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We demonstrate the relativistic electromagnetic force and power distributions of the field-kinetic
and canonical electromagnetic subsystems with respect to light normally incident upon a moving,
lossless magneto-dielectric slab of material. Time average and time varying studies are preformed to
demonstrate the continuum mathematical approach and discern between the physical characteristics
of both field-kinetic and canonical subsystems. It is shown that when considering time average
fields, both subsystems are equivalent, and thereby yield equivalent electromagnetic force and power
results. The time varying case demonstrates the differences between the field-kinetic and canonical
subsystems, where the field-kinetic subsystem attempts to distort the media, and the canonical
subsystem satisfies global conservation principles.
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I. INTRODUCTION

Originating in the early 1900’s, optical momentum
within media has been under question regarding mathe-
matically exact momentum models [1]. The controversy
began when two independent electromagnetic stress-
energy-momentum (SEM) tensors were postulated for the
mathematical modeling of light within materials [2, 3].
From the proposed SEM tensors, the momentum den-
sity expressions were defined as being either D̄ × B̄ [2]
or ǫ0µ0Ē × H̄ [3], where D̄ and B̄ represent the electric
displacement and magnetic induction fields, Ē and H̄ are
the electric and magnetic fields, and ǫ0 and µ0 are the
permittivity and permeability of vacuum, respectively.
The former momentum density has been found to be
the canonical momentum density, rendering the canon-
ical momentum of a pulse of light within the medium.
The latter momentum density is commonly known as
the kinetic momentum density, where integration over
the volume renders the kinetic momentum of a pulse of
light within the medium [4]. In light of many theoret-
ical and experimental findings, there still remains some
confusion as to the complete theoretical description of
the two physical interpretations of light within materi-
als, specifically regarding the kinetic subsystem of light.
However, significant theoretical advances have been made
in recent years [4, 5].
The canonical momentum, pcan = nE

c , models the
translations within or with respect to the medium and
represents the combination of both field and material
momentum values, where where n is the refractive in-
dex of the material, c is the speed of light in vacuum,
and E is the excitation energy [6]. Conversely, the ki-
netic momentum, pkin = 1

n
E

c , models the center of mass
translation of a material and represents the photon mo-
mentum void of material contributions. As is observed,
each momentum model indicates that light experiences
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either an increase or decrease in momentum while prop-
agating through a medium with refractive index, n [6].
Over the years, many researchers have reviewed the de-
bate with many unique perspectives [7–19], however, a
complete resolution has yet to be accepted.
Reviewing previous work on the kinetic subsystem led

to the Balazs thought experiment [8]. Here, the thought
experiment is conceptualized where a pulse with initial
free space momentum, pi = E/c, is incident onto an
impedance matched slab of material, having thickness d.
Within the material, the pulse is slowed by a path length
L = (n − 1)d, inducing a displacement difference with
respect to the vacuum propagation path. Conservation
principles invoke the slab gains linear momentum, giv-
ing rise to a material momentum, pm = E

c (1 −
1
n ). As a

consequence, momentum conservation requires that the
momentum of the pulse be p = 1

n
E

c , corresponding to the

kinetic momentum density Ḡ = Ē × H̄/c2. We expand
this thought experiment to include a relativistic analy-
sis of a continuous wave. In doing so, we utilize both
field-kinetic and canonical subsystem demonstrating the
dynamics of light within media [5].
In this correspondence, we demonstrate the optical

pressure exerted on a moving slab of magneto-dielectric
material having velocity v at normal incidence. We make
use of the Chu and Minkowski formulations to model the
field-kinetic and canonical subsystems for each respective
analysis. Within the analysis, we use both time aver-
age and time varying methods to study the total system
with respect to both space and time. By use of energy
and momentum conservation laws, we derive the optical
work and pressure for each respective subsystem.

II. MATHEMATICAL FRAMEWORK

To analytically model systems, we utilize the subsys-
tem concept prescribed by Penfield and Haus [7]. This
allows one to partition a system to localize the force,
power, energy, and momentum of the subsystem in ques-
tion. The SEM tensor quantities related to the Chu and
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Minkowski electromagnetic formulations are applied to
model the field-kinetic and canonical systems, respec-
tively [5]. However, we note that other leading formula-
tion can be employed in attempt to model the dynamics
of light [1, 5, 19].

A. Subsystem concept

The subsystem concept [7]

ϕj(r̄, t) = −∇ · S̄j(r̄, t)−
∂Wj(r̄, t)

∂t
(1a)

f̄j(r̄, t) = −∇ · ¯̄Tj(r̄, t)−
∂Ḡj(r̄, t)

∂t
(1b)

utilizes the energy and momentum continuity equations
to divide up the total system into J subsystems, where

f̄j is the force density, ϕj is the power density, ¯̄Tj is the
momentum flux or stress tensor, S̄j is the power flux, Ḡj

is the momentum density, and Wj is the energy density
for any given subsystem j. This indicates that a sub-
system may represent any arbitrary division of the total
system (i.e. electromagnetic field, hydrostatic pressure,
thermodynamic, etc). The conservation principles of the
total closed system are stated

∑

j

ϕj(r̄, t) = 0 (2a)

∑

j

f̄j(r̄, t) = 0 (2b)

by closing each subsystem such that the sum of the en-
ergies and momenta for the overall system is zero. In
general, the total force or power leaving any subsystem
j within a given volume is found by integrating the force
density, f̄j , and power density, ϕj , respectively. Thus,
the total electromagnetic force and power are found such
that

F̄e = −

∫

V

dV
∂

∂t
Ḡe −

∮

A

dĀ · ¯̄Te (3a)

Pe = −

∫

V

dV
∂

∂t
We −

∮

A

dĀ · S̄e. (3b)

