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We use weak-value amplification to enhance the polarization-sensitive fast-light effect from in-
duced Raman absorption in hot rubidium vapor. We experimentally demonstrate that projecting
the output signal into an appropriate polarization state enables a pulse advancement of 4.2 µs, which
is more than 15 times larger than that naturally caused by dispersion. More significantly, we show
that combining weak-value amplification with the dispersive response of an atomic system provides
a clear advantage in terms of the maximum pulse advance achievable for a given value of loss. This
technique has potential applications for designing novel quantum-information-processing gates and
optical buffers for telecommunication systems.
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I. INTRODUCTION

Due to Kramers-Kronig relations, a sharp change in
the absorption or the transmission of an optical medium
results in a large modification of the group index [1].
Controlling the group velocity using slow and fast-light
is an enabling technology with many applications in pho-
tonics [2–5]. Additionally, fast-light provides a unique
testbed for studying the fundamental physics behind su-
perluminal pulse propagation. While slow light can be
achieved with no appreciable loss using electromagneti-
cally induced transparency (EIT) [6], one needs to oper-
ate close to the center of an absorption line to achieve a
negative group index with a large magnitude [7]. How-
ever, the large amount of absorption often limits the
applications of resonant effects, making it preferable to
employ slow/fast light mechanisms based on off-resonant
dispersion or resonant optical gain lines [8–10].

Here, we propose an alternative approach that is based
on modifying a time advance by using weak values. A
weak measurement is a generalized form of quantum mea-
surements, in which a weak unitary interaction is followed
by a strong projective measurement [11, 12]. Unlike the
standard measurements, the result of a weak measure-
ment, known as a weak value, can be beyond the range
of eigenvalues of the measured operator [13–15]. This
property, known as weak-value amplification (WVA), has
been used before to sensitively measure a variety of ef-
fects, such as a transverse beam deflection [16–19], phase
[20], velocity [21], and time delay [22]. Further, it has
been suggested that the weak-value amplification can be
used to enhance nonlinear optical effects in the few pho-
tons regime [23].

In this work, we amplify the negative time delay asso-
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ciated with the “superluminal” pulse propagation of an
optical pulse in hot rubidium vapor. The fast-light effect
is caused by an induced Raman absorption profile of the
rubidium hyperfine structure in a pump-probe nonlinear
interaction. Due to the polarization sensitivity of this
effect, the polarization of an optical pulse is weakly cou-
pled with its arrival time. By appropriately preparing
and post-selecting the polarization states of the pulse,
we can effectively engineer the dispersion properties of
the medium [22, 24], and thus amplify the weak coupling
between polarization and arrival time. Using this tech-
nique, we were able to advance the peak of an optical
pulse by an amount that is up to 15 times larger than
the original fast-light advancement.

The fast-light effect due to absorption and the enhance-
ment due to weak-value amplification are both lossy pro-
cesses. Here, we study how the achieved temporal ad-
vancement scales as a function of loss due to atomic ab-
sorption and compare it to the scaling as a function of
loss due to postselection in WVA. Remarkably, we find
that for a given value of loss, an optimized combination of
both these processes provides a larger time advance than
that obtained by just increasing the atomic absorption
itself. In light of the ongoing debate on the usefulness of
WVA [25–30], we find this result to be both timely and
significant.

II. TUNABLE GROUP DELAY FROM ATOMIC
RESPONSE

In a dispersive medium the group velocity and the
phase velocity are not the same. The group velocity and
the group index can be calculated from the standard re-
sults

vg = c/ng, ng = n+ ω
dn

dω
. (1)
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FIG. 1. Top panel: The absorption profile of a Lorentzian
lineshape. Middle panel: The refractive index associated
with the absorption line can be calculated using the Kramers-
Kronig relations. Bottom panel: The group index for the
same line. The horizontal axis for all the panels are identical
and denote the frequency detuning from resonance, normal-
ized by the line-width of the Lorentzian lineshape.

Slow and fast-light correspond to the situations where
ng >> 1 and ng < 1, respectively. Due to the Kramers-
Kronig relations, a sharp change in the absorption coeffi-
cient can lead to a substantial change in the group index.
A large pulse advance in fast light can be achieved by op-
erating in a wavelength close to the center of an absorp-
tion line (See Fig. 1). However, the large amount of loss
in this region limits the amount of maximum negative
delay that can be achieved in practice.

