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We find that all measures of coherence are frozen for an initial state in a strictly incoherent channel
if and only if the relative entropy of coherence is frozen for the state. Our finding reveals the existence
of measure-independent freezing of coherence, and provides an entropy-based dynamical condition
in which the coherence of an open quantum system is totally unaffected by noise.

Quantum coherence is a fundamental feature of quan-
tum mechanics, describing the capability of a quantum
state to exhibit quantum interference phenomena. The
coherence effect of a state is usually ascribed to the off-
diagonal elements of its density matrix with respect to a
particular reference basis, which is determined according
to the physical problem under consideration. It is an es-
sential ingredient in quantum information processing [1],
and plays a central role in emergent fields, such as quan-
tum metrology [2–4], nanoscale thermodynamics [5–11],
and quantum biology [12–16].

It is only recent years that the quantification of co-
herence has become a hot topic due to the development
of quantum information science, although the theory of
quantum coherence is historically well developed in quan-
tum optics [17–19]. A rigorous framework to quantify
the coherence of quantum states in the resource theo-
ries has been recently proposed after a series of efforts
[20–29]. By following the rigorous framework compris-
ing four postulates [20], a number of coherence measures
based on various physical contexts have been put for-
ward. The l1 norm of coherence and the relative entropy
of coherence were first suggested as two coherence mea-
sures based on distance. The coherence measures based
on entanglement [30], the coherence measures based on
operation [31, 32], and the coherence measures based on
convex-roof construction [33, 34] were subsequently pro-
posed. With coherence measures, various properties of
quantum coherence, such as the relations between quan-
tum coherence and other quantum resources [30, 35, 36],
the quantum coherence in infinite-dimensional systems
[37, 38], the complementarity relations of quantum co-
herence [39], and the measure of macroscopic coherence
[40], have been discussed.

Quantum coherence is a useful physical resource, but
coherence of a quantum state is often destroyed by noise.
A challenge in exploiting the resource is to protect coher-
ence from the decoherence caused by noise, as the loss
of coherence may weaken the abilities of a state to per-
form quantum information processing tasks. Today, after
having been equipped with the knowledge of coherence
measures, it becomes possible to analyze under which
dynamical conditions the coherence of an open system
is frozen in a noisy channel. Studies on this topic have
been started in Ref. [41], where the authors found that

the coherence measures based on bona fide distances are
frozen for some initial states of a quantum system with
even number of qubits undergoing local identical bit flip
channels. This finding illustrates that there exist such
quantum states of which some coherence measures re-
main constant in certain noisy channels, and hence the
ability of such states to perform quantum information
processing tasks is not weakened by the noise if the ability
exploited in the task is based on these frozen coherence
measures.

However, some coherence measures being frozen do not
imply other coherence measures being frozen too, since
different coherence measures result in different orderings
of coherence in general [42]. Freezing of coherence is de-
pendent on the coherence measures adopted in general.
Although a noisy channel may not weaken some abili-
ties of a quantum state if these abilities are based on
the frozen coherence measures, it can still weaken the
other abilities that are based on unfrozen coherence mea-
sures. Only the states with measure-independent freez-
ing of coherence can keep all the abilities of coherence
resource totally unaffected. Here, the phrase, measure-
independent freezing of quantum coherence, means that
coherence of some states is frozen independently of coher-
ence measures, i.e., all coherence measures of the states
are frozen in certain channels. The question then is:
Under which dynamical conditions does the measure-
independent freezing phenomenon occur for an open
quantum system in a noisy channel? This is an impor-
tant issue, since only in this case the coherence of an open
system is totally unaffected by noise. In this letter, we
address this issue.

To present our finding clearly, we need first to recapit-
ulate some notions, such as incoherent states, incoherent
operations, strictly incoherent operations, and coherence
measures.