Here, the divergence theorem is employed to reduce the

electromagnetic stress tensor, ¯̄Te, and power flux, S̄e, to
a surface integral which is integrated over surface A en-
closing volume V , where V is any given volume of the
total system. These results are mathematically exact.
However, to generalize this to moving media, we trans-
form Eqs.(3) to accommodate moving boundaries. This
stems from how the presented partial time derivatives no
longer commute with the respective volume integrations.
Kinetic theory demonstrates [20]

d

dt

∫

V

dV X̄ =

∫

V

dV
∂X̄

∂t
+

∮

A

da(ā · v̄)X̄, (4)

where X̄ represents an arbitrary density function with v̄
being the speed of the boundary interface. Rearranging
this relation and applying it to Eqs.(3), we can rewrite
the electrodynamic force and power equations as

F̄e = −

∮

A

dā ·
{

¯̄Te − v̄Ḡe

}

−
d

dt

∫

V

dV Ḡe (5a)

Pe = −

∮

A

dā ·
{

S̄e − v̄We

}

−
d

dt

∫

V

dV We. (5b)

Here, application of Eqs.(5) render the electrodynamic
subsystem for any arbitrary moving system. Addition-
ally, by application of Eq.(4), one can transform Eqs.(5)
to mathematically model specific systems, as will be dis-
cussed in the latter sections of this correspondence.
The time-average force and power expressions are

found by applying standard definitions to Eqs.(5) such
that

〈F̄ 〉e = −

∮

A

dā ·
{

〈 ¯̄T 〉e − v̄〈Ḡ〉e

}

(6a)

〈P 〉e = −

∮

A

dā ·
{

〈S̄〉e − v̄〈W 〉e
}

. (6b)

Due to the generalized nature of Eqs.(5), the resulting
time average values, Eqs.(6), are the generalized time
average expressions for any arbitrarily moving electro-
magnetic subsystem.

III. MATHEMATICAL ANALYSIS

In this section, a gedankenexperiment is used to
demonstrate the force and power relations of a mov-
ing magneto-dielectric slab of material in both the time-
average and time-varying perspectives. The prescribed
conservation equations, demonstrated in Sec II, are used
to validate the systems via statements of energy and mo-
mentum conservation. The Chu and Minkowski electro-
magnetic formulations [20, 21] are employed to illustrate
the dynamics of the field-kinetic and canonical electro-
magnetic systems, respectively. This allows for the the-
oretical study of electromagnetic and material contribu-
tions, and how each system changes with respect to both
space and time.

A. Time average

Consider an electromagnetic wave normally incident
from vacuum onto a rigid, lossless, non-dispersive,
isotropic magneto-dielectric slab, where an observer sees
the slab of material moving along the z axis within vac-
uum, as in Fig 1. The slab has a given proper thickness,
d, with the material boundaries defined at z = vt and
z = vt + γd, where γ = (1 − β2)−1/2 is the Lorentz
factor, v̄ = ẑv is the velocity vector of the moving ma-
terial, and β = v/c is the normalized velocity quantity.
We note that the slab thickness, z2 − z1, is derived to
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FIG. 1. A plane wave normally incident on a magneto-
dielectric with refractive index n = c

√
ǫµ, moving with ve-

locity v = zt.

be γd for all inertial reference frames, where the inverse
Lorentz transformation was used. The wave solutions
are derived from the incident electric wave component,
Ēi = x̂E0e

i(kiz−ωit), where the incident wave is propa-
gating along the positive ẑ direction [21]. In this section,
the time-averaged electromagnetic force and power are
analyzed within the relativistically invariant field-kinetic
and canonical formulations [5].

The Minkowski formulation is applied to present the
time-average analysis. The incident Minkowski fields in
the stationary frame are

Ēi = x̂E0e
i(kiz−ωit) (7a)

Hi = ŷ
E0

cµ0
ei(kiz−ωit) (7b)

where, the incident wave vector is given as

k̄i = ẑki = ẑ
ωi

c
(8)

and subscript i represents the incident field relations.
The reflected Minkowski fields, denoted by subscript r,
in the stationary frame are

Ēr = x̂E0Re−i(krz+ωrt) (9a)

H̄r = −ŷ
E0

cµ0
Re−i(krz+ωrt) (9b)

where, the reflected wave vector is

k̄r = −ẑkr = −ẑ
ωr

c
(10)

and R is the reflection coefficient. Within the moving
slab, there are two wave coefficients denoted A and B.
Here, coefficient A represents the amplitude of the wave
propagating in the positive z direction where coefficient
B represents the wave propagating along negative z direc-
tion. The Minkowski fields for the +ẑ (positive) propa-
gating wave within the material are denoted by subscript

a, and are given as

Ēa = x̂AE0e
i(kaz−ωat) (11a)

B̄a = ŷ
E0

c

n+ β

1 + nβ
Aei(kaz−ωat) (11b)

D̄a = x̂
E0

c2µ′

n(n+ β)

1 + nβ
Aei(kaz−ωat) (11c)

H̄a = ŷ
n

cµ′
AE0e

i(kaz−ωat) (11d)

where the associated wave vector is

k̄a = ẑka = ẑ
n+ β

1 + nβ

ωa

c
. (12)

Similarly, the relativistic Minkowski fields for the −ẑ
(negative) propagating wave within the material are de-
noted by subscript b, and are given as

Ēb = x̂E0Be−i(kbz+ωbt) (13a)

B̄b = −ŷ
E0

c

n− β

1− nβ
Be−i(kbz+ωbt) (13b)

D̄b = x̂
E0

c2µ′

n(n− β)

1− nβ
Be−i(kbz+ωbt) (13c)