We use a nonlinear-process to induce a polarization-
sensitive absorption line in an atomic vapor. Consider
a three-level atomic Λ system, where levels 1 and 2 are
connected via the signal field 1

2Ωse
−i(ωst−kz) + c.c and

level 2 and 3 are connected by a strong coupling field
1
2Ωce

−i(ωct−kz) + c.c. The detunings are defined as ∆s =
(ω2 − ω1) − ωs, ∆c = (ω2 − ω3) − ωc and δ = ∆s −∆c.
In this case the susceptibility at the signal frequency can
be calculated as

χ(∆, δ,Ωc) = β
δ − iγ

(δ − iγ)(∆− iΓ/2)− |Ωc|2/4
. (2)

Here, Γ and γ are the excited-state spontaneous decay
rate and the ground-state decoherence rates, respectively.
The factor β is equal to Nµ2/~ε0, where N is the number

density and µ is the transition dipole moment between
levels 1 and 2. This formula can explain many interesting
results including the electromagnetically induced absorp-
tion (EIA), that can be achieved for a large single photon
detuning.

For the case where ∆ >> Γ, the expression for suscep-
tibility can be approximated by a Lorentzian line shape

χ(∆ >> Γ) = β
|Ωc|2

4∆2

δ′ + iγ′

δ′2 + γ′2
. (3)

In the above δ′ = δ − δ0, γ′ = γ + γ0, where δ0 =
|Ωc|2∆/(4∆2 + Γ2) and γ0 = |Ωc|2Γ/(8∆2 + 2Γ2).

The calculation above uses scalar fields to find the sus-
ceptibility and thus far we have neglected any dependence
of the atomic response to the polarization of light. In a
physical system, however, one needs to take into account
the vectorial nature of the electric fields in the coupling
and the signal beams. For vector fields, the atomic se-
lection rules set the energy levels that participate in the
interaction, and the realization of the three-level system
specified above may require a relation between the polar-
ization states of coupling and signal beams. For the case
of Rb atoms considered in this letter, we can realize the
Λ system described above when the polarization of the
signal beam is orthogonal to that of the coupling beam
[31, 32]. The energy diagram for the levels involved in
our experiment are depicted in Fig. 2. In this configu-
ration, the polarization component of the signal that is
orthogonal to the polarization of the coupling beam ex-
periences a narrow absorption line and consequently an
advancement in pulse travel time with respect to prop-
agation in vacuum. On the contrary, the component of
the signal polarized parallel to the coupling beam prop-
agates through the medium with nearly no change in its
group velocity.

When the signal field is comprised of both polariza-
tion components, the differential time advance can be
enhanced by performing a projective measurement in the
polarization [22, 24]. The modification of a time delay ob-
tained in this manner is in fact an interference effect that
can be fully understood using classical theory of electro-
magnetism [33]. However, expressing this phenomenon
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FIG. 2. Left panel: Schematic diagram of a three-level
Lambda system. Right panel: The hyperfine energy levels
of 85Rb.
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within the weak-value formalism leads to a simpler and
more elegant description that is easier to understand.

III. WEAK-VALUE AMPLIFICATION OF THE
TIME ADVANCE

We cast the propagation of an optical pulse through
the atomic vapor in the language of quantum state mea-
surement. The polarization and the temporal state of the
signal beam before the cell can be described as

|Ψin〉 =
1√
T + 1

(
|H〉+

√
T |V 〉

)
⊗ |f(t)〉e−iω0t, (4)

where we have assumed a quasi-monochromatic single op-
tical mode with a pulse shape described by |f(t)〉. The
horizontal and vertical polarization states are shown as
|H〉 and |V 〉 respectively. Since the polarization com-
ponent |H〉 attenuates upon propagation, it is initially
weighted by a larger factor to pre-compensate for the ef-
fect of loss. The power transmission efficiency of propa-
gation through the cell for a horizontally polarized signal
beam is denoted by T . We now consider a case where the
coupling beam is polarized in the vertical direction. In
this situation, the state of the signal beam in the output
can be described as [6, 34]

|Ψout〉 =

√
T

T + 1
(|H〉|f(t+ t0)〉+ |V 〉|f(t)〉) e−iω0t.