An incoherent state is defined as

δ =
∑

i

pi|i〉〈i|, (1)

where {|i〉} represents a fixed reference basis, and pi are
probabilities. The set of all incoherent states is denoted
by I. All other states which cannot be written as di-
agonal matrices in this basis are called coherent states.
Hereafter, we use ρ to represent a general state, and δ
specially to denote an incoherent state.
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An incoherent operation or an incoherent channel, i.e.,
an incoherent completely positive trace-preserving map
(incoherent CPTP) map, is defined as

Λ(ρ) =
∑

n

KnρK
†
n, (2)

where the Kraus operators Kn satisfy not only
∑

n K
†
nKn = I but also KnIK†

n ⊂ I for each Kn, i.e.,
each Kn maps an incoherent state to an incoherent state.
An incoherent operation is called a strictly incoherent op-
eration or a strictly incoherent channel if Kn also satisfy
K†

nIKn ⊂ I for each Kn [31, 43].
A functional C can be taken as a coherence measure if

it satisfies the four postulates [20]:
(C1) C(ρ) ≥ 0, and C(ρ) = 0 if and only if ρ ∈ I;
(C2) Monotonicity under incoherent operations, C(ρ) ≥
C(Λ(ρ)) if Λ is an incoherent operation;
(C3) Monotonicity under selective incoherent operations,
C(ρ) ≥

∑

n pnC(ρn), where pn = Tr(KnρK
†
n), ρn =

KnρK
†
n/pn, and Λ(ρ) =

∑

n KnρK
†
n is an incoherent op-

eration;
(C4) Non-increasing under mixing of quantum states,
i.e., convexity,

∑

n pnC(ρn) ≥ C(
∑

n pnρn) for any set
of states {ρn} and any probability distribution {pn}.

One well-known coherence measure is the relative en-
tropy of coherence Cr . It is defined as

Cr(ρ) = min
δ∈I

S(ρ||δ), (3)

where S(ρ||δ) = Tr ρ(log ρ− log δ) is the relative entropy.
With these notions, we can now state our main finding

as a theorem.

Theorem C(ρt) = C(ρ0) for all coherence measures C
if and only if Cr(ρt) = Cr(ρ0), where ρt = Λt(ρ0) with

Λt being a strictly incoherent channel and ρ0 being an

initial state.

We only need to prove that C(ρt) = C(ρ0) if Cr(ρt) =
Cr(ρ0) in the theorem, since Cr is certainly frozen if all
measures are frozen.

First, we show that S(Λt(ρ0)||Λt(δ0)) = S(ρ0||δ0),
where δ0 is the diagonal part of the density matrix ρ0.
By definition, Cr(ρ) = minδ∈I S(ρ||δ). The minimum is
attained if and only if δ = ρd, where ρd is the diagonal
part of ρ [20], and then there is

Cr(ρ0) = S(ρ0||δ0). (4)

By using the contractivity of the relative entropy, i.e.,
S(E(ρ1)||E(ρ2)) ≤ S(ρ1||ρ2) for any two states ρ1 and ρ2
under a CPTP map E [1, 44, 45], we have

S(Λt(ρ0)||Λt(δ0)) ≤ S(ρ0||δ0). (5)

On the other hand, since Λt is an incoherent channel,
there is Λt(δ0) ∈ I, which further leads to

Cr(ρt) = min
δ∈I

S(ρt||δ) ≤ S(ρt||Λt(δ0)). (6)

Combining Eqs. (4), (5), and (6), we obtain the inequal-
ity,

Cr(ρt) ≤ S(ρt||Λt(δ0)) ≤ Cr(ρ0). (7)

In the condition of Cr(ρt) = Cr(ρ0), Eq. (7) results in

Cr(ρt) = S(ρt||Λt(δ0)), (8)

and

S(Λt(ρ0)||Λt(δ0)) = S(ρ0||δ0). (9)

Equation (8) indicates that Λt(δ0) is just the diagonal
part of the density matrix ρt = Λt(ρ0), while Eq. (9)
shows that the equality for the contractivity of relative
entropy in Eq. (5) is attained. Hereafter, we will use δt
to denote the diagonal part of the density matrix ρt for
simplicity. The above discussion implies that δt = Λt(δ0).