H̄b = −ŷ
n

cµ′
BE0e

−i(kbz+ωbt) (13d)

where the associated wave vector is

k̄b = −ẑkb = −ẑ
n− β

1− nβ

ωb

c
. (14)

For notational simplicity, we define the effective refrac-
tive indices for the +ẑ and −ẑ propagating waves in the
medium as na = (n+ β)/(1+nβ) and nb = (n− β)/(1−
nβ), respectively. The transmitted Minkowski fields in
the stationary frame are

Ēt = x̂TE0e
i(ktz−ωtt) (15a)

H̄t = ŷ
E0

cµ0
Tei(ktz−ωtt) (15b)

where the associated wave vector, kt, is given as

k̄t = ẑkt = ẑ
ωt

c
. (16)

Here, T represents the transmission coefficient and sub-
script t denotes the transmitted wave relations. We note
that the general relations for wave vectors and electro-
magnetic field within moving media have been previously
derived [5, 20, 21].
Here, we use standard boundary conditions to evaluate

the field relations at each boundary [20]. Thus, employ-
ing tangential boundary conditions, given as

ẑ × (Ē + v̄ × B̄) = 0, (17a)

ẑ × (H̄ − v̄ × D̄) = 0, (17b)

at both z = vt and z = vt + γd while using algebraic
techniques, the solutions for coefficients A,B,R, and T



4

are found to be,

A =
2µ′

r(µ
′

r + n)(1 + nβ)

(1 + β) [(µ′

r + n)2 − (µ′

r − n)2eiθ]
(18a)

B =
2µ′

r(µ
′

r − n)(1− nβ)

(1 + β) [(µ′

r − n)2 − (µ′

r + n)2e−iθ]
(18b)

R =
(1− β)(µ′

r + n)(µ′

r − n)
(

1− eiθ
)

(1 + β) [(µ′

r + n)2 − (µ′

r − n)2eiθ]
(18c)

T =
4µ′

rne
iσA

(µ′

r + n)2 − (µ′

r − n)2eiθ
, (18d)

where σA = γd(kA − kt) and θ = γd(kA + kB).
Application of phase matching conditions [20]

φ ≡ kiv − ωi

= −krv − ωr

= kav − ωa

= −kbv − ωb

= ktv − ωt. (19)

allows for each respective wave interacting at each spe-
cific boundary to have identical phases where the phases
corresponding to the second boundary have the addi-
tional phase term (φ ± kγd). However, manipulation of
Eq.(19) allows one to find the incident, reflected and/or
transmitted angular frequencies for each region in terms
of the incident angular frequency, ωi. Thus,

ωr =
1− β

1 + β
ωi (20a)

ωa =
1 + nβ

1 + β
ωi =

1− β

1− naβ
ωi (20b)

ωb =
1− nβ

1 + β
ωi =

1− β

1 + nbβ
ωi (20c)

ωt = ωi. (20d)

Here, Eq.(20d) demonstrates that the incident and
transmitted waves share the same energy (~ω) and mo-
mentum (~ω/c) per photon. However, it is seen that
when utilizing the relations of the incident, reflected, and
transmitted energy and momentum relations of each free
space photon, we find

p̄photon = ẑ
~

c
[ωi + ωrr − ωtt] = ẑ

2~ωi

c(1 + β)
r (21a)

Ephoton = ~ [ωi − ωrr − ωtt] =
2β~ωi

1 + β
r, (21b)

where p̄photon and Ephoton represent the free space energy
and momentum acting on the material, and r and t are
the reflected and transmitted probability densities of the
photon at the barrier, respectively. Application of the
work-energy theorem, p̄ · v̄ = E yields

ẑ
2~ωi

c(1 + β)
r · cβ̄ =

2β~ωi

1 + β
r, (22)

demonstrating conservation of energy and momentum for
the free photons.

Reviewing Eqs. (20) from a classical, continuum per-
spective implies that when considering moving systems,
there is a change in the standing wave frequency on one
side of the slab which is proportional to the velocity of
the slab, and thereby yields a net change in energy and
momentum within the incident and transmitted regions
around the moving slab of material. This difference in
energy and momentum induces a net radiation pressure,
corresponding to a non-zero net electromagnetic force
and power, which is exerted on the material.
Using electromagnetic theory, the time average

Minkowski force,

〈F̄elec〉 = ẑ
E2

0

2c2µ0

(1 − β)

(1 + β)

×
2
(

n2 − µ′2
r

)2
(1 − cos(θ))

(

(n4 + 6n2µ2
r + µ′4

r )− (n2 − µ′2
r )

2
cos(θ)

) ,(23)

is found by employing Eq. (6a) in conjunction with the
Minkowski field relations presented in Table I. Similarly,
the time average Minkowski power,

〈Pelec〉 =
E2

0

2cµ0

(1− β)

(1 + β)

×
2β

(

n2 − µ′2
r

)2
(1− cos(θ))

(

(n4 + 6n2µ2
r + µ′4

r )− (n2 − µ′2
r )

2
cos(θ)

) ,(24)

is found by utilizing Eq. (6b) along with the presented
field relations in Table I. Here, both Eq. (23) and (24)
are demonstrated in Fig 2 and are rendered in terms of
free space values of the electromagnetic subsystem. Ana-
lytically, the time average force and power contributions
cancel within the slab cancel, thereby yielding equiv-
alent electrodynamic relations between the field-kinetic
and canonical subsystems. This implies one could utilize
any relativistic electromagnetic formulation to calculate
the derived force and power expressions.
Conservation of electromagnetic energy and momen-

tum is validated by use of the mechanical power expres-
sion, 〈F̄ 〉· v̄ = 〈P 〉 [15, 21], which is related to energy and
momentum conservation by a time derivative where the
velocity field is held constant. Here, it is easily observed
that

