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We explore the phase diagram of the SU(N) Hubbard models describing fermionic alkaline earth
atoms in a square optical lattice with on-average one atom per site, using a slave rotor mean-
field approach. We find that the chiral spin liquid (CSL) predicted for N ≥ 5 and large interactions
passes through a fractionalized state with a spinon Fermi surface as interactions are decreased before
transitioning to a weakly interacting metal. We show that by adding a uniform artificial gauge field
with 2π/N flux per plaquette, the CSL becomes the ground state for all N ≥ 3 at intermediate
interactions, persists to weaker interactions, and exhibits a larger spin gap. For N ≥ 5 we find the
CSL is the ground state everywhere the system is a Mott insulator. The gauge field stabilization of
the CSL at lower interactions, and thus at weaker lattice depths, together with the increased spin
gap can relax the temperature constraints required for its experimental realization in ultracold atom
systems.

Introduction.—Topologically ordered phases [1] are of
fundamental interest, as they exist outside of the Lan-
dau symmetry breaking paradigm for classifying phases
of matter and display exotic phenomena such as fraction-
alized excitations [2]; in some cases these phases may be
useful for topological quantum computation [3, 4]. The
experimental realization of topological order beyond the
fractional quantum Hall effects is a major goal in mod-
ern condensed matter. Ultracold atomic systems, with
their unique tunability and control, may offer a promis-
ing platform to realize topological and exotic phases.

It was recently proposed [5–7] and experimentally con-
firmed [8–13] , that fermionic alkaline earth atoms (AEA)
exhibit SU(N) symmetric interactions. The value of N
can be controllably varied by initial state preparation up
to 2I + 1, with I the nuclear spin (as large as N = 10 for
87Sr with I = 9/2). Recently ultracold atom experiments
have trapped and cooled AEA to quantum degeneracy
and loaded them in an optical lattice [14–24]. Evidence
of cooling effects arising from the large spin entropy have
also been reported [12, 25, 26]. In fact experiments are
beginning to reach the regime where short range spin
correlations develop and thus it is particularly timely to
study quantum magnetism in these systems.

Most of the current theoretical work has focused in
the strongly interacting limit where the SU(N) Hubbard
model reduces to a SU(N) Heisenberg model. In fact spin
models exhibiting SU(N) symmetry have stimulated var-
ious theoretical investigations that predict exotic ground
states [26–44], some of them featuring topological order
such as the long sought chiral spin liquid (CSL) [28, 34].
These phases are stabilized because the large Hilbert
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space of a SU(N) local moment allows the spins to fluctu-
ate more efficiently, delocalizing the spins and suppress-
ing magnetic order in a similar way that geometric frus-
tration does. However, reaching the strongly interacting
regime is experimentally challenging and imposes strong
temperature constraints, since it is achieved at very deep
lattices where tunneling is exponentially suppressed and
energy scales become extremely low. It is then highly de-
sirable to determine under what conditions the CSL can
be stabilized at lower lattice depths (i.e. weaker interac-
tion strengths).

In this Letter we study the SU(N) Hubbard models
on a square optical lattice at an average filling lattice of
one atom per site and show that the CSL phase extends
to intermediate interacting regimes. We also find that
at weaker interactions another exotic phase, namely the
gapless quantum spin liquid with a spinon Fermi sur-
face [45, 46] emerges. Moreover, we predict that the
presence of a a synthetic gauge field [47–54], generated
for example by light induced hopping [55–57], enhances
the parameter space of the CSL, pushes its existence to
lower interactions and increases the corresponding spin
gap. Operating at weaker lattice depths, where the abso-
lute energy scales are more favorable, can relax the tem-
perature constrains required for the emergence of topo-
logical or magnetic order. We expect consequently that
the conclusions presented in this work are useful for the
implementation of new states of matter in cold atomic
systems.

