ξ, ξ′| ξ′′, ξ′′′〉 = δ(ξ − ξ′′)δ(ξ′ − ξ′′′) (41)

are unitless. In this basis, the reduced interaction Hamil-
tonian (31) can be expressed as

hI = cp0λ

∫∫
d3ξ′d3ξ

[
s(ξ′)c(ξ)− s(ξ)c(ξ′)√

|ξ − ξ′|

×
(
|ξ, ξ′ − ξ〉 〈ξ′|+ |ξ′〉 〈ξ, ξ′ − ξ|

)] (42)

The unitless quantity λ is a free parameter given by

λ =
e

e0

√
α

2π2
(43)
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which allows one to specify the ratio of e, the charge
of the fermion in this reduced model, to the measured
charge e0 of an electron, with α giving the fine structure
constant.

We now seek a restricted description that is one-
dimensional, yet gives qualitatively correct behavior.
This will allow for numeric computation with readily
available resources. A natural way to project to a sin-
gle dimension is to reduce the two transverse dimension
in the quantization volume to unit size on the quantiza-
tion grid. In this situation, the final reduced interaction
Hamiltonian becomes

HI = cp0λ

∫∫
dξ′dξ

[
sξ′cξ − sξcξ′√
|ξ − ξ′|

×
(
|ξ, ξ′ − ξ〉 〈ξ′|+ |ξ′〉 〈ξ, ξ′ − ξ|

)] (44)

where sξ = s(ξẑ) and cξ = c(ξẑ). These states have the
overlaps

〈ξ | ξ′〉 = δ(ξ − ξ′)

and

〈ξ, ξ′| ξ′′, ξ′′′〉 = δ(ξ − ξ′′)δ(ξ′ − ξ′′′)

and likewise,

〈ξ| ξ′, ξ′′〉 = 0.

Using the same techniques that we have used to reduce
the interaction Hamiltonian, it is straightforward to show
that the reduced Dirac Hamiltonian corresponding to (9)
becomes

HD = cp0

∫
dξ
√

1 + ξ2
(
|ξ〉 〈ξ|+

∫
dξ′ |ξ, ξ′〉 〈ξ, ξ′|

)
(45)

while the reduce radiation Hamiltonian corresponding to
(10) becomes

HR = cp0

∫∫
dξdξ′ |ξ′| |ξ, ξ′〉 〈ξ, ξ′|. (46)

The Coulomb potential VCoul in (13) does not con-
tribute to this model. All of the terms resulting from the
Coulomb potential involve states with electron-positron
pairs in addition to a single electron. We consider only
states with exactly one electron in this simplified model,
so we exclude these more complex states.

IV. DISCUSSION OF THE REDUCED
HAMILTONIAN

We are now ready to write the entire reduced Hamilto-
nian H = HD+HR+HI for this model. Combining (44),
(45), and (46) and applying some algebraic manipulation

to make conservation of total momentum ξ explicit, the
final reduced Hamiltonian becomes

H̃
cp0

=

∫
dξ

[
Ee(ξ) |ξ〉 〈ξ|

+

∫
dξ′ [Ee(ξ

′) + Eγ(ξ − ξ′)] |ξ′, ξ − ξ′〉 〈ξ′, ξ − ξ′|

+ λ

∫
dξ′g(ξ, ξ′) (|ξ′, ξ − ξ′〉 〈ξ|+ |ξ〉 〈ξ′, ξ − ξ′|)

]
(47)

where

g(ξ, ξ′) =
sξc
′
ξ − s′ξcξ√
|ξ − ξ′|

(48)

and

Ee(ξ) =
√

1 + ξ2 (49)

Eγ(ξ) = |ξ|. (50)

The reduced Hamiltonian is scaled by the rest energy
cp0 = m0c

2 of the bare electron. This energy is a free
parameter that sets the energy scale for the model. Since
this scaling is arbitrary, it will frequently be convenient
to use the unitless reduced Hamiltonian

H =
H̃
p0c

. (51)

The coupling parameter λ, defined in (43) and used in
(48), is also a free parameter which defines the strength
of the coupling between the electromagnetic and the
charged matter fields. The coupling function g has the
property that g(ξ, ξ′) approaches zeros as ξ approaches
ξ′. Thus, the probability that the electron “interacts”
with a photon but does not change momentum is pre-
cisely zero and electrons in this model do not interact
with photons of zero momentum.