〈F̄elec〉 · v̄ = ẑ
E2

0

2c2µ0

(1− β)

(1 + β)

×
2
(

n2 − µ′2
r

)2
(1− cos(θ))

(

(n4 + 6n2µ2
r + µ′4

r )− (n2 − µ′2
r )

2 cos(θ)
) · ẑcβ

=
E2

0

2cµ0

(1 − β)

(1 + β)

×
2β

(

n2 − µ′2
r

)2
(1 − cos(θ))

(

(n4 + 6n2µ2
r + µ′4

r )− (n2 − µ′2
r )

2
cos(θ)

)

= 〈Pelec〉, (25)



5

Region 〈Tzz〉 〈Gz〉 〈W 〉 〈Sz〉
0

E2
0

2c2µ0

(

1 + |R|2
) E2

0

2c3µ0

(

1− |R|2
) E2

0

2c2µ0

(

1 + |R|2
) E2

0

2cµ0

(

1− |R|2
)

1
E2

0

2c2µ0

n
µ′

r

[

na|A|2 + nb|B|2
] E2

0

2c3µ0

n
µ′

r

[

n2

a|A|2 − n2

b |B|2
] E2

0

2c2µ0

n
µ′

r

[

na|A|2 + nb|B|2
] E2

0

2c2µ0

n
µ′

r

[

|A|2 − |B|2
]

2
E2

0

2c2µ0
|T |2 E2

0

2c2µ0
|T |2 E2

0

2c3µ0
|T |2 E2

0

2cµ0
|T |2

TABLE I. The derived field values for the Minkowski subsystem.

and the electromagnetic force and power are equal and
consistent within the system, 〈F̄elec〉 · v̄ − 〈Pelec〉 = 0.
Additionally, the electromagnetic and mechanical sub-
systems are equal and opposite such that the relativis-
tic constraints are maintained within the closed sys-
tem [15, 21]. This result invokes the given relations,
〈F̄elec〉 = −〈F̄mech〉 and 〈Pelec〉 = −〈Pmech〉 to satisfy
global energy and momentum conservation, as seen in
Eqs.(2b) and (2a).
Here, we note that the presented results are significant,

yet ambiguous. This is due to the electromagnetic force
and power values yielding relations that are independent
of material contributions. In the following subsection, we
study the electromagnetic force and power distributions
of a moving slab with time varying field expressions. This
serves to illustrate the differences in the field-kinetic and
canonical subsystems within optical media.

B. Time varying

In this subsection, we reevaluate the electrodynamics
of Sec III A while employing time varying field defini-
tions. With this, we employ the Chu (field-kinetic) and
Minkowski (canonical) formulations in modeling the elec-
tromagnetic subsystem.
To accurately model the given system, it is advanta-

geous to modify continuity Eqs.(5a-5b) from the gener-
alized force and power expressions. This is done by ap-
plying Eq.(4) to derive the necessary relations for each
region of interest. To illustrate this, we divide the sys-
tem into contributions within each region (R0, R1, R2)
and at each boundary (B1, B2), where each region and
boundary is specified in Fig 1. This renders

F̄R0
= −

∮

R0

dā ·
{

¯̄T − v̄Ḡ
}

−
d

dt

∫ z−

1

z0

dz Ḡ (26a)

F̄B1
= −

∮

B1

dā ·
{

¯̄T − v̄Ḡ
}

−
d

dt

∫ z+

1

z−

1

dz Ḡ (26b)

F̄R1
= −

∮

R1

dā ·
{

¯̄T − v̄Ḡ
}

−
d

dt

∫ z−

2

z+

1

dz Ḡ (26c)

F̄B2
= −

∮

B2

dā ·
{

¯̄T − v̄Ḡ
}

−
d

dt

∫ z+

2

z−

2

dz Ḡ (26d)

F̄R2
= −

∮

R2

dā ·
{

¯̄T − v̄Ḡ
}

−
d

dt

∫ z3

z+

2

dz Ḡ. (26e)

β
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

〈F
z
〉
(N

m
−
2
)

×10-13

0

1

2

3

4

5

6

7

8

9

(a)

β
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

〈P
〉
(W

m
−
2
)

×10-5

-20

-15

-10

-5

0

5

(b)

FIG. 2. The electromagnetic (a) force and (b) power ver-
sus velocity for the field-kinetic and canonical relativistic
formulations are presented for a moving magneto-dielectric
slab of thickness d = λ0/4n. Here, the initial wavelength is
λ0 = 640nm, where ǫ = 5ǫ0, µ = 3µ0, n = c

√
ǫµ, with β = v

c

as the normalized velocity.

where

F̄ = F̄R0
+ F̄B1

+ F̄R1
+ F̄B2

+ F̄R2
. (27)

Here, superscripts + and − denote the evaluation of the
given expression on the positive or negative side of a given
point z. From this, it is easily seen that the volume inte-
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gration of the momentum density within Eqs. (26b) and
(26d) tends to zero, which is due to a vanishing volume
integration at the boundary surface. Thus, by applica-
tion of Eq.(4) into Eq.(26), the resulting force expressions
for each respective region are

F̄R0
= −

∮

R0

dā · ¯̄T −

∫ z−

1

z0

dz
∂Ḡ

∂t
(28a)

F̄B1
= −

∮

B1

dā ·
{

¯̄T − v̄Ḡ
}

(28b)

F̄R1
= −

∮

R1

dā · ¯̄T −

∫ z−

2

z+

1

dz
∂Ḡ

∂t
(28c)

F̄B2
= −

∮

B2

dā ·
{

¯̄T − v̄Ḡ
}

(28d)

F̄R2
= −

∮

R2

dā · ¯̄T −

∫ z3

z+

2

dz
∂Ḡ

∂t
. (28e)