Second, we demonstrate that there exists an incoher-
ent operation Rt such that Rt(ρt) = ρ0 and Rt(δt) = δ0.
According to the well-known result about the contractiv-
ity of relative entropy given in Refs. [46, 47], we have
that Eq. (9) is valid if and only if there exists a CPTP
map Rt such that

Rt(ρt) = ρ0, Rt(δt) = δ0. (10)

We therefore only need to prove that this CPTP map is
incoherent. In the case that δt is invertible, a CPTP map
satisfying Eq. (10) can be explicitly expressed as [48],

Rt(ρ) =
∑

n

δ
1
2
0 K

†
n(t)δ

− 1
2

t ρδ
− 1

2
t Kn(t)δ

1
2
0 . (11)

with the Kraus operators K̃n(t) = δ
1
2
0 K

†
n(t)δ

− 1
2

t . Since

δ
− 1

2
t Iδ−

1
2

t ⊂ I, K†
n(t)IKn(t) ⊂ I, and δ

1
2
0 Iδ

1
2
0 ⊂ I, it is

easy to verify that K̃n(t)IK̃†
n(t) ⊂ I. Hence, Eq. (11)

defines an incoherent CPTP map satisfying Eq. (10). In
the case that δt is not invertible, instead of Eq. (11), Rt

can be written as

Rt(ρ) =
∑

n

δ
1
2
0 K

†
n(t)δ

− 1
2

t ρδ
− 1

2
t Kn(t)δ

1
2
0 + PρP, (12)

where P is the orthogonal projector onto the eigenspace

of δt associated with eigenvalue 0, and δ
− 1

2
t is defined

by (δ
− 1

2
t )ii = (δt)

− 1
2

ii if (δt)ii 6= 0, and (δ
− 1

2
t )ii = 0 if

(δt)ii = 0. Similarly, we can show that the Rt defined in
(12) is an incoherent CPTP map, and satisfies Eq. (10).

Third, with the above arguments, it is ready to obtain
the conclusion C(ρt) = C(ρ0). By combining the two
incoherent operations Λt and Rt, there is

ρ0
Λt−→ ρt

Rt−−→ ρ0. (13)

Since all the coherence measures C have the monotonic-
ity of coherence measure under incoherent CPTP map,
expressed by the postulate (C2), Eq. (13) results in

C(ρ0) ≥ C(ρt) ≥ C(ρ0), (14)
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which implies that C(ρt) = C(ρ0). This completes the
proof of our theorem.

The theorem means that all measures of coherence are
frozen for an initial state in a strictly incoherent channel
if and only if the relative entropy of coherence is frozen
for the state. It provides an entropy-based criterion for
identifying the states with measure-independent freezing
of coherence, and is applicable to all strictly incoherent
channels.

It is worth noting that all the typical qubit noisy chan-
nels [1], such as the bit flip, phase flip, bit-phase flip,
depolarizing, phase damping, and amplitude damping
channels, belong to this class of channels. It is easy to
verify that all the Kraus operators describing these chan-
nels satisfy both Kn(t)IK†

n(t) ⊂ I and K†
n(t)IKn(t) ⊂

I. Furthermore, if N channels Λα
t with Kraus opera-

tors Kα
n (t), α = 1, 2, . . . , N , are strictly incoherent chan-

nels, then the local channel Λt = Λ1
t ⊗ Λ2

t ⊗ · · · ⊗ ΛN
t

is also a strictly incoherent channel with its Kraus op-
erators Kn1n2...nN

= K1
n1

⊗ K1
n2

⊗ · · · ⊗ KN
nN

satisfying
Kn1n2...nN

IK†
n1n2...nN

⊂ I and K†
n1n2...nN

IKn1n2...nN
⊂

I. Note that here Λ1
t ,Λ

2
t , . . . ,Λ

N
t need not be identi-

cal, i.e., they may be different noisy channels. In fact,
Kn(t)IK†

n(t) ⊂ I means that there is at most one
nonzero entry in each column of Kn [35], while simi-
larly K†

n(t)IKn(t) ⊂ I means that there is at most one
nonzero entry in each row of Kn. Therefore, a channel
is a strictly incoherent channel if and only if at most one
nonzero entry appears in each row and each column of its
Kraus operators with respect to the fixed reference ba-
sis. This provides a simple approach to identify strictly
incoherent channels, by which it is very easy to confirm
that all the local channels consisting of strictly incoher-
ent channels are strictly incoherent channels. Hence our
theorem is applicable to all local channels consisting of
the typical qubit noisy channels.