AEA in optical lattices with synthetic gauge fields.—
AEA in a sufficiently deep optical lattice are described
by a SU(N) generalization of the usual (N = 2) Hubbard
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FIG. 1. Phase diagram, calculated with a slave-rotor mean-field approximation, as a function of spin flavor N and interaction
strength U/t in the (a) absence and (b) presence of an artificial uniform magnetic field with flux per plaquette Φ = 2π/N ,
illustrated in panel (d) for N = 3. Thin (thick) black lines are second (first) order phase transitions. The states found are the
valence bond solids (VBS), chiral spin liquid (CSL), spinon Fermi surface (SFS), Fermi liquid (FL), and integer quantum Hall
(IQH) states. These are described in the text and illustrated in panel (c).

model,

H = −t
∑
〈i,j〉,α

eiφijc†α,icα,j +
U

2

∑
i

(ni − 1)2 (1)

where cα,i is the fermionic annihilation operator for nu-
clear spin state α at lattice site i,

∑
〈i,j〉 indicates a

sum over nearest neighbors i and j; φij = −φji is
the (externally imposed) lattice gauge field. We define

ni =
∑
α c
†
α,icα,i, and t and U are the hopping energy

and on-site interaction energy, whose ratio can be tuned
by modifying the optical lattice depth. In this Letter, we
take the average fermion number per site to be one.

The gauge field φij depends both on the artificial elec-
tromagnetic field as well as the gauge choice. We are
interested in the physics of a two-dimensional square lat-
tice with a spatially uniform, time-independent artificial
magnetic field, and use the Landau gauge where

φij =

{
Φxjδyj−1,yi if {i, j} bond is vertical

0 otherwise,
(2)

xj is the x coordinate of site j measured in lattice units,
and Φ is the flux penetrating a single square plaquette of
the lattice [58]. We focus on the case Φ = 2π/N , because
this choice of Φ is favorable for the existence of the chiral
spin liquid. We note that the magnetic unit cell associ-
ated with the translational invariance of the Hamiltonian

is enlarged from the one imposed by the optical lattice
potential. Figure 1(d) shows the system with this flux
and gauge choice, and the enlarged magnetic unit cell,
for N = 3.

The phase diagram and properties of this system are
calculated within a slave rotor mean-field approximation
[46, 59], which we describe briefly. This technique is de-
signed to match on to the previous large-N solution in
the large U/t limit, and is well-suited for describing non-
magnetic ground states in proximity to the Mott tran-
sition. First we expand the Hilbert space to include a
U(1) bosonic rotor degree of freedom on each site, θj ,
and new fermionic spinon degrees of freedom associated
with operators fα,j , which are defined by

cα,j = e−iθjfα,j . (3)

To recover the original Hilbert space, we must impose
the constraint

Lj =
∑
α

f†α,jfα,j − 1 (4)

that the rotor angular momentum Lj is uniquely de-
termined by the particle number. Here, Lj satisfies
[θj , Lj ] = i. We rewrite the Hamiltonian in terms of
these new variables, giving

H = −t
∑
〈i,j〉,α

eiφijei(θi−θj)f†α,ifα,j +
U

2

∑
i

L2
i . (5)
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Although the rewritten Hamiltonian Eq. (5) together
with the constraint Eq. (4) is exactly equivalent to
Eq. (1), to make further progress we make a mean-
field approximation to decouple the rotor and spinon de-
grees of freedom. We then obtain the coupled mean-field
Hamiltonians for the rotors and the spinons,

Hr = −
∑
〈i,j〉

Jije
iθi−iθj +

∑
i

U

2
L2
i + hi(Li + 1), (6)

Hf = −
∑
〈i,j〉,α

t̃ije
iφijf†α,ifα,j −

∑
i,α

hif
†
α,ifα,i, (7)

where hi is a Lagrange multiplier that enforces on aver-
age the constraint Eq. (4), t̃ij ≡ t〈eiθi−iθj 〉r, and Jij ≡
teiφij