Simplification of Eqs.(28) leads to the force expression

F̄j = −

∮

A

dā ·
{

¯̄T out
j − v̄Ḡout

j

}

+

∮

A

dā ·
{

v̄Ḡin
j

}

−

∫

V

dV
∂Ḡin

j

∂t
+ F̄R0

+ F̄R2
, (29)

where superscript out represents field relations outside
the slab of material while superscript in represents field
relations inside the slab of material. Here, identical ma-
nipulations occur when solving the the total electromag-
netic power expression. Thus, the power expression is
given as

Pj = −

∮

A

dā ·
{

S̄out
j − v̄W out

j

}

+

∮

A

dā ·
{

v̄W in
j

}

−

∫

V

dV
∂W in

j

∂t
+ PR0

+ PR2
. (30)

Here, it is important to note that both Eqs.(5a-5b) and
Eqs.(29-30) are equivalent, and will yield identical results
in calculation.

1. Minkowski

Here, we present the time domain Minkowski fields
derived from Eq.(A1), along with the complex fields in
Eq.(7-15). Thus, the time domain incident Minkowski
fields are

Ēi = x̂E0I (31a)

H̄i = ŷ
E0

cµ0
I. (31b)

The reflected time domain Minkowski fields are

Ēr = x̂E0R (32a)

H̄r = −ŷ
E0

cµ0
R. (32b)

The time domain Minkowksi fields for the positive prop-
agating electromagnetic wave within the material are

Ēa = x̂E0A (33a)

B̄a = ŷ
E0

c

n+ β

1 + nβ
A (33b)

D̄a = x̂
E0

c2µ′

n(n+ β)

1 + nβ
A (33c)

H̄a = ŷ
n

cµ′
E0A. (33d)

The time domain Minkowski fields for the negative prop-
agating electromagnetic wave within the material are

Ēb = x̂E0B (34a)

B̄b = −ŷ
E0

c

n− β

1− nβ
B (34b)

D̄b = x̂
E0

c2µ′

n(n− β)

1− nβ
B (34c)

H̄b = −ŷ
n

cµ′
E0B. (34d)

And the transmitted time domain Minkowski field are

Ēt = x̂E0T (35a)

H̄t = ŷ
E0

cµ0
T , (35b)

where the values for I, R, A, B, and T are derived in
Appendix A.
We utilize the force and power continuity expressions,

Eqs. (29) and (30), alongside the Minkowski stress ten-
sor, momentum density, energy density, and power flux,
as previously defined, to derive the values for the time
varying force and power of the canonical electromagnetic
subsystem. Table II demonstrates the values utilized in
calculation.
The time varying Minkowski force is given as

F̄M = ẑ
E2

0

c2µ0
[(I2 +R2 − T 2)− β{I2 −R2 − T 2}]

+ẑ
E2

0

c3µ0

n

µ′

r

{

v
(

n2
aA

2(z+1 )− n2
bB

2(z+1 )
)

−v
(

n2
aA

2(z−2 )− n2
bB

2(z−2 )
)

− n2
a

∫

R1

dz
∂A2

∂t

−n2
b

∫

R1

dz
∂B2

∂t

}

, (36)

where subscript M denotes the Minkowski electrody-
namic subsystem. F̄R0

and F̄R2
render a null result. This

is due to the stress tensor and momentum density in-
tegrations rendering equal and opposite forces, thereby
canceling to provide a zero net force. This result also
follows physical intuition, being that there is no electro-
magnetic force exerted on a vacuum. However, there is a
nonzero electromagnetic force exerted within and on the
boundaries of the given medium, as expressed in Eq.(36).
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Expressions Region 0 Region 1 Region 2

Tzz
E2

0

c2µ0

(

I2 +R2
) E2

0

c2µ0

n
µ′

r

[

naA2 + nbB2
] E2

0

c2µ0
T 2

Gz
E2

0

c3µ0

(

I2 −R2
) E2

0

c3µ0

n
µ′

r

[

n2

aA2 − n2

bB2
] E2

0

c3µ0
T 2

W
E2

0

c2µ0

(

I2 +R2
) E2

0

c2µ0

n
µ′

r

[

naA2 + nbB2
] E2

0

c2µ0
T 2

Sz
E2

0

cµ0

(

I2 −R2
) E2

0

c2µ0

n
µ′

r

[

A2 + B2
] E2

0

cµ0
T 2

TABLE II. The derived values for the time domain Minkowski subsystem.

t(s)
×10-15
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v
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−
2
)

×10-4

-8

-6

-4

-2

0

2

4

6

8

FMzvz

PM

FIG. 3. The graphical representation of conservation, F̄M ·v̄ =
PM , in terms of the Minkowski formulation. Here, ǫ = 5ǫ0,
µ = 3µ0, n =

√
ǫrµr, λ0 = 640nm, d = λ0/4n, and the

velocity of the slab is v̄ = ẑ7c/10.

The time domain Minkowski power is derived as

PM =
E2

0

cµ0
[(I2 −R2 − T 2) + β{I2 +R2 − T 2}]

+
E2

0

c2µ0

n

µ′

r

{

v
(

naA
2(z+1 ) + nbB

2(z+1 )
)

−v
(

naA
2(z−2 ) + nbB

2(z−2 )
)

− na

∫

R1

dz
∂A2

∂t

+nb

∫

R1

dz
∂B2

∂t

}

. (37)

Similarly, PR0
and PR2

both render null results due to
cancelations within the power flux and energy density
terms of each expression. Again this is result agrees with
intuition, due to the fact the electromagnetic power does
no work on vacuum.
Simplification of Eqs.(36) and (37) is somewhat im-

practical, and is due to the cumbersome nature of the real
and imaginary wave coefficients constituting the wave re-
lations. Alternatively, the results are plotted to demon-
strate conservation within the system while performing
the relation F̄ · v̄ = P , where graphical representation is
shown in Fig 3. As can be seen, the work-energy relation

is satisfied. Thus, the Minkowski formulation satisfies
the electrodynamic subsystem. In addition, we note that
to satisfy the total system, there is an equal and oppo-
site mechanical force and power such that F̄M = −F̄mech

and PM = −Pmech. This allows for global conservation
and satisfies relativistic constraints (i.e constant veloc-
ity) within the system.