Our theorem can help to effectively identify the states
with measure-independent freezing of coherence in a
strictly incoherent channel. All the states can be ob-
tained only by solving the equation Cr(Λt(ρ0)) = Cr(ρ0),
although it may be difficult to solve analytically the equa-
tion to obtain the whole solutions since the calculation of
entropy is complicated. However, in general, it is unnec-
essary to obtain all the solutions. In quantum informa-
tion processing, researchers are usually interested only in
some special states, such as the Bell states, GHZ states,
and some other special families of states. In this case,
we only need to examine the desired states, to which our
theorem is quite useful.

As an example, we now apply our theorem to local bit
flip channels to show the measure-independent freezing
phenomenon of coherence. Consider an N -qubit system
undergoing a local bit flip channel Λt = Λ1

q1
⊗ · · · ⊗ΛN

qN
,

where Λα
qα
(ρ) = Kα

0 ρK
α†
0 + Kα

1 ρK
α†
1 is the bit flip op-

eration on the α-th qubit with Kα
0 =

√
1− qαI and

Kα
1 =

√
qασ1, and q1, . . . , qN are parameters dependent

on time t. Here σ1 is the Pauli-X operator.
We first examine a family of pure states, defined by

|ϕ±
l1l2...lN

〉 = |l1l2 . . . lN 〉 ± |l̄1 l̄2 . . . l̄N 〉√
2

, (15)

where l1 = 0, li6=1 = 0, 1, and l̄i = NOT(li) = 1 − li.
These states are widely used in quantum information pro-

cessing. For instance, at N = 2, |ϕ±
00〉 = |00〉±|11〉√

2
and

|ϕ±
01〉 = |01〉±|10〉√

2
are just the Bell states, and at N ≥ 3,

|ϕ+
00...0〉 = |0〉⊗N+|1〉⊗N

√
2

are just the N -qubit GHZ states.

We will show that all coherence measures for each of the
states in Eq. (15) are frozen.

Hereafter, we use l (l̄) to denote the sequence l1l2 . . . lN
(l̄1 l̄2 . . . l̄N) for simplicity. The expression in Eq. (15)

can then be simply written as |ϕ±
l 〉 =

|l〉±|l̄〉√
2

. According

to our theorem, we only need to show that the relative
entropy Cr(ρ

±
t,l) are constants, where ρ±t,l = Λt(ρ

±
0,l) with

ρ±0,l = |ϕ±
l 〉〈ϕ±

l | being the initial states.
By detail calculations, we obtain

ρ±t,l =
∑

l′

pt,l′l|ϕ±
l′ 〉〈ϕ±

l′ |,

where

pt,l′l =
∏

1≤i≤N

(

qi + (1− 2qi)δl′
i
li

)

+
∏

1≤i≤N

(

1− qi − (1− 2qi)δl′
i
li

)

.

The 2N eigenvectors of ρ±t,l can be taken as |ϕ+
l′ 〉 and

|ϕ−
l′ 〉, which satisfy

ρ±t,l|ϕ+
l′ 〉 =

pt,l′l ± pt,l′l
2

|ϕ+
l′ 〉,

ρ±t,l|ϕ−
l′ 〉 =

pt,l′l ∓ pt,l′l
2

|ϕ−
l′ 〉,

and the diagonal part of ρ±t,l is

δt,l =
∑

l′

(1

2
pt,l′l|l′〉〈l′|+

1

2
pt,l′l|l̄′〉〈l̄′|

)

.

With the aid of the above expressions, we can calculate
the relative entropy of coherence, and obtain

Cr(ρ
±
t,l) = S(ρ±t,l||δt,l) = S(δt,l)− S(ρ±t,l)

=−
∑

l′

(

pt,l′l log(pt,l′l) + pt,l′l log
1

2

)

+
∑

l′

pt,l′l log pt,l′l

=
∑

l′

pt,l′l = 1.