(5)
Here, t0 = −(ng − 1)Lc is the absolute value of the group
delay for a propagation length L. We have dropped the
common delay time between the two polarization states
in order to simplify the notation. It is seen that hor-
izontal polarization experiences attenuation and an ad-
vancement in time compared to the vertical component
of the field. Additionally, we have assumed the optical
path length in the medium for the two polarization com-
ponents are equal. This results in the convenient phase
difference of zero between the two polarization compo-
nents in the output. In practice, a non-zero phase dif-
ference can always be pre-compensated by changing the
polarization state of the input signal beam.

We use the weak value formalism for the case where
the advancement time t0 is much smaller than the tem-
poral duration of the pulse f(t). Although our formalism
closely follows that of Ref. [22], the large amount of time
advance and the tunability provided by the atomic sys-
tem in our experiment offers a degree of control absent
from previous realizations. In the following section we
provide a comparison of the loss vs. time advance from
WVA to the one obtained from the Kramers-Kronig rela-
tions. This analysis provides theoretical evidence for the
efficacy of combining weak value amplification from the
natural dispersive time advance from atomic response.

Assuming a Gaussian pulse shape, a postselection in
the a linear polarization state with an angle θ with re-

spect to the frame of the experiment results in

| ΨPS〉 ≈
√

T

T + 1
(cos θ|H〉+ sin θ|V 〉)⊗|f(t+Awt0)〉e−iω0t.

(6)
Here, ΨPS is the polarization and the temporal state of
the post-selected beam.

The weak value Aw corresponds to the temporal shift
of the optical pulse and can be calculated using the for-
mula

Aw =
〈Φθ | Â | Ψin〉
〈Φθ | Ψin〉

=
cos θ

sin θ + cos θ
, (7)

where |Φθ〉 is the postselectedpostselection polarization

state and the measurement operator is Â = |H〉〈H|. It
can be seen in Fig. 3 that choosing the postselection angle
θ close to 45◦ results in a large amplification factor Aw.
More interestingly, it is possible to achieve a negative
amplification and hence convert a time delay to a time
advance and vice versa.

IV. EXPERIMENTAL IMPLEMENTATION

We realize the Raman absorption profile using warm
atomic rubidium vapor. A sketch of the experimental
setup is depicted in Fig. 3. The beam from a 795-nm
narrow-line-width tunable diode laser is passed through a
tapered-fiber amplifier to obtain a 10 mW coupling beam.
The signal beam is obtained by frequency-shifting part
of the the laser beam by 3.035 GHz by double-passing it
through a tunable acousto-optic modulator. This separa-
tion corresponds to the ground-state hyperfine splitting
of 85Rb. The power of the signal beam is set to 100µW.

The wavelength of the diode laser is tuned to have the
signal beam detuned by 1.6 GHz to the blue of with the
52S1/2F = 3 to 2

5P1/2 transition. The coupling beam

was therefore detuned to the blue of 52S1/2F = 2 to

52P1/2 transition. The coupling and the signal beams

have Gaussian transverse profiles with 1/e2 diameters of
3 mm and 1.8mm, respectively. The coupling beam is
prepared in the vertical polarization state and the signal
beam is prepared in the diagonal polarization state. The
two beam are then combined in a co-linear fashion with
a non-polarizing beam splitter and are injected to an 8
cm rubidium cell.

The cell is heated using strip heaters inside a teflon
tube enclosed by antireflection-coated windows at each
end to achieve temperature stability. The cell is shielded
from stray magnetic field by a Mu-metal tubing. The va-
por cell contains both rubidium isotopes in their natural
abundance. In addition, we also have 20 Torr neon in the
cell, which acts as a buffer gas. The temperature of the
vapor cell is about 80◦C, resulting in a number density
of about 1012cm−3. We use an atomic prism to filter out
the coupling beam after the cell [35]. This prism contains
isotopically pure 87Rb and is heated to 100◦C to achieve
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FIG. 3. Schematic of the experimental setup. The continuous wave laser beam is divided to two copies using a non-polarizing
beam splitter. The signal is frequency shifted using an acousto-optic modulator (AOM1) in double path (the figure shows
single path to simplify visualization). AOM2 is used to shape the signal beam to Gaussian pulses. The polarization state of
the pump and the signal are controlled using wave plates. The postselection is done using a polarizer and a fast detector. The
output photo-current is analyzed by an oscilloscope.

a large dispersion (dn/dλ). The coupling and the signal
beams propagate at different angles once they exit the
prism.