∑
α〈f
†
α,ifα,j〉f . Here the sub-index r (f) refers

to taking the expectation value in the rotor (spinon)
mean-field ground state |ψ〉r (|ψ〉f ). The Hamiltoni-
ans Hr and Hf are invariant under a U(1) gauge trans-

formation, f†α,i → f†α,ie
−iχi , θi → θi + χi, and t̃ij →

t̃ije
iχi−iχj , Jij → Jije

−iχi+iχj . We solve Hr and Hf self-
consistently for several variational ansatz [60] and find
the ground state by optimizing the total energy 〈ψ|H|ψ〉
where H is given by Eq. (5) and |ψ〉 ≡ |ψ〉r|ψ〉f is the
mean-field state.

Phase diagrams.—The slave-rotor mean-field phase di-
agram is displayed in Figure 1(a, b). We find five phases:
Fermi liquid (FL), integer quantum Hall (IQH), valence
bond solids (VBS), a gapless spin liquid with a spinon
Fermi surface (SFS) [45, 46], and a CSL [61, 62]. The
non-interacting and the strong coupling (Heisenberg)
limits are readily understood [28], and our slave-rotor
mean-field results are compatible with the previous un-
derstanding. The VBS, SFS and CSL are Mott insulating
with uncondensed bosonic rotors 〈eiθ〉 = 0. As we show
in Table I, the rotor and the spinon may experience dif-
ferent, even opposite, gauge fluxes in their mean-field
Hamiltonians for different phases. Since the rotor and
the spinon must form a whole atom, the total gauge flux
experienced by the rotor and the spinon should be equal
to the synthetic gauge flux that is externally imposed on
the atom.

We now describe the five different phases. The FL
phase is very similar to the usual Fermi liquid except
with N flavors of fermions [6]. The VBS are translation-
symmetry breaking phases with repeating units of SU(N)
singlets spread across multiple sites. In particular, as
we plot in Figure 1(c), the system is decoupled into 6-
site rectangular (4-site square) clusters in the SU(3)-VBS
[SU(4)-VBS] state. The SFS spin liquid is characterized
by a gapless spinon Fermi surface with a gapped bosonic
rotor at the mean-field level. Going beyond the mean-
field description, one needs to include the U(1) phase
fluctuation of the spinon hopping t̃ij . This is the inter-
nal gauge fluctuation [46]; it is dynamically generated
and is unrelated to the synthetic gauge field that is im-
posed externally. At low energies, the SFS spin liquid is
described by the spinon Fermi surface coupled to a fluc-
tuating internal U(1) gauge field [46, 63–67]. Due to the

Phases 〈eiθ〉 rotor flux spinon gap spinon flux

FL 6= 0 0 0 0

SFS 0 0 0 0

CSL 0 −2π/N 6= 0 2π/N

SU(3)-VBS 0 −π 6= 0 π

SU(4)-VBS 0 0 6= 0 0

IQH 6= 0 0 6= 0 2π/N

CSL 0 0 6= 0 2π/N

SU(3)-VBS 0 π/3 6= 0 π

SU(4)-VBS 0 π/2 6= 0 0

TABLE I. Parameters that characterize the obtained phases.
The upper five (lower four) rows describe phases in the ab-
sence (presence) of the synthetic gauge field. The rotor
(spinon) flux refers to the flux that is experienced by the rotor
(spinon) in the mean-field Hamiltonian Hr (Hf ). For the FL,
SFS, IQH, and CSL states, the flux is defined for the elemen-
tary square plaquette. For SU(3)-VBS [SU(4)-VBS] state, the
flux is defined through the 6-site [4-site] cluster [60].

spinon-gauge coupling, the overdamped U(1) gauge bo-
son scatters the spinons on the Fermi surface and destroys
the coherence of the spinon quasi-particles. The resulting
state is a non-Fermi liquid of fermionic spinons. In con-
trast, the spinons in the CSL form an integer quantum
Hall state. Upon coupling to U(1) gauge fluctuations,
this leads to a chiral topological order with anyon exci-
tations, and gapless chiral edge states carrying spin but
no charge [61].