A. Eigenstates and Energies

The eigenstates of the reduced Hamiltonian (47) have
the general form

|φ(ξ, E)〉 = a(ξ, E) |ξ〉+

∫
dξ′ b(ξ′, ξ, E) |ξ′, ξ − ξ′〉 .

(52)
Each eigenstate has a definite total momentum ξ and an
energy E, but to enhance readability we suppress these
labels below when not needed. The states are comprised
of a superposition of a bare electron state |ξ〉 and an
infinite sum of states |ξ′, ξ − ξ′〉. Each state |ξ′, ξ − ξ′〉
has an electron of momentum ξ′, a photon of momentum
ξ − ξ′, and total momentum ξ. The complex coefficients
a and b(ξ′) specify the relative strength and phase of
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Energies of dressed electron eigenstates

Energies of correlated electron-photon eigenstates

Rest energy of a 
bare electron

FIG. 1: Energies associated with the eigenstates of the re-
duced Hamiltonian plotted versus the total momentum ξ of
the eigenstate. The solid blue curve shows the energies asso-
ciated with the dressed electron eigenstates |φd〉. The shaded
red area show the energies for correlated electron-photon
states |φe,γ〉, with the dashed red line on the bottom showing
the energy for states where the photon portion has zero mo-
mentum. The horizontal dashed line shows the rest energy of
a bare electron.

the components for each eigenstate. The eigenstates fall
into two general classes: dressed electron states |φd〉 with
relatively large a coefficients and small b(ξ′) coefficients,
and correlated electron-photon states |φe,γ〉 with small
or zero a coefficients and larger contributions from one
or more of the b(ξ′) coefficients.

Figure 1 plots the energies associated with the two
types of eigenstates. The energies of the dressed electron
states |φd〉, found by solving the eigenvalue problem

H |φd〉 = Ed(ξ) |φd〉 ,

are plotted as the solid blue line. As expected, the energy
of the dressed electron dips below the rest energy of the
bare electron, which has a value of one on the plot (in
units of m0c

2). The shaded region in Fig. 1 indicates
the possible energies for correlated electron-photon states
|φe,γ〉. The correlated electron-photon eigenstate with
the lowest possible energy for a fixed total momentum ξ
is a state of an electron with momentum ξ and a photon
with zero momentum, |φe,γ〉 = |ξ, 0〉. We find the unitless
energy of this type of state to be Ee(ξ):

H |ξ, 0〉 = Ee(ξ) |ξ, 0〉 . (53)

The eigenenergies Ee(ξ) =
√

1 + ξ2 are plotted as the
dashed red curve in Fig. 1. Note that this result is in-
dependent of the coupling parameter λ. Equation (53)
holds precisely because g(ξ, ξ) = 0, as noted above.

There are also eigenstates independent of λ that take
the form

|φe,γ〉 ∝ g(ξ, ξ′e) |ξe, ξ − ξe〉 − g(ξ, ξe) |ξ′e, ξ − ξ′e〉 , (54)

provided the two components have different electron mo-
menta ξe 6= ξ′e, but the same bare energy Ee(ξe) +
Eγ(ξ − ξe) = Ee(ξ

′
e) + Eγ(ξ − ξ′e). For these states, the

-2 -1 0 1 2
-2

-1

0

1

2

1

2

3

4

5

6

FIG. 2: Energies of the correlated electron-photon eigenstates
|φe,γ〉 plotted versus the total momentum ξ and the most

probable electron momentum ξ̃e. These eigenstates do not
strictly have a single electron momentum, but typically one
of the electron momenta is much more probable than all of
the others.

dressed energy eigenvalue is the common value E(ξ, ξe) =
Ee(ξe) + Eγ(ξ − ξe), i.e., the dressed and bare energies
are the same, again independent of the coupling parame-
ter λ. There is another set of correlated electron-photon
eigenvectors of the form

|φ′e,γ〉 ∝ g(ξ, ξe) |ξe, ξ − ξe〉+ g(ξ, ξ′e) |ξ′e, ξ − ξ′e〉+O(λ2).
(55)

These states, together with the eigenvectors in (54) and
the dressed electron states |φd〉, form a complete or-
thonormal set.