Figure 4 shows the measured power transmission of the
signal beam as a function of detuning δ′. This graph rep-
resents a typical result of the measurement of absorption.
We have observed that the amount of absorption at the
center of the dip varies, resulting in a transmission in the
range T ≈ 0.45 − 0.55 during the course of the experi-
ment. We primarily attribute this change to fluctuations
of the temperature of atomic prism. It can be seen that
the measured transmission is in a good agreement with
a Lorentzian fit for the susceptibility. This observation
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FIG. 4. Power transmission as a function of frequency de-
tuning from Raman absorption. The blue curve presents the
experimental data and the red curves shows the theoretical
fit assuming a Lorentzian (with 2γ = 34 kHz) lineshape for
the susceptibility.

verifies the assumption that the effect of Doppler broad-
ening on susceptibility can be neglected for the case of
co-propagating coupling and signal beams [6, 36].

We find the line-width for the fitted Lorentzian profile
in Fig. 4 to be 2γ = 34 kHz. The fitted susceptibility
profile can be used to find the group index for operation
at the center of the line-width by using the Kramers-
Kronig relations. We use Eq. 13 (derived in the next sec-
tion) to find ng = −7.5 × 104 for operation at the the
center of the absorption line. In our experiment, how-
ever, we use a non-zero two-photon detuning δ to realize
a small fractional delay for a Gaussian pulse. We use an
acousto-optic modulator before the rubidium cell to carve
Gaussian pulses with a FWHM width of 20 µsec from the
signal beam. Upon propagation through the cell, the sig-
nal beam experiences the differential group delay caused
by the co-propagating coupling beam. We separate the
signal beam from the coupling beam by using the atomic
prism and then pass the signal beam through a polar-
izer. The output pulses from the polarizer are finally
detected with a fast photodetector diode. We set the
postselection state by setting the angle of the polarizer’s
axis. The top panel of Fig.5 presents measured optical
power as a function of time for 4 different postselection
angles. We measure the time of arrival of the pulse by
fitting a Gaussian waveform to the measured pulse and
finding the position of its center.The comparison of the
measured optical power for the horizontal and vertical
polarizations give a value of t0 = 0.28µs, corresponding
to a group index of ng = −t0c/L ≈ −1.0 × 103 and a
fractional pulse delay of 1.4%.

The value of amplification factor as a function of post-
selection angle from the experiment is plotted in the bot-
tom panel of Fig.5. It can be seen that the delay gets
drastically amplified as θ approaches −45◦, and expe-
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riences a sign flip as it goes through it. The increase
of loss in the proximity of θ = −45◦ eventually lim-
its the maximum achievable amplification. The largest
group delay measured in our experiment is equal to 4.2
µs, which corresponds to an effective group index of
ng = −Awt0c/L ≈ −1.6 × 104 and a fractional pulse
delay of 21%. It is evident that the experimental data
points are in reasonable agreement with the theoretical
prediction. We attribute the discrepancies between the
theory line and the experimental results to the polar-
ization instability of the signal beam after propagation
through the rubidium cell. The instability is primarily
caused by stray magnetic fields and temperature varia-
tions of the cell. Note that the theory curve is based
on Eq. 7 which predicts a singularity for θ = −45◦. In
practice, however, the maximum achievable amplification
factor is limited as by the pulse width, and a more de-
tailed analysis of the amplification factor has to take into
account the effect of higher order terms in the weak-value
expansion [37].

V. THE SCALING OF GROUP-DELAY WITH
LOSS

The analysis and the experimental results above sug-
gest that the WVA can be combined with the dispersive
response of an atomic system to provide extra control
over the value of group delay. However, to get an ap-
preciable amplification factor one needs to post-select on
a state that is nearly orthogonal to the input state. In
this situation, the efficiency of the process is significantly
reduced. This is, in fact, a universal property associated
with weak values and the usefulness of WVA in presence
of this additional loss has been a topic of debate recently
[25–30].