2. Chu

The Chu fields are derived by using prescribed vector
field tranformations [7, 21] and the Minkowski time do-
main fields. In addition, the Chu boundary conditions
render identical results to that of the Minkowski formu-
lation, thereby allowing for the use of Eqs.(A2) and (A7)
in reexpressing the Chu field relations. The time domain
incident Chu fields are

ĒCi = x̂E0I (38a)

H̄Ci = ŷ
E0

cµ0
I. (38b)

The time domain reflected Chu fields are

ĒCr = x̂E0R (39a)

H̄Cr = −ŷ
E0

cµ0
R (39b)

The time domain Chu fields propagating in the positive
direction within the material are

ĒCa = x̂
µ′

r + nβ

µ′

r(1 + nβ)
E0A (40a)

H̄Ca = ŷ
n+ µ′

rβ

µ′

r(1 + nβ)

E0

cµ0
A (40b)

P̄Ca = x̂
n2 − µ′

r

µ′

r(1 + nβ)

E0

c2µ0
A (40c)

µ0M̄Ca = ŷ
n(µ′

r − 1)

µ′

r(1 + nβ)

E0

c
A. (40d)
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Expressions Region 0 Region 1 Region 2

TCzz

E2
0

c2µ0

(

I2 +R2
) E2

0

c2µ0

n
µ′

r

[

(ceaA+ chaB)2 + (cebA− chbB)2
] E2

0

c2µ0
T 2

GCz

E2
0

c3µ0

(

I2 −R2
) E2

0

c3µ0

n
µ′

r

[(ceaA+ chbB)(cebA− chbB)] E2
0

c2µ0
T 2

WC
E2

0

c2µ0

(

I2 +R2
) E2

0

c2µ0

n
µ′

r

[

(ceaA+ chaB)2 + (cebA− chbB)2
] E2

0

c3µ0
T 2

SCz

E2
0

cµ0

(

I2 −R2
) E2

0

cµ0

n
µ′

r

[(ceaA+ chaB)(cebA− chbB)] E2
0

cµ0
T 2

TABLE III. The derived values for the time domain Chu subsystem. The Chu stress tensor and momentum density are
expressed in (a) and the Chu power flux and energy density are expressed in (b), for each region of interest.

The time domain Chu fields propagating in the negative
direction within the material are

ĒCb = x̂
µ′

r − nβ

µ′

r(1− nβ)
E0B (41a)

H̄Cb = −ŷ
n− µ′

rβ

µ′

r(1− nβ)

E0

cµ0
B (41b)

P̄Cb = x̂
n2 − µ′

r

µ′

r(1− nβ)

E0

c2µ0
B (41c)

µ0M̄Cb = ŷ
n(µ′

r − 1)

µ′

r(1− nβ)

E0

c
B. (41d)

The transmitted time domain Chu fields are

ĒCt = x̂E0T (42a)

H̄Ct = ŷ
E0

cµ0
T . (42b)

For brevity, we define the Chu field coefficients as cea ≡
(µ′

r + nβ)/(µ′

r(1 + nβ)), cha ≡ (n + µ′

rβ)/(µ
′

r(1 + nβ)),
ceb ≡ (µ′

r−nβ)/(µ′

r(1−nβ)), and chb ≡ (n−µ′

rβ)/(µ
′

r(1−
nβ)), which are used in Table III.
The Chu stress tensor, momentum density, energy den-

sity, and power flux are utilized to derive the the values
for the time varying force and power for the electromag-
netic subsystem. Eqs.(29) and (30) are used to derive the
electromagnetic force and power in terms provided by the
Chu formulation. Table III provides the derived values
for calculating the desired time varying electromagnetic
force and power contributions.
The time varying Chu electromagnetic force is given as

F̄C = ẑ
E2

0

c2µ0
[(I2 +R2 − T 2)− β{I2 −R2 − T 2}]

+ẑ
E2

0

c3µ0

n

µ′

r

{

v
[

(ceaA(z
+
1 ) + cebB(z+1 ))

×(chaA(z
+
1 )− chbB(z+1 ))

]

− v
[

(ceaA(z
+
2 ) + cebB(z+2 ))

×(chaA(z
+
2 )− chbB(z+2 ))

]

− ceaceb

∫

R1

dz
∂A2

∂t

+(ceachb − cebcha)

∫

R1

dz
∂AB

∂t
+ chachb

∫

R1

dz
∂B2

∂t

}

.