Figure 2 plots the energy eigenvalues for the correlated
electron-photon eigenstates with λ = 0.4 versus the total
momentum ξ and the most probable electron momen-
tum ξ̃e. As one would expect, the lowest energy state
occurs at zero total momentum with larger energies for
larger momenta. These states do not have a well-defined
electron momentum since, for example, states of the form
(54) explicitly include electron momenta ξe and ξ′e. How-
ever, typically one of the electron momenta is much more
probable than the other, and that most probable momen-
tum is used on the ξ̃e axis to plot the energy distribution.

In Fig. 2, the energy eigenvalues for both types of corre-
lated electron-photon eigenstates, given in (54) and (55),
smoothly interleave in the numerical computation. Since
half of those eigenvalues are given by the bare energy
E(ξ, ξ̃e), the other half must also given by this function.
The fact that the energy spectrum of the eigenvectors
in (55) does not depend on λ may initially be surpris-
ing, but agrees with a result established by Van Hove
regarding energy corrections of systems with continuous
spectra [9]. We also numerically verified this result by
comparing the energies plotted in Fig. 2, found by look-
ing for the most probable ξe, with a direct plot of the
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function E(ξ, ξe) and found that they approach the same
values as the number of points in the calculation is in-
creased. This indicates that all energy eigenvalues for
the correlated electron-photon states are independent of
λ, even while half of the eigenvectors do depend on λ.
The lower boundary of the energy plot in Fig. 2 matches
the dashed red curve in Fig. 1 when the ξ̃e dimension is
compressed. The shaded region in Fig. 1 shows the other
possible energies for different values of ξ̃e at the same ξ.

B. Choosing the Coupling Parameter λ

While the full QED Hamiltonian (1) corresponds to a
local field theory, the process that we have used to derive
the reduced Hamiltonian does not guarantee that the re-
duced model is also local and causal. The group velocity
vg for dressed electron states is given by the derivative
vg(ξ) = dEd(ξ)/dξ. To retain causality, the free param-
eter λ must be chosen such that the magnitude of vg(ξ)
is always less than the speed of light (i.e. less than one
in our scaled units) for all values of ξ. In Fig. 3, we have
plotted |vg(ξ)| for the dressed electron states |φd〉 with
λ = 1 (top) and λ = 0.4 (bottom) as the solid blue line.
Notice that with λ = 1, the group velocity exceeds the
speed of light for a range of ξ values before returning to
causality. This behavior shows that the dressed electron
energies for λ = 1 (analogous to the energies plotted as
the blue line in Fig. (1) for λ = 0.4) do not take the form

E(ξ) =
√
m2
p + ξ2 +E0, where mp is a unitless renormal-

ized physical mass and E0 is an arbitrary energy offset.
Thus, this model is not fully relativistically invariant for
all values of λ. However, for λ = 0.4 the velocities remain
less than one everywhere in the range of interest, so the
model remains causal in this frame and for this coupling
strength. At large values of ξ, the velocities approach the
speed of light exactly, independent of λ.

The dashed red curves in both panels in Fig. 3 show the
group velocity for the lowest energy correlated electron-
photon states (corresponding to the dashed red line in
Fig. 1). These group velocities remain below the speed
of light for both values of λ. In fact, causality is retained
for these states with all values of λ because, as discussed
above, the energies of these states are independent of the
choice of λ.

C. Choosing a Discretization Grid

When choosing a discretization grid for computational
purposes, one selects a number N of discrete total mo-
menta to consider and a maximum total momentum ξmax,
and then replaces the integrals in (47) with finite sums.
These choices determine the range of momenta that are
represented in the system, and also the energies of the
momentum eigenstates. Ideally, these will be chosen such
that the coarseness of the grid together with the momen-
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Correlated 
electron-photon 
eigenstates

FIG. 3: Absolute value of the group velocity for the dressed
electron states (solid blue) and the correlated electron-photon
states (dashed red) plotted versus the total momentum ξ of
the state. The top plot is for a coupling parameter value of
λ = 1, and the dressed electron states have a group veloc-
ity exceeding the speed of light (one) so that the system is
acausal. The bottom plot is for a coupling of λ = 0.4, and
group velocities for both types of states remain causal and ap-
proach the speed of light for large values of total momentum.

tum cutoff do not overly influence the result while opti-
mizing numerical efficiency. Even when modeling dynam-
ics for an electron at rest, the higher momentum states
are needed to represent the dressed electron. Typically,
one would determine the maximum practical N possible
for a given modeling system, and then adjust ξmax to
minimize the errors introduced in discretization.