Before analyzing the effect of loss from postselection,
we investigate the relation between loss and group delay
from the atomic response. Using the susceptibility in
Eq. 3 and assuming n ≈ 1 + 1

2χ we get

n = Re [n] + i Im [n] = 1 + β
|Ωc|2

8∆2

δ′ + iγ′

δ′2 + γ′2
. (8)

The group delay can be calculated using the real part of
the group index. Assuming ∆ >> Γ, and ∆ >> |Ωc| we
have

ng|δ′=0 = 1 + β
|Ωc|2

8∆2

ω

γ′2
. (9)

The group delay is related to the group index as
Lng

c .
The value of group delay includes the propagation time
in vacuum. The differential time advance can be found
as

t0 = β
L

c

|Ωc|2

8∆2

ω

γ′2
(10)
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FIG. 5. Top: Measured optical power as a function of time
for |H〉, |V 〉, and for the output corresponding to the posts-
election angles θ = −40◦ and θ = −50◦. The origin of time
is set to the center of the pulse for the vertical polarization
state. The markers are added to aid visualization and do not
represent the data points. Bottom: The amplification factor
as a function of postselection angle. The blue curve shows
theory prediction from Eq. 7. The amplification factor is in-
ferred from data by performing a Gaussian fit. The error bars
correspond to the 95 % confidence interval.

We find the value of absorption at the center of the
Lorentzian line as

α =
ω

c
Im [n]

∣∣∣
δ′=0

=
β

8c

|Ωc|2

∆2

ω

γ′
. (11)

Subsequently, the power transmission efficiency is

T = exp (−2αL) = exp (−2γ′t0). (12)

It is evident that increasing the absolute value of time
advance via increasing the non-linear interaction results
in an exponential decrease in the transmission efficiency.
Consequently, the group delay can be written as

tatom = − lnT

2γ′
. (13)

Equation 13 calculates the maximum amount of time ad-
vance that can be achieved from the atomic response for
a given value of transmission efficiency.
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The alternative strategy is to initially achieve a time
advance t̃0 from the atomic response, at the cost of a
reduction in the transmission efficiency for one of the
polarization components to T̃ . We then employ the WVA
amplification to increase the amount of group delay at the
cost of a further increase in the loss. The input beam in
this case is described by the state

|Ψin〉 =
1√

1 + T̃

(
|H〉+

√
T̃ |V 〉

)
⊗ |f(t)〉e−iω0t, (14)

and the state after the postselection is equal to

|ΨPS〉 =

√
T̃

1 + T̃
(cos θ|H〉+ sin θ|V 〉)⊗|f(t+Aw t̃0)〉e−iω0t.

(15)
The total transmission efficiency for this strategy can

be calculated by adding the postselection loss

T = |〈ΨPS |ΨPS〉|2 =
2̃T

1 + T̃
sin2

(
θ +

π

4

)
(16)

Similarly, the total time advance is equal to the con-
tribution from the atomic response t̃0, amplified by the
postselection

t0 = Aw t̃0 =
cos θ

sin θ + cos θ
t̃0. (17)

We use the relation t̃0 = − ln T̃
2γ′ for the atomic response

to find the total time advance as

t0(θ) =
1

2γ′
cos θ

sin θ + cos θ
ln

[
2 sin2

(
θ + π

4

)
T

− 1

]
. (18)

For a given value of loss, the maximum value of achiev-
able time advance can be calculated by optimizing the
absorption from the atomic response and the loss from
postselection

tWVA =
1

2γ′
max
θ

(
cos θ

sin θ + cos θ
ln

[
2 sin2

(
θ + π

4

)
T

− 1

])
.

(19)
The solutions of Eq. 19 are calculated numerically and

plotted in Fig. 6, along with the solutions for Eq. 13. It
is evident that the WVA procedure provides a slightly
lower time advance for large values of transmission
efficiency. However, as the transmission efficiency
decreases, the time advance obtained by using WVA
grows rapidly, crossing the advancement obtained from
the atomic response at T ≈ 5%. For all values of T lower

than this value, WVA provides a larger time advance
than that obtained from the atomic response alone.
This showcases a clear instance where WVA provides
an advantage for the estimation of a small interaction
parameter.
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FIG. 6. Maximum achievable time advance as a function of
transmission efficiency (calculated from theory)

VI. CONCLUSIONS

We have used weak-value amplification to enhance the
fast-light effect caused by electromagnetically-induced
absorption in warm Rubidium vapor. By appropriately
preparing and post-selecting the polarization state of an
optical pulse, we have obtained an advancement in time
that is more than 15 times larger than that obtained from
the atomic response. The enhancement from WVA can
also be tuned to convert a time advance into a time delay
and vice versa. Additionally, we have shown that when
the total transmission through the system is lower than
5%, the use of WVA provides a clear enhancement in the
amount of time advance possible. Our technique pro-
vides an additional degree of freedom for controlling the
group velocity of light, which may be useful for design-
ing optical buffers and quantum-information-processing
gates.
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