(43)

where subscript C denotes the Chu electromagnetic sub-
system. Here, we note that F̄R0

= F̄R2
= 0 as previously

specified, rendering Eq.(43) as the electromagnetic force
within and at the boundaries of the given medium. The
time varying Chu electromagnetic power is given as

PC =
E2

0

cµ0
[(I2 −R2 − T 2) + β{I2 +R2 − T 2}]

+
E2

0

c2µ0

n

µ′

r

{

v
(

ceaA(z
+
1 ) + cebB(z+1 )

)2

−v
(

chaA(z
−

2 )− chbB(z−2 )
)2

− (c2ea + c2ha)

×

∫

R1

dz
∂A2

∂t
− 2(ceaceb − chachb)

∫

R1

dz
∂AB

∂t

−(c2eb + c2hb)

∫

R1

dz
∂B2

∂t

}

. (44)

where PR0
= PR1

= 0 as shown. Here, due to the sophis-
tication of the terms involved, it is more practical and
equally valid to plot the conservation relations F̄ · v̄ = P ,
and is shown in Fig 4. As is observed, the Chu formu-
lation doesn’t satisfy the work-energy theorem for the
electromagnetic subsystem. This is due to the respec-
tive electromagnetic fields interacting with the optical
medium causing a portion of the electromagnetic energy
to transfer to the material. This induces the Chu effective
charges and currents to oscillate with respect to the pre-
sented field relations, producing both kinetic and poten-
tial energies within the material [22, 23]. Consequently,
this causes the electromagnetic force to deform the ma-
terial, allowing for the electromagnetic work-energy re-
lation to break down. Thus, the electromagnetic energy
transferred to the oscillating dipoles causes the observed
differences between the force and power expressions. At
any point in time, the work done on the material is less
than the kinetic energy delivered to the medium as seen
in Fig 4.

IV. DISCUSSION

In Sec. III, we analyze the electromagnetic force and
power produced via conservation principles on a moving,
linear, lossless, and nondispersive magneto-dielectric slab
of material. Both time average and time varying analyses
are used to study the electromagnetic-material interac-
tion with respect to a moving frame. In both cases, the
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FIG. 4. The graphical representation of conservation, F̄C · v̄ =
PC , in terms of the Chu formulation. Here, ǫ = 5ǫ0, µ = 3µ0,
n = c

√
ǫµ, λ0 = 640nm, d = λ0/4n, and the velocity of the

slab is v̄ = ẑ7c/10.

field-kinetic (Chu) and canonical (Minkowski) formula-
tions were applied to interpret the electromagnetic and
material subsystems within the moving frame, thereby al-
lowing for an analytic study of optical forces within mov-
ing materials. In this section, we review previous works
while relating the present contributions to the optical
momentum debate. With this, we logically discuss the
interpretations of the two electromagnetic subsystems,
thereby providing support for the presented analysis.

In the 1950’s and 1960’s, electromagnetic energy and
momentum was employed for the study of a moving di-
electric halfspace [24] and a moving slab of material [8].
The former utilized the canonical (Minkowski) formula-
tion to study obliquely incident electromagnetic wave in-
teractions incident on a moving dielectric material. The
analysis utilized energy relations of the Doppler shifted
incident, reflected, and transmitted waves, along with
conservation theorems (F̄ · v̄ = P ) to prove validation
of the electromagnetic system. The latter experiment
utilized the dynamics of the kinetic system as a pulse
of light propagates through a material with no reflec-
tions, thereby demonstrating momentum conservation
and center-of-mass theorems. Within the analysis con-
tained herein, we combine both methods in presenting
the relativistic electrodynamics of the kinetic and canon-
ical systems. Here, we note that in modeling magneto-
dielectric materials, the Amperian formulation [1] dif-
fers from the kinetic model, and the related analysis
is relegated to a later correspondence. Additionally,
the Einstein-Laub and Abraham formulations have both
been shown to be invalid with respect to relativistic sys-
tems, and have consequently been omitted [5, 25].

First considering the time average analysis, the elec-
tromagnetic force and power expressions were shown to
be valid and independent of the formulation used; This

invokes that the time average force and power results,
Eqs. (23) and (24), are correct, yet ambiguous. In view-
ing the total force density,

〈f̄total〉 = ∇ ·
{

〈 ¯̄Telec〉+ 〈 ¯̄Tmat〉+ 〈 ¯̄Tmech〉
}

+
∂

∂t

{

〈Ḡelec〉+ 〈Ḡmat〉+ 〈Ḡmech〉
}

, (45)

it is seen that there are three main contributions to the
overall system, where 〈 ¯̄Telec〉 and 〈Ḡelec〉 are the electro-

magnetic stress tensor and momentum density, 〈 ¯̄Tmat〉
and 〈Ḡmat〉 are the material stress tensor and momen-

tum density, and 〈 ¯̄Tmech〉 and 〈Ḡmech〉 are the mechan-
ical stress tensor and momentum density, respectively.
Modeling the total system while utilizing any electrody-
namic formulation allows for different values to be par-
titioned into the field and material subsystems. How-
ever important, the material dependent field expressions
(i.e. the field and material contributions within the slab)
represented by the field-kinetic and canonical formula-
tions [1, 5] produce corresponding equal and opposite
forces within the material and at each boundary, thereby
canceling to leave no mathematical ability to differen-
tiate between the differing electromagnetic interpreta-
tions within the time average analysis. Consequently,
this yields trivial results for studying the differences be-
tween the field-kinetic and canonical subsystems within
the material, where the contributions from the material
subsystem define the differences between the field-kinetic
and canonical interpretations. This asserts that the time
average material subsystem,

〈f̄mat〉 = ∇ ·
{

〈 ¯̄Tmat〉
}

+
∂

∂t

{

〈Ḡmat〉
}

= 0 (46)

must render a null net force value. Physically, this implies
that however one idealizes and/or models the material
subsystem, the time average material contribution adds
no value to the moving slab system when considering a
lossless material.
To study the electromagnetic interactions within the

material, the plane wave field expressions were trans-
formed to the time domain, thereby allowing for an ana-
lytical study of the system with respect to both space and
time. First studied, the canonical (Minkowski) system
demonstrates valid global energy and momentum con-
servation laws. Mathematically,