To understand the global structure of the phase dia-
gram, it is useful to consider the U/t = 0 and U/t→∞
limits. The FL and IQH states are simply the non-
interacting ground states at U/t = 0. In the strong cou-
pling regime, the Hubbard model reduces to an SU(N)
Heisenberg model, and the phase diagram coincides with
previous slave-fermion mean-field results of the Heisen-
berg model [28]: for N = 3, 4 the ground state is a VBS,
while for N ≥ 5 the ground state is a CSL. This is true
both with and without a synthetic gauge field, as in the
U/t→∞ limit the physics is governed by nearest neigh-
bor superexchange, which is insensitive to the gauge flux.
We note that numerical works on the SU(N) Heisenberg
model found a 3-sublattice magnetic order for N = 3 [29]
and a colored VBS order for N = 4 [31]. The discrep-
ancy is probably because the slave-rotor decomposition
does not provide a good description in the strong cou-
pling regime for N = 3, 4 [60].

In the intermediate U/t regime, the gauge field causes
significant differences. Without a gauge field, we find
that a SFS phase intervenes between the non-interacting
FL and Heisenberg-limit CSL or VBS for all N except
N = 4, in which case there is a direct transition between
the FL and VBS ground states. In contrast, the Φ =
2π/N gauge flux broadens the parameter space for which
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FIG. 2. The excitation gap of the CSL phase, ∆, as a function
of interaction strength, U , both in units of the tunnelling t .
The curves illustrate the N - and magnetic flux Φ-dependence.
From bottom to top, we show (N = 10,Φ = 0); (N = 10,Φ =
2π/10); (N = 5,Φ = 2π/5); and (N = 5,Φ = 2π/5). The
cusps at U/t ≈ 4 are the locations below which the rotor gap
becomes smaller than the spin gap.

the CSL occurs: in addition to persisting down to N =
3, 4, the CSL occurs immediately as the system becomes
Mott insulating. A simple understanding of this comes
from noting that the spinons occupy Landau levels if the
spinons feel the same gauge field as the atoms. For Φ =
2π/N the spinons are at the proper filling to organize
into an IQH state, which yields the CSL.

Now we discuss the phase transitions in the phase dia-
gram. The nature of phase transitions is determined by
examining the mean-field parameters. When the mean-
field parameters vary continuously (abruptly) across the
transition, the transition is continuous (first order). The
SFS-CSL and FL-VBS transitions are first order, involv-
ing the breaking of time-reversal symmetry and lattice
translation, respectively. The Mott transition, from FL
to SFS (from IQH to CSL) in the absence (presence) of
a gauge flux, is continuous and is expected to remain
continuous beyond mean-field theory [68–70]. Because
the SFS and the CSL are exotic phases with fractional-
ized excitations, the continuous Mott transitions are not
described by any local order parameter and are beyond
the Landau paradigm of symmetry breaking phase tran-
sitions [68–70].

In the CSL, both the spinon sector and the rotor sector
are gapped. Figure 2 illustrates the excitation gap ∆’s
dependence on U/t, N , and the gauge flux in the CSL
where ∆ is the smaller of the spin gap and the rotor gap.
In the mean-field approximation, the spin gap is simply
the band gap of the spinon spectrum, and the rotor gap
is set by the Hubbard U interaction and thus stays much
larger than the spin gap in the Mott insulating regime
except near the Mott transition. For a given U/t, the
spin gap slightly increases when the gauge field is turned
on. An even more favorable effect of the gauge field for
the spin gap occurs because the CSL persists to lower
U/t. Since ∆ increases as U/t decreases, the gauge field
increases the maximum ∆ by about a factor of 1.5. Note

that ∆ is normalized by t. Since t exponentially decreases
with lattice depth even a factor of 1.5 enhancement of
the gap in the intermediate lattice regime, in absolute
energy units it corresponds to a significant enhancement
compared to the same factor in the deep lattice limit.
Moreover, because ∆ sets the temperature to which the
CSL’s characteristics remain, we expect the gauge field
to increase the temperature range over which the CSL
behavior is accessible.