To measure the errors introduced by discretization,
we study the energy eigenvalue for the zero-momentum
dressed electron state |φd(ξ = 0)〉. This state has the
minimum energy eigenvalue, and hence represents the
rest mass for the dressed electron in this model. This en-
ergy eigenvalue can be found exactly by solving the eigen-
value problem H |φd(ξ = 0)〉 = Emin |φd(ξ = 0)〉. After
some algebra, this results in

Emin = 1− λ2
∫
dξ′

[g(ξ′, 0)]
2√

1 + ξ′2 + |ξ′| − Emin

where the integral can be computed analytically to find
a transcendental equation for Emin. When computing
with a finite N and ξmax, the lowest numerical energy
eigenvalue will be somewhat higher than Emin due to the
discrete nature of the grid. We denote this numerical
lowest energy as Ẽmin, and study the behavior of Ẽmin
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FIG. 4: Value of the minimum energy eigenvalue Ẽmin as
the number of points N is varied with a fixed maximum mo-
mentum ξmax, compared to the exact rest energy Emin of the
dressed electron. Once a minimum N is reached, the accu-
racy tends to flatten out with additional points (note the com-
pressed energy scale on the left).

as N and ξmax are varied. In regions where the grid has
adequate width and resolution, the value of Ẽmin will
near Emin and will not be sensitive to changes of N and
ξmax.

Figure 4 plots Ẽmin as N is varied for several values of
ξmax. This plot is made for a coupling of λ = 0.4. The
dashed horizontal line near the bottom of the plot shows
Emin, and the curves show the approximate value Ẽmin

obtained for a finite value for N and ξmax. For a given
ξmax, the curve flattens out asN is increased, showing the
minimum value of N needed to represent a grid with that
ξmax. As ξmax increases, additional points are required
to reach this stable region in the energy eigenvalues, and
the stable region more closely approaches the exact value
Emin.

One can also choose a grid by determining the maxi-
mum N available for practical computations on a given
computer system, and then choose ξmax to minimize the
error in the energy eigenvalues. Figure 5 plots Ẽmin as
ξmax is varied for a fixed N . As expected, when a larger
N is available for computation, one can more accurately
represent a system with a higher ξmax. The plot also
shows that there is a preferred ξmax which minimizes the
error for a given value of N .

V. A BARE ELECTRON DRESSING ITSELF

As an example of the use of this reduced model, we
now compute the dynamics of an initially bare electron
dressing itself with photon states. For this computation,
we chooseN = 256 and ξmax = 23, as suggested by Fig. 5.
We calculate the dynamics of this system using the usual

0 20 40 60 80 100

0.9

0.92

0.94

0.96

0.98

FIG. 5: Value of the minimum energy eigenvalue Ẽmin as ξmax

is varied with a fixed N , compared to the exact rest energy
Emin of the dressed electron. Note that each Ẽmin curve has
a minimum error at a specific value of ξmax.

abstract Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H̃ |Ψ(t)〉 (56)

with solution

|Ψ(t)〉 = exp{−itH̃/~} |Ψ(t = 0)〉
= exp{−iτH} |Ψ(τ = 0)〉 ,

(57)

where we’ve introduced the scaled, unitless time τ =
(p0c/~) t. In the following we use this scaled time and
write |Ψ(τ)〉 as shorthand for |Ψ(τ~/p0c)〉 = |Ψ(t)〉.

We divide the spatial wave function representing this
state into two portions:

|Ψ(τ)〉 =

∫
dxΨe(x, τ) |x〉+

∫∫
dxdyΨe,γ(x, y, τ) |x, y〉

(58)
where

|x〉 =

∫
dξ
e−iξx√

2π
|ξ〉

and

|x, y〉 =

∫
dξ′
∫
dξ
e−i(ξ

′x+ξy)

2π
|ξ′, ξ〉 .

The spatial coordinate x is a scaled unitless quantity re-
lated via x = p0x̃/~ to the spatial coordinate x̃ with
units, and similarly for y. The overlap

Ψe,γ(x, y, τ) = 〈x, y| Ψ(τ)〉

gives the probability amplitude of finding a bare electron
at position x and a photon at position y at time τ . The
probability density of finding a bare electron at x that is
correlated with a photon at any position then becomes

Pe,∗(x, τ) =

∫
dy |Ψe,γ(x, y, τ)|2 .
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Likewise, the probability density of finding a photon at
a position y, is given by

P∗,γ(y, τ) =

∫
dx |Ψe,γ(x, y, τ)|2 .