∇ ·
{ ¯̄TM + ¯̄Tmech

}

+
∂

∂t

{

ḠM + Ḡmech

}

= ∇ ·
{ ¯̄Telec

+ ¯̄Tmat +
¯̄Tmech

}

+
∂

∂t

{

Ḡelec + Ḡmat + Ḡmech

}

= 0, (47)

this imposes that the canonical subsystem includes
all electromagnetic and material responses/interactions
to close the system, where subscript M denotes the
Minkowski electromagnetic formulation. For the field-
kinetic formulation, however, conservation of energy and
momentum wasn’t satisfied, and is due to the separations
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of field and material contributions within the electromag-
netic subsystem, where the time varying field-kinetic ma-
terial contribution is a non-zero value. As is observed
in Fig 4, the graphical difference between the two re-
spective plots demonstrate the differences between the
field-kinetic force and power expressions. Physically, this
indicates that the electromagnetic work supplied by the
field-kinetic system is not equal to the rate of the en-
ergy used by the field-kinetic system. This invokes that
the field-kinetic portion of the total electromagnetic force
and power can be separated to be used on/deform the
material. However, the remaining portion of total elec-
tromagnetic force and power defines the material sub-
system, and is proportional to the material constitutive
parameters. As a result, within the time varying field-
kinetic formulation, the force density expression,

∇ ·
{

¯̄TFk
+ ¯̄Tmech

}

+
∂

∂t

{

ḠFk
+ Ḡmech

}

=

−∇ ·
{

¯̄Tmat

}

−
∂

∂t

{

Ḡmat

}

6= 0, (48)

demonstrates the necessary conditions for satisfying
global conservations laws, where subscript Fk denotes the
respective field-kinetic (Chu) formulation. This demon-
strates that one may partition the field and material con-
tributions in any way as long as each contribution sums
to satisfy Maxwell’s equations, reasserting the view in
Ref [18]. However, when differentiating material contri-
butions within a given system, there are unique force and
momentum expressions linked to specific power and en-
ergy expression, which satisfy relativistic electromagnetic
theory [5, 25, 26].

V. CONCLUSION

In conclusion, the field-kinetic and canonical subsys-
tems of electrodynamics were studied with respect to two
leading formulations (Minkowski and Chu) for both time
average and time varying cases. The time average anal-
ysis yielded vacuum quantities for both the force and
power expressions, which resulted in identical relations
for each formulation used. Thus, when modeling the sys-
tem in terms of any formulation, identical system dynam-
ics are produced. This allowed for a general understand-
ing of the time average electromagnetic force and power
around a moving slab of material, but rendered noth-
ing towards the understanding of the electromagnetic
differences of the formulations inside the material. The
time varying results, however, demonstrated the electro-
magnetic force and power distributions for both field-
kinetic and canonical subsystems, where the respective
field representations within the material allowed for an-
alytic study of electromagnetic field and material contri-
butions. As was shown, the canonical subsystem satisfied
the time varying electromagnetic subsystem, where the
kinetic formulations did not. This is due to the par-
titioning of the material responses, of which, where not

included in the global conservation statement. The meth-
ods shown serve to provide a deeper understanding into
the field-kinetic subsystem, and illustrate the mathemati-
cal framework for dealing with continuum electromechan-
ical systems.
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Appendix A: Transformation of complex wave

oscillation values

To analyze the time-varying system, we expand the
complex field values into the time-varying fields by use
of the definition [20]

Ē(z, t) = Re
{

Ē(z, ω)
}

, (A1)

where Ē(z, ω) represents values from the complex elec-
tromagnetic field relations used in the Sec III A. Here, it
is found that the complex exponential and the respective
wave coefficients are the only terms to change within the
field expressions. Thus, we expand each complex oscilla-
tion and wave coefficient terms for each respective wave.
As a result,

I = cos(kiz − ωit) (A2)

R = RR cos(krz + ωrt) +RI sin(krz + ωrt) (A3)

A = AR cos(kaz − ωat)−AI sin(kaz − ωat) (A4)

B = BR cos(kbz + ωbt) +BI sin(krz + ωbt) (A5)

T = TR cos(ktz − ωtt)− TI sin(ktz − ωtt) (A6)

are the associated oscillation term for each respective
field solution. Here, subscript R and I denote the real
and imaginary values of the respective field coefficients.
Thus, the real and imaginary wave coefficients derived
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from Eqs.(18) yield

RR =
(β − 1)

(

n4 − µ4
r

)

(cos(θ)− 1)

(β + 1) (n2 − µ2
r)

2
cos(θ)− (β + 1) (n4 + 6n2µ2

r + µ4
r)

(A7a)

RI = −
2n(β − 1)µr(n− µr)(n+ µr) sin(θ)

(β + 1)
(

n4 − (n2 − µ2
r)

2 cos(θ) + 6n2µ2
r + µ4

r

) (A7b)

AR =
2µr(nβ + 1)(n+ µr)

(

(n+ µr)
2 − (n− µr)

2 cos(θ)
)

(β + 1)
(

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

)(A7c)

AI =
2µr(nβ + 1)(n− µr)

2(n+ µr) sin(θ)

(β + 1)
(

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

)(A7d)

BR =
2µr(1− nβ)(n− µr)

(

(n+ µr)
2 cos(θ) − (n− µr)

2
)

(β + 1)
(

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

)(A7e)

BI =
2µr(1 − nβ)(n− µr)(n+ µr)

2 sin(θ)

(β + 1)
(

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

)(A7f)

TR =
4nµr

(

(n+ µr)
2 cos(σA)− (n− µr)

2 cos(θ − σA)
)

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

(A7g)

TI =
4nµr

(

(n− µr)
2 sin(θ − σA) + (n+ µr)

2 sin(σA)
)

−2 (n2 − µ2
r)

2
cos(θ) + (n− µr)4 + (n+ µr)4

(A7h)

where σA and θ are previously defined, and X =
XR + iXI utilize standard complex form, where X ≡
{R, T,A,B}.
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