(16)
Equation (16) shows that the relative entropy of coher-
ence for each state ρ±t,l is constant, and therefore all coher-
ence measures manifest freezing forever for the N -qubit
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system initially in the states expressed by Eq. (15) under-
going local bit flip channels. The measure-independent
freezing occurs in this case.

We now extend our discussion to a family of mixed
states, defined by

ρ0 =
∑

l

pl
(

p|ϕ+
l 〉〈ϕ+

l |+ (1− p)|ϕ−
l 〉〈ϕ−

l |
)

, (17)

where 0 ≤ p ≤ 1, and {pl} is any probability distribution.

Again, |ϕ±
l 〉 =

|l〉±|l̄〉√
2

are the brief expression of the pure

states defined in Eq. (15).
For the local bit flip channel Λt = Λ1

q1
⊗ · · · ⊗ΛN

qN
, we

have

ρt = Λt(ρ0) =
∑

l

pt,l
(

p|ϕ+
l 〉〈ϕ+

l |+ (1− p)|ϕ−
l 〉〈ϕ−

l |
)

,

where

pt,l =
∑

l′

pl′
(

∏

1≤i≤N

(qi + (1− 2qi)δl′
i
li)

+
∏

1≤i≤N

(1 − qi − (1− 2qi)δl′
i
li)
)

.

The 2N eigenvectors of ρt can be taken as |ϕ+
l 〉 and |ϕ−

l 〉,
which satisfy

ρt|ϕ+
l 〉 = pt,lp|ϕ+

l 〉, ρt|ϕ−
l 〉 = pt,l(1 − p)|ϕ−

l 〉,

and the diagonal part of ρt is

δt =
∑

l

(1

2
pt,l|l〉〈l|+

1

2
pt,l|l̄〉〈l̄|

)

.

We can then obtain the relative entropy of coherence,

Cr(ρt) = S(δt)− S(ρt)

=−
∑

l

(

pt,l log pt,l + pt,l log
1

2

)

+
∑

l

(

pt,l log pt,l + pt,l(p log p+ (1− p) log(1− p))
)

=1−H(p),
(18)

where H(p) = −p log p− (1− p) log(1− p), being the bi-
nary Shannon entropy. Equation (18) shows that Cr(ρt)
is a constant, which implies that all coherence measures
manifest freezing forever for the N -qubit system initially
in the states expressed by Eq. (17) undergoing local bit
flip channels, i.e., the measure-independent freezing oc-
curs.

Specially, if we take N as even numbers and let

p = 1+c1
2 and pl = 1+(−1)w(l)c3

2N−1 in our example, where
−1 ≤ c1, c3 ≤ 1 are two real number and w(l) is the
Hamming weight of |l〉, then Eq. (17) gives the states
discussed in Ref. [41], where the authors found that the

coherence measures based on the bona fide distance are
frozen in the local identical bit flip channel Λt = Λ⊗N

q .
Here, our example implies that in this case all coherence
measures, not limited to the bona fide coherence mea-
sures, are frozen.

In conclusion, we have proved the theorem that all
measures of coherence are frozen for an initial state in
a strictly incoherent channel if and only if the relative
entropy of coherence is frozen for the state. Our finding
reveals the existence of measure-independent freezing of
coherence, and more importantly, provides an entropy-
based dynamical condition in which the coherence of an
open quantum system is totally unaffected by noise.

Our theorem is applicable to all strictly incoherent
channels, such as the typical channels including the bit
flip, phase flip, bit-phase flip, depolarizing, phase damp-
ing, amplitude damping channels, and all the multiqubit
local noisy channels consisting of these typical qubit
channels. As an example, we have applied the theorem to
local bit flip channels, and shown that there are a num-
ber of states including the Bell states, the GHZ states,
other pure states, and a family of mixed states, of which
all coherence measures are frozen.

In passing, we would like to add that the relative en-
tropy of coherence plays a crucial role in the theorem.
We do not find other coherence measures which can take
the place of the relative entropy in the theorem.
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