Finally, the probability density of finding a bare electron
at position x with no correlated photon is given by

Pe(x, τ) = |Ψe(x, τ)|2

where

Ψe(x, τ) = 〈x| Ψ(τ)〉 .

To create a localized initial spatial distribution, we be-
gin the system with an initial state defined in momentum
space by a Gaussian distribution of bare electron states

|Ψ(τ = 0)〉 =
1√

w
√
π/2

∫
dξe−ξ

2/w2

|ξ〉 . (59)

Of course, to compute the evolution, the initial state
is represented in terms of the energy-momentum eigen-
states using

|Ψ(τ = 0)〉 =
∑
ξ,E

cE (ξ) |φE(ξ)〉 (60)

where cE (ξ) = 〈φE(ξ) |Ψ(τ = 0)〉. Then H in (57) may
be replaced by E for each term in (60) to yield

|Ψ(τ)〉 =
∑
ξ,E

cE (ξ) exp(−iτE) |φE(ξ)〉 . (61)

Figure 6 plots Pe,∗, P∗,γ , and Pe as a function of their
spatial coordinate at a sequence of times τ . The distri-
bution width is w = 0.4. At τ = 0 the probability of
measuring a state with a photon is zero, consistent with
(59). As time progresses, the bare electron proceeds to
“dress” itself with a photon field that remains localized
around the electron. Meanwhile, there is an additional
portion of the photon field that is radiated from the elec-
tron, and travels precisely at the speed of light.

We can also place the system directly in the dressed
electron state by setting the initial conditions such that

|Ψ(τ = 0)〉 =
1√

w
√
π/2

∫
dξe−ξ

2/w2

|φd(ξ)〉 , (62)

where the eigenstates |φd〉 correspond to the dressed elec-
tron eigenstates discussed in connection with Fig. 1. The
system propagates forward in time according to

|Ψ(τ)〉 = e−iHτ |Ψ(τ = 0)〉

=
1√

w
√
π/2

∫
dξe−ξ

2/w2

e−iEd(ξ)τ |φd(ξ)〉 .

(63)
Figure 7 plots the evolution of this initial state as time
proceeds. In this case the electron begins in the phys-
ical state with its surrounding photon field and simply
spreads due to usual quantum dispersion. In this case,
there are no radiated photons emitted from the electron.
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FIG. 6: Animation of a bare electron in an initial superposi-
tion of bare electron states |ξ〉 with a Gaussian distribution in
momentum also makes a Gaussian spatial distribution. The
probability amplitude of measuring a bare electron state at x
is Pe(x), the probability amplitude of measuring a correlated
electron-photon state with the electron at x and the photon
anywhere is Pe,∗(x), and the probability of measuring a pho-
ton at x and the electron anywhere is P∗,γ(x).

VI. CONCLUSION

We have introduced a reduced QED model for describ-
ing an electron field with occupation one interacting with
a photon field of occupation zero or one. This model
provides a self-consistent method for studying the funda-
mental interactions between electrons and light as long as
the energies are sufficiently low that pair production and
multiphoton states can be neglected. In contrast to prior
QED methods that rely on scattering theory, this model
allows us to study the dynamics of single electron/photon
systems as the interaction occurs. This model describes
dynamics in time plus a single spatial dimension in a
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FIG. 7: Animation of a dressed electron in an initial superpo-
sition of dressed electron states |φd〉 with a Gaussian distribu-
tion in momentum also makes a Gaussian spatial distribution.
The probability amplitude of measuring a bare electron state
at x is Pe(x), the probability amplitude of measuring a cor-
related electron-photon state with the electron at x and the
photon anywhere is Pe,∗(x), and the probability of measuring
a photon at x and the electron anywhere is P∗,γ(x). Note
that all distributions exhibit only simple quantum spreading
as time τ increases, with fixed distributions in momentum
space.

manner that is consistent with fully three-dimensional
QED. We have used this model to visualize the pro-
cess of a bare electron dressing itself by a photon field.
Given the relatively light computing power required for
this one-dimensional simulation, we are hopeful that in
the near future this work can be extended to two and
possibly three spatial dimensions. This work represents
a foundational first step toward this goal. Alternatively,
one might increase the available photon occupation num-
bers while remaining in one dimension. We also hope
to extend this work to visualize the dynamics of Comp-
ton scattering. The ability to study these dynamics can
create increased intuition about how these fundamental
systems behave.
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manuscript.
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