Gauge field implementation.—One possibility is to use
a Raman-induced tunneling scheme in the presence of a
a uniform potential gradient [52, 53]. This scheme uti-
lizes the optical lattice and generates the Hamiltonian
Eq. (1) with strong gauge fluxes. An alternative scheme,
natural for the present work with AEA, is the one that
traps the 1S0 ground (g) and 3P0 excited (e) states in,
for example, a checkboard pattern in an optical lattice
by using an appropriate, “anti-magic,” wavelength. This
implementation generates a staggered flux and thus needs
additional rectification to make it homogeneous [71]. For
the latter we emphasize some points to consider in the
presence of interactions: First, two e-state atoms on the
same site can inelastically collide and be lost from the
trap. We have found that this problem can be largely
mitigated when using a checkerboard g-e pattern [72].
Second, the interactions are inhomogeneous, being dif-
ferent for the sites occupied by g atoms and e atoms and
could modify the discussed phase diagram.

Preparation and detection.—Reaching the temperature
regimes to observe the phase diagram Figure 1 is chal-
lenging. However, the expected advantage of the SU(N)
symmetry for cooling [12, 25, 26, 35] together with the
less stringent temperature requirements to observe CSL
phases in the presence of the synthetic gauge field might
help achieve the required conditions. Other potentially
favorable aspects of the gauge field are the absence of an
intermediate SFS phase and that all transitions are sec-
ond order in the mean-field analysis. Consequently, adi-
abatically going from weak to strong interactions may
be easier than in the absence of the gauge field. On
the other hand, the gauge field itself introduces further
complications such as a complex band structure even in
the weakly interacting regime. Consequently, determin-
ing optimal preparation is beyond the scope of this work.
However, we point out that even if cooling temperature
below the CSL gap is outside the current experimental
reach, it is possible that certain features associated with
the CSL may still be visible experimentally.

We briefly outline methods to detect the CSL and SFS.
at a higher temperature. For example, the presence of
time reversal symmetry breaking transition at a finite
temperature as a consequence of the CSL phase at low
temperatures should be observable in experiments with-
out the synthetic gauge field. To detect the CSL Ref. [34]
suggests methods to probe two characteristic properties
of topological phases: looking for topologically protected,
chiral edge currents and introducing a weak attractive
optical potential that is localized to a few lattice sites,
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which should bind the anyonic quasiparticles. Braid-
ing or interfering these quasiparticles can manifest their
anyonic nature. To detect the SFS state, one can per-
form spin-dependent Bragg spectroscopy to detect the
2-spinon continuum in the dynamic spin structure fac-
tor; the most basic signature of the exotic nature of this
phase is the lack of order and existence of gapless ex-
citations. More details of the state and its excitations
could be revealed by considering more structure of the
spectrum, similar to that considered in Refs. 73 and 74.

To summarize, we demonstrate that the SU(N) Hub-
bard model for N ≥ 3 with or without a synthetic gauge
flux on square optical lattice produces a rich phase dia-
gram involving both non-Landau phases (like CSL and
SFS phases) and non-Landau phase transitions. It is
drastically different from the SU(2) Hubbard models with
similar settings where a direct phase transition is found

between a FL (a Dirac semimetal) for zero (π) gauge
flux to a Neel state [75, 76]. This further highlights the
novel features brought by the SU(N) symmetry and the
synthetic gauge flux.
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Porto, and I. B. Spielman, Nature 462, 628 (2009).

[48] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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